56,553 research outputs found

    Dynamic Adaptive Point Cloud Streaming

    Full text link
    High-quality point clouds have recently gained interest as an emerging form of representing immersive 3D graphics. Unfortunately, these 3D media are bulky and severely bandwidth intensive, which makes it difficult for streaming to resource-limited and mobile devices. This has called researchers to propose efficient and adaptive approaches for streaming of high-quality point clouds. In this paper, we run a pilot study towards dynamic adaptive point cloud streaming, and extend the concept of dynamic adaptive streaming over HTTP (DASH) towards DASH-PC, a dynamic adaptive bandwidth-efficient and view-aware point cloud streaming system. DASH-PC can tackle the huge bandwidth demands of dense point cloud streaming while at the same time can semantically link to human visual acuity to maintain high visual quality when needed. In order to describe the various quality representations, we propose multiple thinning approaches to spatially sub-sample point clouds in the 3D space, and design a DASH Media Presentation Description manifest specific for point cloud streaming. Our initial evaluations show that we can achieve significant bandwidth and performance improvement on dense point cloud streaming with minor negative quality impacts compared to the baseline scenario when no adaptations is applied.Comment: 6 pages, 23rd ACM Packet Video (PV'18) Workshop, June 12--15, 2018, Amsterdam, Netherland

    3D point cloud video segmentation oriented to the analysis of interactions

    Get PDF
    Given the widespread availability of point cloud data from consumer depth sensors, 3D point cloud segmentation becomes a promising building block for high level applications such as scene understanding and interaction analysis. It benefits from the richer information contained in real world 3D data compared to 2D images. This also implies that the classical color segmentation challenges have shifted to RGBD data, and new challenges have also emerged as the depth information is usually noisy, sparse and unorganized. Meanwhile, the lack of 3D point cloud ground truth labeling also limits the development and comparison among methods in 3D point cloud segmentation. In this paper, we present two contributions: a novel graph based point cloud segmentation method for RGBD stream data with interacting objects and a new ground truth labeling for a previously published data set. This data set focuses on interaction (merge and split between ’object’ point clouds), which differentiates itself from the few existing labeled RGBD data sets which are more oriented to Simultaneous Localization And Mapping (SLAM) tasks. The proposed point cloud segmentation method is evaluated with the 3D point cloud ground truth labeling. Experiments show the promising result of our approach.Postprint (published version

    Consistent ICP for the registration of sparse and inhomogeneous point clouds

    Get PDF
    In this paper, we derive a novel iterative closest point (ICP) technique that performs point cloud alignment in a robust and consistent way. Traditional ICP techniques minimize the point-to-point distances, which are successful when point clouds contain no noise or clutter and moreover are dense and more or less uniformly sampled. In the other case, it is better to employ point-to-plane or other metrics to locally approximate the surface of the objects. However, the point-to-plane metric does not yield a symmetric solution, i.e. the estimated transformation of point cloud p to point cloud q is not necessarily equal to the inverse transformation of point cloud q to point cloud p. In order to improve ICP, we will enforce such symmetry constraints as prior knowledge and make it also robust to noise and clutter. Experimental results show that our method is indeed much more consistent and accurate in presence of noise and clutter compared to existing ICP algorithms
    • …
    corecore