189 research outputs found

    Numerical approximation of planar oblique derivative problems in nondivergence form

    Get PDF
    A numerical method for approximating a uniformly elliptic oblique derivative problem in two-dimensional simply-connected domains is proposed. The numerical scheme employs a mixed formulation with piecewise affine functions on curved finite element domains. The direct approximation of the gradient of the solution turns the oblique derivative boundary condition into an oblique direction condition. A priori and a posteriori error estimates as well as numerical computations on uniform and adaptive meshes are provided

    Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters

    Get PDF
    This paper analyses an adaptive nonconforming finite element method for eigenvalue clusters of self-adjoint operators and proves optimal convergence rates (with respect to the concept of nonlinear approximation classes) for the approximation of the invariant subspace spanned by the eigenfunctions of the eigenvalue cluster. Applications include eigenvalues of the Laplacian and of the Stokes system

    The Virtual Element Method with curved edges

    Full text link
    In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k≥2k \geq 2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence

    A drift-diffusion based electrothermal model for organic thin-film devices including electrical and thermal environment

    Get PDF
    We derive and investigate a stationary model for the electrothermal behavior of organic thin-film devices including their electrical and thermal environment. Whereas the electrodes are modeled by Ohm's law, the electronics of the organic device itself is described by a generalized van Roosbroeck system with temperature dependent mobilities and using Gauss--Fermi integrals for the statistical relation. The currents give rise to Joule heat which together with the heat generated by the generation/recombination of electrons and holes in the organic device occur as source terms in the heat flow equation that has to be considered on the whole domain. The crucial task is to establish that the quantities in the transfer conditions at the interfaces between electrodes and the organic semiconductor device have sufficient regularity. Therefore, we restrict the analytical treatment of the system to two spatial dimensions. We consider layered organic structures, where the physical parameters (total densities of transport states, LUMO and HOMO energies, disorder parameter, basic mobilities, activation energies, relative dielectric permittivity, heat conductivity) are piecewise constant. We prove the existence of weak solutions using Schauder's fixed point theorem and a regularity result for strongly coupled systems with nonsmooth data and mixed boundary conditions that is verified by Caccioppoli estimates and a Gehring-type lemma

    A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem

    Get PDF
    AbstractIn this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf–sup constant is available, which is confirmed by some numerical results
    • …
    corecore