3,617 research outputs found

    Playing Games in the Baire Space

    Full text link
    We solve a generalized version of Church's Synthesis Problem where a play is given by a sequence of natural numbers rather than a sequence of bits; so a play is an element of the Baire space rather than of the Cantor space. Two players Input and Output choose natural numbers in alternation to generate a play. We present a natural model of automata ("N-memory automata") equipped with the parity acceptance condition, and we introduce also the corresponding model of "N-memory transducers". We show that solvability of games specified by N-memory automata (i.e., existence of a winning strategy for player Output) is decidable, and that in this case an N-memory transducer can be constructed that implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    On the Lengths of Symmetry Breaking-Preserving Games on Graphs

    Get PDF
    Given a graph GG, we consider a game where two players, AA and BB, alternatingly color edges of GG in red and in blue respectively. Let l(G)l(G) be the maximum number of moves in which BB is able to keep the red and the blue subgraphs isomorphic, if AA plays optimally to destroy the isomorphism. This value is a lower bound for the duration of any avoidance game on GG under the assumption that BB plays optimally. We prove that if GG is a path or a cycle of odd length nn, then Ω(logn)l(G)O(log2n)\Omega(\log n)\le l(G)\le O(\log^2 n). The lower bound is based on relations with Ehrenfeucht games from model theory. We also consider complete graphs and prove that l(Kn)=O(1)l(K_n)=O(1).Comment: 20 page

    Jointly Modeling Embedding and Translation to Bridge Video and Language

    Full text link
    Automatically describing video content with natural language is a fundamental challenge of multimedia. Recurrent Neural Networks (RNN), which models sequence dynamics, has attracted increasing attention on visual interpretation. However, most existing approaches generate a word locally with given previous words and the visual content, while the relationship between sentence semantics and visual content is not holistically exploited. As a result, the generated sentences may be contextually correct but the semantics (e.g., subjects, verbs or objects) are not true. This paper presents a novel unified framework, named Long Short-Term Memory with visual-semantic Embedding (LSTM-E), which can simultaneously explore the learning of LSTM and visual-semantic embedding. The former aims to locally maximize the probability of generating the next word given previous words and visual content, while the latter is to create a visual-semantic embedding space for enforcing the relationship between the semantics of the entire sentence and visual content. Our proposed LSTM-E consists of three components: a 2-D and/or 3-D deep convolutional neural networks for learning powerful video representation, a deep RNN for generating sentences, and a joint embedding model for exploring the relationships between visual content and sentence semantics. The experiments on YouTube2Text dataset show that our proposed LSTM-E achieves to-date the best reported performance in generating natural sentences: 45.3% and 31.0% in terms of BLEU@4 and METEOR, respectively. We also demonstrate that LSTM-E is superior in predicting Subject-Verb-Object (SVO) triplets to several state-of-the-art techniques

    Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

    Full text link
    We introduce a model for bidirectional retrieval of images and sentences through a multi-modal embedding of visual and natural language data. Unlike previous models that directly map images or sentences into a common embedding space, our model works on a finer level and embeds fragments of images (objects) and fragments of sentences (typed dependency tree relations) into a common space. In addition to a ranking objective seen in previous work, this allows us to add a new fragment alignment objective that learns to directly associate these fragments across modalities. Extensive experimental evaluation shows that reasoning on both the global level of images and sentences and the finer level of their respective fragments significantly improves performance on image-sentence retrieval tasks. Additionally, our model provides interpretable predictions since the inferred inter-modal fragment alignment is explicit

    Acquired non-specific stuttering in Parkinson’s disease: a case report

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disease predominantly characterized by tremor, bradykinesia, and rigor. In addition to motor and non-motor manifestations of Parkinson’s disease, there are a number of symptoms, including speech disorders and other cognitive impairments. The most common speech symptoms are bradylalia, dysarthria, hypophonia and impaired prosody. Cognitive changes that occur in the prodromal phase of PD include impairment in executive functions and working memory, followed by impairment in attention and verbal fluency, and that is before the motor characteristics of PD become visible. The aim of the study is to present the case of a 74-year-old patient with Parkinson’s disease who has speech and language difficulties and atypical speech disfluency. Diagnostic processing was performed using a clinical battery of tests for speech – language assessment and neuropsychological assessment. The results of the speech – language assessment indicate significantly reduced intelligence due to non-specific speech disfluency and inaccurate articulation, difficulty in organizing spontaneous expression and understanding grammatical structures, impaired phonemic verbal fluency and difficulties in receptive vocabulary. Neuropsychological processing indicated diffuse deterioration of the examined cognitive functioning to be larger than expected when taking ito consideration the age and probably good premorbid abilities of this person
    corecore