24 research outputs found

    Robots and autistic children: a review

    Get PDF
    In accordance with the advancement in robotics and the scholarly literature, the extents of utilizing robots for autistic children are widened and could be a promising method for individual with Autism Spectrum Disorder (ASD) treatments, where the different form of robot (humanoid, non-humanoid, animal-like, toy, and kits) can be employed effectively as a support tool to augment the learning skills and rehabilitate of the individual with Autism Spectrum Disorder (ASD). Thus, the robots were exploited for ASD children in different aspects namely; modelling, teaching, and skills practicing; testing, highlighting and evaluating; providing feedback or encouragement; join Attention; eliciting social behaviours; emotion recognition and expression; imitation; vocalization; turn-taking; and diagnostic. The related literature published recently in journals and conferences is taken into account. In this paper, we review the use of robots that help in the therapy of individuals with Autism Spectrum Disorder (ASD). The articles on using robots for autistic children rehabilitation and education which reported results of experiments on a number of participants were implicated. After looking in digital libraries under this criteria, and excluding non-related, and duplicated studies, 39 studies have been found. The findings were focused mainly on the social communication skills of autistic children and how the extent of the robots mitigate their stereotyped behaviours. Deeper research is required in this area to cover all applications of robotic on autistic children in order to design feasible and low-cost robots that ensure provide high validity

    An Analysis of the Evaluation Methods being Applied to Serious Games for Autistic Children

    Get PDF
    Autism Spectrum Disorder is a neurodevelopment condition that significantly impacts social communication and interaction as well as behavior impairments, including restricted and repetitive patterns of behavior, interests, or activities. In recent years, numerous studies have proposed serious games as a way to aid in the therapy of children with ASD. Hence, it is crucial to evaluate the effectiveness of such games and obtain robust evidence of their positive influence on this type of treatment. In this study, we aim to explore the evaluation of games for autistic children by conducting a Systematic Literature Review. We analyze the methods utilized to evaluate these games, their application and combination, the quality aspects assessed, and the number and characteristics (e.g., age and special need) of the participants involved in the evaluation process. Furthermore, we present a compilation of the study findings for each evaluation method. Our findings reveal that there is no standardized methodology since different methods have been utilized and combined in various ways to evaluate serious games that support the treatment of ASD children. As contributions, this paper provides valuable insights into how serious games have been evaluated in this context and can be useful for researchers and game designers working in the field

    Classroom-based physical activity breaks, sitting patterns and cognition in children

    Full text link
    This PhD aimed to i) explore the feasibility of conducting cognitively engaging active breaks in the classroom with primary school children, both typically and non-typically developing; and ii) understand the effects of this strategy on children’s class time sitting, cognitive functioning, and on-task behaviour

    The pediatrician and the digital clinic

    Get PDF

    Safe and Adaptive Social Robots for Children with Autism

    Get PDF
    Social robots are being considered to be a part of the therapy for children with autism due to the reported efficacy such technology in improving the outcomes. How ever, children diagnosed with autism exhibit challenging behaviors that could cause harm to themselves and to others around them. Throwing, hitting, kicking, and self harming are some examples of the challenging behaviors that were reported to occur among this population. The occurrence of such behaviors during the presence of a social robot could raise some safety concerns. For this reason, this research attempts toidentify the potential for harm due to the diffusion of social robots and investigate means to mitigate them. Considering the advancement in technology and the progress made in many computer science disciplines are making small and adaptable social robots a foreseeable possibility, the studies presented here focus on small robotic form factors.The first study quantities the potential harm to the head due to one of the identi?ed risky scenarios that might occur between a child and a social robot. The results re leaved that the overall harm levels based on the selected severity indices are relatively low compared to their respective thresholds. However, the investigation of harm due to throwing of a small social robot to the head revealed that it could potentially causet issue injuries, sub-concussive or even concussive events in extreme cases. The second two studies are aimed to make small robots safer by optimizing their design. Hence,studies are conducted investigating how robot design can be made safer by investigating different design factors. The study investigated the in?uence of the mass and shape on the linear acceleration of a developed dummy head. The results revealed that the two design factors considered (i.e. mass and shape) affected the resultant response. The second study investigated the in offence three different soft material sonthesa meresponse. The endings showed that the control factors considered are not statistically significant in attenuating the response. Finally, the last two studies attempt to make small robots more adaptable to promote safer interactions. This is carried out by em bedding the recognition of unwanted physical interactions into companion robot with the appropriate timing of responses. The findings of the first study highlight the pos sibility of characterizing children's negative interactions with robotic toys relying on accelerometer sensor. The second study showed that producing a late response to an action (i.e. greater than 1.0 s) could negatively affect the children's comprehension of the intended message. The work presented in this dissertation is multidisciplinary that involves the field of Mechanical Engineering and Information Technology

    XR Academia:Research and Experiences in Virtual Reality, Augmented Reality, Mixed Reality, and Artificial Intelligence in Latin America and Europe

    Get PDF
    The book XR Academia: Research and Experiences in Virtual Reality, Augmented Reality, Mixed Reality, and Artificial Intelligence in Latin America and Europe, has at its core the objective of making immersive technology accessible and visible worldwide, with the simultaneous breaking-down of linguistic barriers. Both European and Latin American authors can read each other’s work(s), allowing knowledge and experience in extended reality to be shared. Another important aspect of XR Academia is its attempt to introduce an open science contribution to the issues of immersive technologies, in order to inspire new generations that do not have access to increasingly expensive publications. This volume includes fourteen selected chapters from presenters from the 2020 and 2021 events. These chapters describe research and experiences on a wide range of XR applications, which include entertainment, health, narration, education, psychotherapy, guidance, language, culture and arts. Considering that great inventions and innovations are developed in Latin America but fail to be published internationally, our aim was to open a door to allow the permanent exchange between two languages: Spanish and English

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data
    corecore