28 research outputs found

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    Towards Social Autonomous Vehicles: Efficient Collision Avoidance Scheme Using Richardson's Arms Race Model

    Full text link
    Background Road collisions and casualties pose a serious threat to commuters around the globe. Autonomous Vehicles (AVs) aim to make the use of technology to reduce the road accidents. However, the most of research work in the context of collision avoidance has been performed to address, separately, the rear end, front end and lateral collisions in less congested and with high inter-vehicular distances. Purpose The goal of this paper is to introduce the concept of a social agent, which interact with other AVs in social manners like humans are social having the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. The proposed social agent is based on a human-brain inspired mentalizing and mirroring capabilities and has been modelled for collision detection and avoidance under congested urban road traffic. Method We designed our social agent having the capabilities of mentalizing and mirroring and for this purpose we utilized Exploratory Agent Based Modeling (EABM) level of Cognitive Agent Based Computing (CABC) framework proposed by Niazi and Hussain. Results Our simulation and practical experiments reveal that by embedding Richardson's arms race model within AVs, collisions can be avoided while travelling on congested urban roads in a flock like topologies. The performance of the proposed social agent has been compared at two different levels.Comment: 48 pages, 21 figure

    Hybrid Automaton Based Vehicle Platoon Modelling and Cooperation Behaviour Profile Prediction

    Get PDF
    Autonomous cooperative driving systems require the integration of research activities in the field of embedded systems, robotics, communication, control and artificial intelligence in order to create a secure and intelligent autonomous drivers behaviour patterns in the traffic. Beside autonomous vehicle management, an important research focus is on the cooperation behaviour management. In this paper, we propose hybrid automaton modelling to emulate flexible vehicle Platoon and vehicles cooperation interactions. We introduce novel coding function for Platoon cooperation behaviour profile generation in time, which depends of vehicles number in Platoon and behaviour types. As the behaviour prediction of transportation systems, one of the primarily used methods of artificial intelligence in Intelligent Transport Systems, we propose an approach towards NARX neural network prediction of Platoon cooperation behaviour profile. With incorporation of Platoon manoeuvres dynamic prediction, which is capable of analysing traffic behaviour, this approach would be useful for secure implementation of real autonomous vehicles cooperation

    Vehicular Platoon Communication: Cybersecurity Threats and Open Challenges

    Get PDF

    Vehicle-to-Everything (V2X) in scenarios : extending scenario description language for connected vehicle scenario descriptions

    Get PDF
    The move towards connected and autonomous vehicles (CAVs) has gained a strong focus in recent years due to the many benefits they provide. While the autonomous aspect has seen substantial advancement in both the development and testing methodologies, the connected aspect has lagged behind, especially in the verification & validation discussions. Integrating connectivity into the development and testing framework for CAVs is a necessity for ensuring the early deployment of cooperative driving systems. A key element within such a framework is a test scenario, which represents a set of scenery, environmental conditions, and dynamic conditions, that a system needs to be tested in. However, the connectivity element is not present in any of the current state of the art scenario description languages (SDLs) that are publicly available. This leaves a gap within the CAV development ecosystem. To accommodate for, and accelerate the development of, connected vehicle systems and their verification and validation methods, this paper proposes a novel V2X extension to the previously published two-level abstraction SDL. The extension enables communications between vehicles, infrastructures, and further additional entities to be specified as part of the scenario and be subsequently tested in virtual testing or real-world testing. Eight new V2X attributes have been added to the SDL. An example set of syntax and semantic definitions are presented in this paper targeting two different abstraction levels – level 1 aims at the abstract scenario level for non-technical end-users such as regulators, and level 2 aims at the logical and concrete scenario level for end-users such as simulation test engineers

    Cellular-V2X Communications for Platooning: Design and Evaluation

    Get PDF
    Abstract: Platooning is a cooperative driving application where autonomous/semi-autonomous vehicles move on the same lane in a train-like manner, keeping a small constant inter-vehicle distance, in order to reduce fuel consumption and gas emissions and to achieve safe and efficient transport. To this aim, they may exploit multiple on-board sensors (e.g., radars, lidars, positioning systems) and direct vehicle-to-vehicle communications to synchronize their manoeuvres. The main objective of this paper is to discuss the design choices and factors that determine the performance of a platooning application, when exploiting the emerging cellular vehicle-to-everything (C-V2X) communication technology and considering the scheduled mode, specified by 3GPP for communications over the sidelink assisted by the eNodeB. Since no resource management algorithm is currently mandated by 3GPP for this new challenging context, we focus on analyzing the feasibility and performance of the dynamic scheduling approach, with platoon members asking for radio resources on a per-packet basis. We consider two ways of implementing dynamic scheduling, currently unspecified by 3GPP: the sequential mode, that is somehow reminiscent of time division multiple access solutions based on IEEE 802.11p – till now the only investigated access technology for platooning – and the simultaneous mode with spatial frequency reuse enabled by the eNodeB. The evaluation conducted through system-level simulations provides helpful insights about the proposed configurations and C-V2X parameter settings that mainly affect the reliability and latency performance of data exchange in platoons, under different load settings. Achieved results show that the proposed simultaneous mode succeeds in reducing the latency in the update cycle in each vehicle’s controller, thus enabling future high-density platooning scenarios
    corecore