69,719 research outputs found

    Improved vision-based diagnosis of multi-plant disease using an ensemble of deep learning methods

    Get PDF
    Farming and plants are crucial parts of the inward economy of a nation, which significantly boosts the economic growth of a country. Preserving plants from several disease infections at their early stage becomes cumbersome due to the absence of efficient diagnosis tools. Diverse difficulties lie in existing methods of plant disease recognition. As a result, developing a rapid and efficient multi-plant disease diagnosis system is a challenging task. At present, deep learning-based methods are frequently utilized for diagnosing plant diseases, which outperformed existing methods with higher efficiency. In order to investigate plant diseases more accurately, this article addresses an efficient hybrid approach using deep learning-based methods. Xception and ResNet50 models were applied for the classification of plant diseases, and these models were merged using the stacking ensemble learning technique to generate a hybrid model. A multi-plant dataset was created using leaf images of four plants: black gram, betel, Malabar spinach, and litchi, which contains nine classes and 44,972 images. Compared to existing individual convolutional neural networks (CNN) models, the proposed hybrid model is more feasible and effective, which acquired 99.20% accuracy. The outcomes and comparison with existing methods represent that the designed method can acquire competitive performance on the multi-plant disease diagnosis tasks

    How useful is Active Learning for Image-based Plant Phenotyping?

    Get PDF
    Deep learning models have been successfully deployed for a diverse array of image-based plant phenotyping applications including disease detection and classification. However, successful deployment of supervised deep learning models requires large amount of labeled data, which is a significant challenge in plant science (and most biological) domains due to the inherent complexity. Specifically, data annotation is costly, laborious, time consuming and needs domain expertise for phenotyping tasks, especially for diseases. To overcome this challenge, active learning algorithms have been proposed that reduce the amount of labeling needed by deep learning models to achieve good predictive performance. Active learning methods adaptively select samples to annotate using an acquisition function to achieve maximum (classification) performance under a fixed labeling budget. We report the performance of four different active learning methods, (1) Deep Bayesian Active Learning (DBAL), (2) Entropy, (3) Least Confidence, and (4) Coreset, with conventional random sampling-based annotation for two different image-based classification datasets. The first image dataset consists of soybean [Glycine max L. (Merr.)] leaves belonging to eight different soybean stresses and a healthy class, and the second consists of nine different weed species from the field. For a fixed labeling budget, we observed that the classification performance of deep learning models with active learning-based acquisition strategies is better than random sampling-based acquisition for both datasets. The integration of active learning strategies for data annotation can help mitigate labelling challenges in the plant sciences applications particularly where deep domain knowledge is required

    Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease

    Get PDF
    Plants contribute significantly to the global food supply. Various Plant diseases can result in production losses, which can be avoided by maintaining vigilance. However, manually monitoring plant diseases by agriculture experts and botanists is time-consuming, challenging and error-prone. To reduce the risk of disease severity, machine vision technology (i.e., artificial intelligence) can play a significant role. In the alternative method, the severity of the disease can be diminished through computer technologies and the cooperation of humans. These methods can also eliminate the disadvantages of manual observation. In this work, we proposed a solution to detect tomato plant disease using a deep leaning-based system utilizing the plant leaves image data. We utilized an architecture for deep learning based on a recently developed convolutional neural network that is trained over 18,161 segmented and non-segmented tomato leaf images—using a supervised learning approach to detect and recognize various tomato diseases using the Inception Net model in the research work. For the detection and segmentation of disease-affected regions, two state-of-the-art semantic segmentation models, i.e., U-Net and Modified U-Net, are utilized in this work. The plant leaf pixels are binary and classified by the model as Region of Interest (ROI) and background. There is also an examination of the presentation of binary arrangement (healthy and diseased leaves), six-level classification (healthy and other ailing leaf groups), and ten-level classification (healthy and other types of ailing leaves) models. The Modified U-net segmentation model outperforms the simple U-net segmentation model by 98.66 percent, 98.5 IoU score, and 98.73 percent on the dice. InceptionNet1 achieves 99.95% accuracy for binary classification problems and 99.12% for classifying six segmented class images; InceptionNet outperformed the Modified U-net model to achieve higher accuracy. The experimental results of our proposed method for classifying plant diseases demonstrate that it outperforms the methods currently available in the literature

    Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets

    Get PDF
    [EN] Plant fungal diseases are one of the most important causes of crop yield losses. Therefore, plant disease identification algorithms have been seen as a useful tool to detect them at early stages to mitigate their effects. Although deep-learning based algorithms can achieve high detection accuracies, they require large and manually annotated image datasets that is not always accessible, specially for rare and new diseases. This study focuses on the development of a plant disease detection algorithm and strategy requiring few plant images (Few-shot learning algorithm). We extend previous work by using a novel challenging dataset containing more than 100,000 images. This dataset includes images of leaves, panicles and stems of five different crops (barley, corn, rape seed, rice, and wheat) for a total of 17 different diseases, where each disease is shown at different disease stages. In this study, we propose a deep metric learning based method to extract latent space representations from plant diseases with just few images by means of a Siamese network and triplet loss function. This enhances previous methods that require a support dataset containing a high number of annotated images to perform metric learning and few-shot classification. The proposed method was compared over a traditional network that was trained with the cross-entropy loss function. Exhaustive experiments have been performed for validating and measuring the benefits of metric learning techniques over classical methods. Results show that the features extracted by the metric learning based approach present better discriminative and clustering properties. Davis-Bouldin index and Silhouette score values have shown that triplet loss network improves the clustering properties with respect to the categorical-cross entropy loss. Overall, triplet loss approach improves the DB index value by 22.7% and Silhouette score value by 166.7% compared to the categorical cross-entropy loss model. Moreover, the F-score parameter obtained from the Siamese network with the triplet loss performs better than classical approaches when there are few images for training, obtaining a 6% improvement in the F-score mean value. Siamese networks with triplet loss have improved the ability to learn different plant diseases using few images of each class. These networks based on metric learning techniques improve clustering and classification results over traditional categorical cross-entropy loss networks for plant disease identification.This project was partially supported by the Spanish Government through CDTI Centro para el Desarrollo Tecnológico e Industrial project AI4ES (ref CER-20211030), by the University of the Basque Country (UPV/EHU) under grant COLAB20/01 and by the Basque Government through grant IT1229-19

    Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets

    Get PDF
    Plant fungal diseases are one of the most important causes of crop yield losses. Therefore, plant disease identification algorithms have been seen as a useful tool to detect them at early stages to mitigate their effects. Although deep-learning based algorithms can achieve high detection accuracies, they require large and manually annotated image datasets that is not always accessible, specially for rare and new diseases. This study focuses on the development of a plant disease detection algorithm and strategy requiring few plant images (Few-shot learning algorithm). We extend previous work by using a novel challenging dataset containing more than 100,000 images. This dataset includes images of leaves, panicles and stems of five different crops (barley, corn, rape seed, rice, and wheat) for a total of 17 different diseases, where each disease is shown at different disease stages. In this study, we propose a deep metric learning based method to extract latent space representations from plant diseases with just few images by means of a Siamese network and triplet loss function. This enhances previous methods that require a support dataset containing a high number of annotated images to perform metric learning and few-shot classification. The proposed method was compared over a traditional network that was trained with the cross-entropy loss function. Exhaustive experiments have been performed for validating and measuring the benefits of metric learning techniques over classical methods. Results show that the features extracted by the metric learning based approach present better discriminative and clustering properties. Davis-Bouldin index and Silhouette score values have shown that triplet loss network improves the clustering properties with respect to the categorical-cross entropy loss. Overall, triplet loss approach improves the DB index value by 22.7% and Silhouette score value by 166.7% compared to the categorical cross-entropy loss model. Moreover, the F-score parameter obtained from the Siamese network with the triplet loss performs better than classical approaches when there are few images for training, obtaining a 6% improvement in the F-score mean value. Siamese networks with triplet loss have improved the ability to learn different plant diseases using few images of each class. These networks based on metric learning techniques improve clustering and classification results over traditional categorical cross-entropy loss networks for plant disease identification.This project was partially supported by the Spanish Government through CDTI Centro para el Desarrollo Tecnológico e Industrial project AI4ES (ref CER-20211030), by the University of the Basque Country (UPV/EHU) under grant COLAB20/01 and by the Basque Government through grant IT1229-19

    IoT-Enabled Smart Robotic System for Greenhouse Management using Deep Learning Model with STS Approach

    Get PDF
    A significant component of any country's Gross Domestic Product is made up of farming and agriculture. Utilizing IoT in agriculture and farming methods is essential as the global population is projected to reach around 9.6 billion by 2050. To meet such high demand, an improvisation and optimization of the current farming technologies is the need of the hour. Numerous researchers developed different application specific system for agriculture but less attention was paid towards critical aspects such as intelligence, modularity and human centric design. There is lacuna in existing developed system in the utilization of advanced technologies to their full potential. The agricultural sector wants autonomous systems that are smarter and more effective. Therefore, this research paper introduced the smart solution as an intelligent modular autonomous system with human-centric design approach for agricultural application. The developed system able to detect plant disease with more than 96% accuracy with the help of novel deep learning model designed with sharpening to Smoothening approach. The disease detection and classification results has been verified through confusion matrix method of evaluation. An intelligent robotic system has been developed to detect plant diseases using novel deep learning model and perform multiple functions like greenhouse monitoring, pesticide sprinkling etc. The robotic system has control over internet through web control system so that farmer can monitor greenhouse and control robot activity from remote place. This smart farming solution able to make farmer life simpler and perform difficult task like plant disease detection and pesticide sprinkling easily

    Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions

    Get PDF
    Convolutional Neural Networks (CNN) have demonstrated their capabilities on the agronomical field, especially for plant visual symptoms assessment. As these models grow both in the number of training images and in the number of supported crops and diseases, there exist the dichotomy of (1) generating smaller models for specific crop or, (2) to generate a unique multi-crop model in a much more complex task (especially at early disease stages) but with the benefit of the entire multiple crop image dataset variability to enrich image feature description learning. In this work we first introduce a challenging dataset of more than one hundred-thousand images taken by cell phone in real field wild conditions. This dataset contains almost equally distributed disease stages of seventeen diseases and five crops (wheat, barley, corn, rice and rape-seed) where several diseases can be present on the same picture. When applying existing state of the art deep neural network methods to validate the two hypothesised approaches, we obtained a balanced accuracy (BAC=0.92) when generating the smaller crop specific models and a balanced accuracy (BAC=0.93) when generating a single multi-crop model. In this work, we propose three different CNN architectures that incorporate contextual non-image meta-data such as crop information onto an image based Convolutional Neural Network. This combines the advantages of simultaneously learning from the entire multi-crop dataset while reducing the complexity of the disease classification tasks. The crop-conditional plant disease classification network that incorporates the contextual information by concatenation at the embedding vector level obtains a balanced accuracy of 0.98 improving all previous methods and removing 71% of the miss-classifications of the former methods

    SSM-Net for Plants Disease Identification in Low Data Regime

    Full text link
    Plant disease detection is an essential factor in increasing agricultural production. Due to the difficulty of disease detection, farmers spray various pesticides on their crops to protect them, causing great harm to crop growth and food standards. Deep learning can offer critical aid in detecting such diseases. However, it is highly inconvenient to collect a large volume of data on all forms of the diseases afflicting a specific plant species. In this paper, we propose a new metrics-based few-shot learning SSM net architecture, which consists of stacked siamese and matching network components to address the problem of disease detection in low data regimes. We demonstrated our experiments on two datasets: mini-leaves diseases and sugarcane diseases dataset. We have showcased that the SSM-Net approach can achieve better decision boundaries with an accuracy of 92.7% on the mini-leaves dataset and 94.3% on the sugarcane dataset. The accuracy increased by ~10% and ~5% respectively, compared to the widely used VGG16 transfer learning approach. Furthermore, we attained F1 score of 0.90 using SSM Net on the sugarcane dataset and 0.91 on the mini-leaves dataset. Our code implementation is available on Github: https://github.com/shruti-jadon/PlantsDiseaseDetection.Comment: 5 pages, 7 Figure
    corecore