82,483 research outputs found

    Towards Bridging the Gap between High-Level Reasoning and Execution on Robots

    Full text link
    When reasoning about actions, e.g., by means of task planning or agent programming with Golog, the robot's actions are typically modeled on an abstract level, where complex actions such as picking up an object are treated as atomic primitives with deterministic effects and preconditions that only depend on the current state. However, when executing such an action on a robot it can no longer be seen as a primitive. Instead, action execution is a complex task involving multiple steps with additional temporal preconditions and timing constraints. Furthermore, the action may be noisy, e.g., producing erroneous sensing results and not always having the desired effects. While these aspects are typically ignored in reasoning tasks, they need to be dealt with during execution. In this thesis, we propose several approaches towards closing this gap.Comment: PhD Thesi

    An LP-Based Approach for Goal Recognition as Planning

    Full text link
    Goal recognition aims to recognize the set of candidate goals that are compatible with the observed behavior of an agent. In this paper, we develop a method based on the operator-counting framework that efficiently computes solutions that satisfy the observations and uses the information generated to solve goal recognition tasks. Our method reasons explicitly about both partial and noisy observations: estimating uncertainty for the former, and satisfying observations given the unreliability of the sensor for the latter. We evaluate our approach empirically over a large data set, analyzing its components on how each can impact the quality of the solutions. In general, our approach is superior to previous methods in terms of agreement ratio, accuracy, and spread. Finally, our approach paves the way for new research on combinatorial optimization to solve goal recognition tasks.Comment: 8 pages, 4 tables, 3 figures. Published in AAAI 2021. Updated final authorship and tex

    Inferring Robot Task Plans from Human Team Meetings: A Generative Modeling Approach with Logic-Based Prior

    Get PDF
    We aim to reduce the burden of programming and deploying autonomous systems to work in concert with people in time-critical domains, such as military field operations and disaster response. Deployment plans for these operations are frequently negotiated on-the-fly by teams of human planners. A human operator then translates the agreed upon plan into machine instructions for the robots. We present an algorithm that reduces this translation burden by inferring the final plan from a processed form of the human team's planning conversation. Our approach combines probabilistic generative modeling with logical plan validation used to compute a highly structured prior over possible plans. This hybrid approach enables us to overcome the challenge of performing inference over the large solution space with only a small amount of noisy data from the team planning session. We validate the algorithm through human subject experimentation and show we are able to infer a human team's final plan with 83% accuracy on average. We also describe a robot demonstration in which two people plan and execute a first-response collaborative task with a PR2 robot. To the best of our knowledge, this is the first work that integrates a logical planning technique within a generative model to perform plan inference.Comment: Appears in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13
    • ā€¦
    corecore