4 research outputs found

    Energy Efficient Mobile Sink Based Routing Model For Maximizing Lifetime of Wireless Sensor Network

    Get PDF
    Recently, wide adoption of wireless sensor networks (WSNs) has been seen for provision real-time and non-real-time application services. Provisioning these application service requires energy efficient routing design for WSN. Clustering technique is an efficient mechanism that plays a major role in minimizing energy dissipation of WSN. However, the existing model are designed considering minimizing energy consumption of sensor device considering homogenous. However, it incurs energy overhead among cluster head. Further, maximizing coverage time is not considered by exiting clustering approach considering heterogeneous network affecting lifetime performance. For overcoming issues of routing data packets in WSN, mobile sink has been used. Here, the sensor device will transmit packet in multihop fashion to the rendezvous and the mobile sink will move towards rendezvous points (RPs) to collect data, as opposed to all nodes. However, the exiting model designed so far incurs packet delay (latency) and energy (storage) overhead among sensor device. For overcoming research challenges, this work present energy efficient mobile sink based routing model for maximizing lifetime of wireless sensor network. Experiment are conducted to evaluate the performance of proposed model shows significant performance in terms of communication, routing overhead and lifetime of sensor network

    Multimodal Interaction for Enhancing Team Coordination on the Battlefield

    Get PDF
    Team coordination is vital to the success of team missions. On the battlefield and in other hazardous environments, mission outcomes are often very unpredictable because of unforeseen circumstances and complications encountered that adversely affect team coordination. In addition, the battlefield is constantly evolving as new technology, such as context-aware systems and unmanned drones, becomes available to assist teams in coordinating team efforts. As a result, we must re-evaluate the dynamics of teams that operate in high-stress, hazardous environments in order to learn how to use technology to enhance team coordination within this new context. In dangerous environments where multi-tasking is critical for the safety and success of the team operation, it is important to know what forms of interaction are most conducive to team tasks. We have explored interaction methods, including various types of user input and data feedback mediums that can assist teams in performing unified tasks on the battlefield. We’ve conducted an ethnographic analysis of Soldiers and researched technologies such as sketch recognition, physiological data classification, augmented reality, and haptics to come up with a set of core principles to be used when de- signing technological tools for these teams. This dissertation provides support for these principles and addresses outstanding problems of team connectivity, mobility, cognitive load, team awareness, and hands-free interaction in mobile military applications. This research has resulted in the development of a multimodal solution that enhances team coordination by allowing users to synchronize their tasks while keeping an overall awareness of team status and their environment. The set of solutions we’ve developed utilizes optimal interaction techniques implemented and evaluated in related projects; the ultimate goal of this research is to learn how to use technology to provide total situational awareness and team connectivity on the battlefield. This information can be used to aid the research and development of technological solutions for teams that operate in hazardous environments as more advanced resources become available

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore