2,170 research outputs found

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Perception Framework for Activities of Daily Living Manipulation Tasks

    Get PDF
    There is an increasing concern in tackling the problems faced by the elderly community and physically in-locked people to lead an independent life experience problems with self- care. The need for developing service robots that can help people with mobility impairments is hence very essential. Developing a control framework for shared human-robot autonomy will allow locked-in individuals to perform the Activities of Daily Living (ADL) in a exible way. The relevant ADL scenarios were identi ed as handling objects, self-feeding, and opening doors for indoor nav- igation assistance. Multiple experiments were conducted, which demonstrates that the robot executes these daily living tasks reliably without requiring adjustment to the environment. The indoor manipulation tasks hold the challenge of dealing with a wide range of unknown objects. This thesis presents a framework developed for grasping without requiring a priori knowledge of the objects being manipulated. A successful manipulation task requires the combination of aspects such as envi- ronment modeling, object detection with pose estimation, grasp planning, motion planning followed by an e?cient grasp execution, which is validated by a 6+2 Degree of Freedom robotic manipulator

    Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies

    Get PDF
    When operating in human environments, a robot should use predictable motions that allow humans to trust and anticipate its behavior. Heuristic search-based planning offers predictable motions and guarantees on completeness and sub-optimality of solutions. While search-based planning on motion primitive-based (lattice-based) graphs has been used extensively in navigation, application to high-dimensional state-spaces has, until recently, been thought impractical. This dissertation presents methods we have developed for applying these graphs to mobile manipulation, specifically for systems which contain closed chains. The formation of closed chains in tasks that involve contacts with the environment may reduce the number of available degrees-of-freedom but adds complexity in terms of constraints in the high-dimensional state-space. We exploit the dimensionality reduction inherent in closed kinematic chains to get efficient search-based planning. Our planner handles changing topologies (switching between open and closed-chains) in a single plan, including what transitions to include and when to include them. Thus, we can leverage existing results for search-based planning for open chains, combining open and closed chain manipulation planning into one framework. Proofs regarding the framework are introduced for the application to graph-search and its theoretical guarantees of optimality. The dimensionality-reduction is done in a manner that enables finding optimal solutions to low-dimensional problems which map to correspondingly optimal full-dimensional solutions. We apply this framework to planning for opening and navigating through non-spring and spring-loaded doors using a Willow Garage PR2. The framework motivates our approaches to the Atlas humanoid robot from Boston Dynamics for both stationary manipulation and quasi-static walking, as a closed chain is formed when both feet are on the ground

    ๊ธฐ๊ตฌํ•™์  ๋ฐ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•œ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ž‘์—… ์ค‘์‹ฌ ์ „์‹  ๋™์ž‘ ์ƒ์„ฑ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2023. 2. ๋ฐ•์žฌํฅ.๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์— ์žฅ์ฐฉ๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์ž…๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๊ณ ์ •ํ˜• ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์— ๋น„ํ•ด ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ด๋™์„ฑ์„ ์ œ๊ณต๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•˜๊ณ  ๋ณต์žกํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‘ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ „์‹ ์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•  ๋•Œ ์—ฌ๋Ÿฌ ํŠน์ง•์„ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์€ ์—ฌ์ž์œ ๋„, ๋‘ ์‹œ์Šคํ…œ์˜ ๊ด€์„ฑ ์ฐจ์ด ๋ฐ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋น„ํ™€๋กœ๋…ธ๋ฏน ์ œํ•œ ์กฐ๊ฑด ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ๊ธฐ๊ตฌํ•™์  ๋ฐ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ „์‹  ๋™์ž‘ ์ƒ์„ฑ ์ „๋žต์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋จผ์ €, ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ์ดˆ๊ธฐ ์œ„์น˜์—์„œ ๋ฌธ์„ ํ†ต๊ณผํ•˜์—ฌ ๋ชฉํ‘œ ์œ„์น˜์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•œ ์ „์‹  ๊ฒฝ๋กœ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋กœ๋ด‡๊ณผ ๋ฌธ์— ์˜ํ•ด ์ƒ๊ธฐ๋Š” ๊ธฐ๊ตฌํ•™์  ์ œํ•œ์กฐ๊ฑด์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‘ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ ์ „์‹ ์˜ ๊ฒฝ๋กœ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ž์„ธ ๊ฒฝ๋กœ์™€ ๋ฌธ์˜ ๊ฐ๋„ ๊ฒฝ๋กœ๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰์—์„œ area indicator๋ผ๋Š” ์ •์ˆ˜ ๋ณ€์ˆ˜๋ฅผ ์ƒํƒœ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋กœ์„œ ์ •์˜ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋ฌธ์— ๋Œ€ํ•œ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ƒ๋Œ€์  ์œ„์น˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๊ฒฝ๋กœ์™€ ๋ฌธ์˜ ๊ฐ๋„๋ฅผ ํ†ตํ•ด ๋ฌธ์˜ ์†์žก์ด ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์—ญ๊ธฐ๊ตฌํ•™์„ ํ™œ์šฉํ•˜์—ฌ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๊ด€์ ˆ ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํšจ์œจ์„ฑ์€ ๋น„ํ™€๋กœ๋…ธ๋ฏน ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‘˜ ์งธ, ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์ „์‹  ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋“ฑ์‹ ๋ฐ ๋ถ€๋“ฑ์‹ ์ œํ•œ์กฐ๊ฑด ๋ชจ๋‘์— ๋Œ€ํ•ด ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ๋ฐ˜์˜ํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋˜๋Š” ํœด๋จธ๋…ธ์ด๋“œ์™€ ๊ฐ™์ด ์ž์œ ๋„๊ฐ€ ๋งŽ์€ ๋กœ๋ด‡์˜ ์—ฌ์ž์œ ๋„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋˜์–ด ์ž‘์—… ์šฐ์„  ์ˆœ์œ„์— ๋”ฐ๋ผ ๊ฐ€์ค‘์น˜๊ฐ€ ๋‹ค๋ฅธ ๊ด€์ ˆ ๋™์ž‘์œผ๋กœ ์—ฌ๋Ÿฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ์ตœ์ ํ™” ๋ฌธ์ œ์˜ 1์ฐจ ์ตœ์  ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋„๋ก ํ•˜๋ฉฐ, Active-set ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋“ฑ์‹ ๋ฐ ๋ถ€๋“ฑ์‹ ์ž‘์—…์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋Œ€์นญ์ ์ธ ์˜๊ณต๊ฐ„ ์‚ฌ์˜ ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์ƒ ํšจ์œจ์ ์ž…๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋กœ๋ด‡์€ ์šฐ์„  ์ˆœ์œ„์— ๋”ฐ๋ผ ๊ฐœ๋ณ„์ ์ธ ๊ด€์ ˆ ๊ฐ€์ค‘์น˜๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์ „์‹  ์›€์ง์ž„์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ์˜ ํšจ์šฉ์„ฑ์€ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ํœด๋จธ๋…ธ์ด๋“œ๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค ์ค‘ ํ•˜๋‚˜๋กœ์„œ ์ž๊ฐ€ ์ถฉ๋Œ ํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ๊ฐ„์˜ ์ž๊ฐ€ ์ถฉ๋Œ์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋ฒ„ํผ ์˜์—ญ์„ ๋‘˜๋Ÿฌ์‹ธ๋Š” 3์ฐจ์› ๊ณก๋ฉด์ธ distance buffer border์˜ ๊ฐœ๋…์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ๋ฒ„ํผ ์˜์—ญ์˜ ๋‘๊ป˜๋Š” ๋ฒ„ํผ ๊ฑฐ๋ฆฌ์ž…๋‹ˆ๋‹ค. ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฒ„ํผ ๊ฑฐ๋ฆฌ๋ณด๋‹ค ์ž‘์€ ๊ฒฝ์šฐ, ์ฆ‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋ฒ„ํผ ์˜์—ญ ๋‚ด๋ถ€์— ์žˆ๋Š” ๊ฒฝ์šฐ ์ œ์•ˆ๋œ ์ „๋žต์€ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ๋ฒ„ํผ ์˜์—ญ ๋ฐ–์œผ๋กœ ๋‚ด๋ณด๋‚ด๊ธฐ ์œ„ํ•ด ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์›€์ง์ž„์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์›€์ง์ž„์„ ์ˆ˜์ •ํ•˜์ง€ ์•Š๊ณ ๋„ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡๊ณผ์˜ ์ž๊ฐ€ ์ถฉ๋Œ์„ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์›€์ง์ž„์€ ๊ฐ€์ƒ์˜ ํž˜์„ ๊ฐ€ํ•จ์œผ๋กœ์จ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ํž˜์˜ ๋ฐฉํ–ฅ์€ ์ฐจ๋™ ๊ตฌ๋™ ์ด๋™ ๋กœ๋ด‡์˜ ๋น„ํ™€๋กœ๋…ธ๋ฏน ์ œ์•ฝ ๋ฐ ์กฐ์ž‘๊ธฐ์˜ ๋„๋‹ฌ ๊ฐ€๋Šฅ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 7์ž์œ ๋„ ๋กœ๋ด‡ํŒ”์„ ๊ฐ€์ง„ ์ฐจ๋™ ๊ตฌ๋™ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์— ์ ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‹คํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์ž…์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.A mobile manipulator is a manipulator mounted on a mobile robot. Compared to a fixed-base manipulator, the mobile manipulator can perform various and complex tasks because the mobility is offered by the mobile robot. However, combining two different systems causes several features to be considered when generating the whole-body motion of the mobile manipulator. The features include redundancy, inertia difference, and non-holonomic constraint. The purpose of this thesis is to propose the whole-body motion generation strategy of the mobile manipulator for considering kinematic and dynamic constraints. First, a planning framework is proposed that computes a path for the whole-body configuration of the mobile manipulator to navigate from the initial position, traverse through the door, and arrive at the target position. The framework handles the kinematic constraint imposed by the closed-chain between the robot and door. The proposed framework obtains the path of the whole-body configuration in two steps. First, the path for the pose of the mobile robot and the path for the door angle are computed by using the graph search algorithm. In graph search, an integer variable called area indicator is introduced as an element of state, which indicates where the robot is located relative to the door. Especially, the area indicator expresses a process of door traversal. In the second step, the configuration of the manipulator is computed by the inverse kinematics (IK) solver from the path of the mobile robot and door angle. The proposed framework has a distinct advantage over the existing methods that manually determine several parameters such as which direction to approach the door and the angle of the door required for passage. The effectiveness of the proposed framework was validated through experiments with a nonholonomic mobile manipulator. Second, a whole-body controller is presented based on the optimization method that can consider both equality and inequality constraints. The method computes the optimal solution of the weighted hierarchical optimization problem. The method is developed to resolve the redundancy of robots with a large number of Degrees of Freedom (DOFs), such as a mobile manipulator or a humanoid, so that they can execute multiple tasks with differently weighted joint motion for each task priority. The proposed method incorporates the weighting matrix into the first-order optimality condition of the optimization problem and leverages an active-set method to handle equality and inequality constraints. In addition, it is computationally efficient because the solution is calculated in a weighted joint space with symmetric null-space projection matrices for propagating recursively to a low priority task. Consequently, robots that utilize the proposed controller effectively show whole-body motions handling prioritized tasks with differently weighted joint spaces. The effectiveness of the proposed controller was validated through experiments with a nonholonomic mobile manipulator as well as a humanoid. Lastly, as one of dynamic constraints for the mobile manipulator, a reactive self-collision avoidance algorithm is developed. The proposed method mainly focuses on self-collision between a manipulator and the mobile robot. We introduce the concept of a distance buffer border (DBB), which is a 3D curved surface enclosing a buffer region of the mobile robot. The region has the thickness equal to buffer distance. When the distance between the manipulator and mobile robot is less than the buffer distance, i.e. the manipulator lies inside the buffer region of the mobile robot, the proposed strategy is to move the mobile robot away from the manipulator in order for the manipulator to be placed outside the border of the region, the DBB. The strategy is achieved by exerting force on the mobile robot. Therefore, the manipulator can avoid self-collision with the mobile robot without modifying the predefined motion of the manipulator in a world Cartesian coordinate frame. In particular, the direction of the force is determined by considering the non-holonomic constraint of the differentially driven mobile robot. Additionally, the reachability of the manipulator is considered to arrive at a configuration in which the manipulator can be more maneuverable. To realize the desired force and resulting torque, an avoidance task is constructed by converting them into the accelerations of the mobile robot and smoothly inserted with a top priority into the controller. The proposed algorithm was implemented on a differentially driven mobile robot with a 7-DOFs robotic arm and its performance was demonstrated in various experimental scenarios.1 INTRODUCTION 1 1.1 Motivation 1 1.2 Contributions of thesis 2 1.3 Overview of thesis 3 2 WHOLE-BODY MOTION PLANNER : APPLICATION TO NAVIGATION INCLUDING DOOR TRAVERSAL 5 2.1 Background & related works 7 2.2 Proposed framework 9 2.2.1 Computing path for mobile robot and door angle - S1 10 2.2.1.1 State 10 2.2.1.2 Action 13 2.2.1.3 Cost 15 2.2.1.4 Search 18 2.2.2 Computing path for arm configuration - S2 20 2.3 Results 21 2.3.1 Application to pull and push-type door 21 2.3.2 Experiment in cluttered environment 22 2.3.3 Experiment with different robot platform 23 2.3.4 Comparison with separate planning by existing works 24 2.3.5 Experiment with real robot 29 2.4 Conclusion 29 3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHICAL QUADRATIC PROGRAMMING 31 3.1 Related works 32 3.2 Problem statement 34 3.2.1 Pseudo-inverse with weighted least-squares norm for each task 35 3.2.2 Problem statement 37 3.3 WHQP with equality constraints 37 3.4 WHQP with inequality constraints 45 3.5 Experimental results 48 3.5.1 Simulation experiment with nonholonomic mobile manipulator 48 3.5.1.1 Scenario description 48 3.5.1.2 Task and weighting matrix description 49 3.5.1.3 Results 51 3.5.2 Real experiment with nonholonomic mobile manipulator 53 3.5.2.1 Scenario description 53 3.5.2.2 Task and weighting matrix description 53 3.5.2.3 Results 54 3.5.3 Real experiment with humanoid 55 3.5.3.1 Scenario description 55 3.5.3.2 Task and weighting matrix description 55 3.5.3.3 Results 57 3.6 Discussions and implementation details 57 3.6.1 Computation cost 57 3.6.2 Composite weighting matrix in same hierarchy 59 3.6.3 Nullity of WHQP 59 3.7 Conclusion 59 4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOIDANCE 61 4.1 Background & related Works 64 4.2 Distance buffer border and its score computation 65 4.2.1 Identification of potentially colliding link pairs 66 4.2.2 Distance buffer border 67 4.2.3 Evaluation of distance buffer border 69 4.2.3.1 Singularity of the differentially driven mobile robot 69 4.2.3.2 Reachability of the manipulator 72 4.2.3.3 Score of the DBB 74 4.3 Self-collision avoidance algorithm 75 4.3.1 Generation of the acceleration for the mobile robot 76 4.3.2 Generation of the repulsive acceleration for the other link pair 82 4.3.3 Construction of an acceleration-based task for self-collision avoidance 83 4.3.4 Insertion of the task in HQP-based controller 83 4.4 Experimental results 86 4.4.1 System overview 87 4.4.2 Experimental results 87 4.4.2.1 Self-collision avoidance while tracking the predefined trajectory 87 4.4.2.2 Self-collision avoidance while manually guiding the end-effector 89 4.4.2.3 Extension to obstacle avoidance when opening the refrigerator 91 4.4.3 Discussion 94 4.5 Conclusion 95 5 CONCLUSIONS 97 Abstract (In Korean) 113 Acknowlegement 116๋ฐ•

    Modular Relative Jacobian for Dual-Arms and the Wrench Transformation Matrix

    Get PDF
    A modular relative Jacobian is recently derived and is expressed in terms of the individual Jacobians of stand-alone manipulators. It includes a wrench transformation matrix, which was not shown in earlier expressions. This paper is an experimental extension of that recent work, which showed that at higher angular end-effector velocities the contribution of the wrench transformation matrix cannot be ignored. In this work, we investigate the dual-arm force control performance, without necessarily driving the end-effectors at higher angular velocities. We compare experimental results for two cases: modular relative Jacobian with and without the wrench transformation matrix. The experimental setup is a dual-arm system consisting of two KUKA LWR robots. Two experimental tasks are used: relative end-effector motion and coordinated independent tasks, where a force controller is implemented in both tasks. Furthermore, we show in an experimental design that the use of a relative Jacobian affords less accurate task specifications for a highly complicated task requirement for both end-effectors of the dual-arm. Experimental results on the force control performance are compared and analyzed
    • โ€ฆ
    corecore