62,007 research outputs found

    Comparative Study on Agile software development methodologies

    Get PDF
    Today-s business environment is very much dynamic, and organisations are constantly changing their software requirements to adjust with new environment. They also demand for fast delivery of software products as well as for accepting changing requirements. In this aspect, traditional plan-driven developments fail to meet up these requirements. Though traditional software development methodologies, such as life cycle-based structured and object oriented approaches, continue to dominate the systems development few decades and much research has done in traditional methodologies, Agile software development brings its own set of novel challenges that must be addressed to satisfy the customer through early and continuous delivery of the valuable software. It is a set of software development methods based on iterative and incremental development process, where requirements and development evolve through collaboration between self-organizing, cross-functional teams that allows rapid delivery of high quality software to meet customer needs and also accommodate changes in the requirements. In this paper, we significantly identify and describe the major factors, that Agile development approach improves software development process to meet the rapid changing business environments. We also provide a brief comparison of agile development methodologies with traditional systems development methodologies, and discuss current state of adopting agile methodologies. We speculate that from the need to satisfy the customer through early and continuous delivery of the valuable software, Agile software development is emerged as an alternative to traditional plan-based software development methods. The purpose of this paper, is to provide an in-depth understanding, the major benefits of agile development approach to software development industry, as well as provide a comparison study report of ASDM over TSDM.Comment: 25 pages, 25 images, 86 references used, with authors biographie

    Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs

    Full text link
    In this paper, we present Batch Informed Trees (BIT*), a planning algorithm based on unifying graph- and sampling-based planning techniques. By recognizing that a set of samples describes an implicit random geometric graph (RGG), we are able to combine the efficient ordered nature of graph-based techniques, such as A*, with the anytime scalability of sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT). BIT* uses a heuristic to efficiently search a series of increasingly dense implicit RGGs while reusing previous information. It can be viewed as an extension of incremental graph-search techniques, such as Lifelong Planning A* (LPA*), to continuous problem domains as well as a generalization of existing sampling-based optimal planners. It is shown that it is probabilistically complete and asymptotically optimal. We demonstrate the utility of BIT* on simulated random worlds in R2\mathbb{R}^2 and R8\mathbb{R}^8 and manipulation problems on CMU's HERB, a 14-DOF two-armed robot. On these problems, BIT* finds better solutions faster than RRT, RRT*, Informed RRT*, and Fast Marching Trees (FMT*) with faster anytime convergence towards the optimum, especially in high dimensions.Comment: 8 Pages. 6 Figures. Video available at http://www.youtube.com/watch?v=TQIoCC48gp
    • …
    corecore