2 research outputs found

    Registration based assessment of femoral torsion for rotational osteotomies based on the contralateral anatomy

    Full text link
    BACKGROUND Computer-assisted techniques for surgical treatment of femoral deformities have become increasingly important. In state-of-the-art 3D deformity assessments, the contralateral side is used as template for correction as it commonly represents normal anatomy. Contributing to this, an iterative closest point (ICP) algorithm is used for registration. However, the anatomical sections of the femur with idiosyncratic features, which allow for a consistent deformity assessment with ICP algorithms being unknown. Furthermore, if there is a side-to-side difference, this is not considered in error quantification. The aim of this study was to analyze the influence and value of the different sections of the femur in 3D assessment of femoral deformities based on the contralateral anatomy. MATERIAL AND METHODS 3D triangular surface models were created from CT of 100 paired femurs (50 cadavers) without pathological anatomy. The femurs were divided into sections of eponymous anatomy of a predefined percentage of the whole femoral length. A surface registration algorithm was applied to superimpose the ipsilateral on the contralateral side. We evaluated 3D femoral contralateral registration (FCR) errors, defined as difference in 3D rotation of the respective femoral section before and after registration to the contralateral side. To compare this method, we quantified the landmark-based femoral torsion (LB FT). This was defined as the intra-individual difference in overall femoral torsion using with a landmark-based method. RESULTS Contralateral rotational deviation ranged from 0° to 9.3° of the assessed femoral sections, depending on the section. Among the sections, the FCR error using the proximal diaphyseal area for registration was larger than any other sectional error. A combination of the lesser trochanter and the proximal diaphyseal area showed the smallest error. The LB FT error was significantly larger than any sectional error (p < 0.001). CONCLUSION We demonstrated that if the contralateral femur is used as reconstruction template, the built-in errors with the registration-based approach are smaller than the intraindividual difference of the femoral torsion between both sides. The errors are depending on the section and their idiosyncratic features used for registration. For rotational osteotomies a combination of the lesser trochanter and the proximal diaphyseal area sections seems to allow for a reconstruction with a minimal error

    Visualisation of articular motion in orthopaedics

    Get PDF
    Shouder replacement surgery is difficult surgery, with a relatively large risk on limited post-operative range of motion for patients. Adaptations to the anatomy of joints by placing a prosthesis affects the articulation of the joint. In this thesis we present a software system that simulates and visualises these effects. By loading a CT-scan of the shoulder of a patient we can simulate the range of motion of the joint and visualize limitations as a result of rigid structures of the joint. Surgeons may set up an operation plan and see what the consequences of the operation will be for the range of motion of the patient. The thesis investigates aspects that are relevant for the system. We describe an algorithm to convert the scan data to bone models. In addition, a validation experiment is presented. A method for motion registration and visualisation of recorded kinematic data is presented. Finally, this thesis concerns the application of the system to different surgical problems, such as hip arthroplasty and shoulder fractures.Annafonds Biomet Nederland Clinical Graphics DePuy JTE Johnson & Johnson Dutch Arthritis Association Litos/ Motek Medical TornierUBL - phd migration 201
    corecore