46,562 research outputs found

    An integrated approach of learning, planning, and execution

    Get PDF
    Agents (hardware or software) that act autonomously in an environment have to be able to integrate three basic behaviors: planning, execution, and learning. This integration is mandatory when the agent has no knowledge about how its actions can affect the environment, how the environment reacts to its actions, or, when the agent does not receive as an explicit input, the goals it must achieve. Without an a priori theory, autonomous agents should be able to self-propose goals, set-up plans for achieving the goals according to previously learned models of the agent and the environment, and learn those models from past experiences of successful and failed executions of plans. Planning involves selecting a goal to reach and computing a set of actions that will allow the autonomous agent to achieve the goal. Execution deals with the interaction with the environment by application of planned actions, observation of resulting perceptions, and control of successful achievement of the goals. Learning is needed to predict the reactions of the environment to the agent actions, thus guiding the agent to achieve its goals more efficiently. In this context, most of the learning systems applied to problem solving have been used to learn control knowledge for guiding the search for a plan, but few systems have focused on the acquisition of planning operator descriptions. As an example, currently, one of the most used techniques for the integration of (a way of) planning, execution, and learning is reinforcement learning. However, they usually do not consider the representation of action descriptions, so they cannot reason in terms of goals and ways of achieving those goals. In this paper, we present an integrated architecture, lope, that learns operator definitions, plans using those operators, and executes the plans for modifying the acquired operators. The resulting system is domain-independent, and we have performed experiments in a robotic framework. The results clearly show that the integrated planning, learning, and executing system outperforms the basic planner in that domain.Publicad

    Agile Autonomous Driving using End-to-End Deep Imitation Learning

    Full text link
    We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.Comment: 13 pages, Robotics: Science and Systems (RSS) 201

    Integrating planning, execution, and learning

    Get PDF
    To achieve the goal of building an autonomous agent, the usually disjoint capabilities of planning, execution, and learning must be used together. An architecture, called MAX, within which cognitive capabilities can be purposefully and intelligently integrated is described. The architecture supports the codification of capabilities as explicit knowledge that can be reasoned about. In addition, specific problem solving, learning, and integration knowledge is developed

    DOP: Deep Optimistic Planning with Approximate Value Function Evaluation

    Get PDF
    Research on reinforcement learning has demonstrated promising results in manifold applications and domains. Still, efficiently learning effective robot behaviors is very difficult, due to unstructured scenarios, high uncertainties, and large state dimensionality (e.g. multi-agent systems or hyper-redundant robots). To alleviate this problem, we present DOP, a deep model-based reinforcement learning algorithm, which exploits action values to both (1) guide the exploration of the state space and (2) plan effective policies. Specifically, we exploit deep neural networks to learn Q-functions that are used to attack the curse of dimensionality during a Monte-Carlo tree search. Our algorithm, in fact, constructs upper confidence bounds on the learned value function to select actions optimistically. We implement and evaluate DOP on different scenarios: (1) a cooperative navigation problem, (2) a fetching task for a 7-DOF KUKA robot, and (3) a human-robot handover with a humanoid robot (both in simulation and real). The obtained results show the effectiveness of DOP in the chosen applications, where action values drive the exploration and reduce the computational demand of the planning process while achieving good performance
    corecore