158 research outputs found

    Individual popularity and activity in online social systems

    Full text link
    We propose a stochastic model of web user behaviors in online social systems, and study the influence of attraction kernel on statistical property of user or item occurrence. Combining the different growth patterns of new entities and attraction patterns of old ones, different heavy-tailed distributions for popularity and activity which have been observed in real life, can be obtained. From a broader perspective, we explore the underlying principle governing the statistical feature of individual popularity and activity in online social systems and point out the potential simple mechanism underlying the complex dynamics of the systems.Comment: 7 pages, 7 figures, 1 table, accepted for publication in Physica

    Opinion Dynamics and Communication Networks

    Get PDF
    This paper examines the interplay of opinion exchange dynamics and communication network formation. An opinion formation procedure is introduced which is based on an abstract representation of opinions as k-dimensional bitstrings. Individuals interact if the difference in the opinion strings is below a defined similarity threshold dI. Depending on dI, different behaviour of the population is observed: low values result in a state of highly fragmented opinions and higher values yield consensus. The first contribution of this research is to identify the values of parameters dI and k, such that the transition between fragmented opinions and homogeneity takes place. Then, we look at this transition from two perspectives: first by studying the group size distribution and second by analysing the communication network that is formed by the interactions that take place during the simulation. The emerging networks are classified by statistical means and we find that non-trivial social structures emerge from simple rules for individual communication.

    Four Degrees of Separation, Really

    Full text link
    We recently measured the average distance of users in the Facebook graph, spurring comments in the scientific community as well as in the general press ("Four Degrees of Separation"). A number of interesting criticisms have been made about the meaningfulness, methods and consequences of the experiment we performed. In this paper we want to discuss some methodological aspects that we deem important to underline in the form of answers to the questions we have read in newspapers, magazines, blogs, or heard from colleagues. We indulge in some reflections on the actual meaning of "average distance" and make a number of side observations showing that, yes, 3.74 "degrees of separation" are really few

    On the Convexity of Latent Social Network Inference

    Full text link
    In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.Comment: NIPS, 201
    • …
    corecore