3,093 research outputs found

    Building Footprint Generation Using Improved Generative Adversarial Networks

    Get PDF
    Building footprint information is an essential ingredient for 3-D reconstruction of urban models. The automatic generation of building footprints from satellite images presents a considerable challenge due to the complexity of building shapes. In this work, we have proposed improved generative adversarial networks (GANs) for the automatic generation of building footprints from satellite images. We used a conditional GAN with a cost function derived from the Wasserstein distance and added a gradient penalty term. The achieved results indicated that the proposed method can significantly improve the quality of building footprint generation compared to conditional generative adversarial networks, the U-Net, and other networks. In addition, our method nearly removes all hyperparameters tuning.Comment: 5 page

    Detection of Karst Features in the Black Hills Area in South Dakota/Wyoming, USA, Based on Evaluations of Remote Sensing Data

    Get PDF
    Landsat 8, Sentinel 2, Aster, RapidEye and PlanetScope data and Sentinel 1- and Advanced Land Observing Satellite (ALOS)-Phased Array type L-band Synthetic Aperture Radar (PALSAR)-radar images have been evaluated for a karst feature inventory in the Black Hills area in Wyoming/South Dakota, USA. The GeoInformation System (GIS) integrated evaluation of the different satellite data included as well World Imagery files of ESRI and Bing Maps high resolution satellite data of Microsoft. The satellite data revealed several types of circular features related to karst such as enclosed depressions and collapsed dolines as well as traces of tectonic/structural features (visualized by lineament analysis) cutting through youngest sediments, influencing karstification processes. The origin of the circular features is complex and partly unknown, needing further investigations. Digital Elevation Model (DEM) data, such as Aster- and Shuttle Radar Topography Mission (SRTM) DEM data with 30 m and ALOS PASAR DEM with 12.5 m spatial resolution contributed to the detection of depressions, partly related to karst phenomena (sinkholes). Time series of satellite data reveal seasonal changes of the landscape and provide a data base for the documentation of the impact of climate change

    A Weakly Supervised Approach for Estimating Spatial Density Functions from High-Resolution Satellite Imagery

    Full text link
    We propose a neural network component, the regional aggregation layer, that makes it possible to train a pixel-level density estimator using only coarse-grained density aggregates, which reflect the number of objects in an image region. Our approach is simple to use and does not require domain-specific assumptions about the nature of the density function. We evaluate our approach on several synthetic datasets. In addition, we use this approach to learn to estimate high-resolution population and housing density from satellite imagery. In all cases, we find that our approach results in better density estimates than a commonly used baseline. We also show how our housing density estimator can be used to classify buildings as residential or non-residential.Comment: 10 pages, 8 figures. ACM SIGSPATIAL 2018, Seattle, US

    Going against the flow: testing the hypothesis of pulsed axial glacier flow

    Get PDF
    Hypothesised lobe‐like flow of a temperate glacier in southeast Iceland, proposed from an analysis of ice surface crevassing patterns, is appraised from both empirical and theoretical perspectives. The hypothesis comprises the migration of individual lobes (or ‘pulses’) of ice through the glacier body, with central lobes migrating more rapidly along a narrow, central, ‘axial flow corridor’. Our alternative hypothesis is that crevasse patterns at this glacier instead reflect simple surface ice responses to stresses caused by flow over uneven bed topography. To substantiate our rejection of the lobe‐like, pulsed axial flow hypothesis, we provide: (a) evidence for a prominent transverse foliation that exhibits no evidence of shear of the required magnitude to support the hypothesis; and (b) an analysis of ice surface displacement, obtained by feature tracking, that shows a uniform flow field throughout the glacier tongue. We argue that caution needs to be exercised when interpreting glacier flow solely from crevasse patterns and observations of minor displacements along near‐surface fractures and other features
    corecore