6,175 research outputs found

    Bar 1-Visibility Drawings of 1-Planar Graphs

    Full text link
    A bar 1-visibility drawing of a graph GG is a drawing of GG where each vertex is drawn as a horizontal line segment called a bar, each edge is drawn as a vertical line segment where the vertical line segment representing an edge must connect the horizontal line segments representing the end vertices and a vertical line segment corresponding to an edge intersects at most one bar which is not an end point of the edge. A graph GG is bar 1-visible if GG has a bar 1-visibility drawing. A graph GG is 1-planar if GG has a drawing in a 2-dimensional plane such that an edge crosses at most one other edge. In this paper we give linear-time algorithms to find bar 1-visibility drawings of diagonal grid graphs and maximal outer 1-planar graphs. We also show that recursive quadrangle 1-planar graphs and pseudo double wheel 1-planar graphs are bar 1-visible graphs.Comment: 15 pages, 9 figure

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,…,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,…,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n−3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    L-Visibility Drawings of IC-planar Graphs

    Full text link
    An IC-plane graph is a topological graph where every edge is crossed at most once and no two crossed edges share a vertex. We show that every IC-plane graph has a visibility drawing where every vertex is an L-shape, and every edge is either a horizontal or vertical segment. As a byproduct of our drawing technique, we prove that an IC-plane graph has a RAC drawing in quadratic area with at most two bends per edge

    Bar 1-Visibility Graphs and their relation to other Nearly Planar Graphs

    Full text link
    A graph is called a strong (resp. weak) bar 1-visibility graph if its vertices can be represented as horizontal segments (bars) in the plane so that its edges are all (resp. a subset of) the pairs of vertices whose bars have a ϵ\epsilon-thick vertical line connecting them that intersects at most one other bar. We explore the relation among weak (resp. strong) bar 1-visibility graphs and other nearly planar graph classes. In particular, we study their relation to 1-planar graphs, which have a drawing with at most one crossing per edge; quasi-planar graphs, which have a drawing with no three mutually crossing edges; the squares of planar 1-flow networks, which are upward digraphs with in- or out-degree at most one. Our main results are that 1-planar graphs and the (undirected) squares of planar 1-flow networks are weak bar 1-visibility graphs and that these are quasi-planar graphs

    Improved Compact Visibility Representation of Planar Graph via Schnyder's Realizer

    Full text link
    Let GG be an nn-node planar graph. In a visibility representation of GG, each node of GG is represented by a horizontal line segment such that the line segments representing any two adjacent nodes of GG are vertically visible to each other. In the present paper we give the best known compact visibility representation of GG. Given a canonical ordering of the triangulated GG, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder's realizer for the triangulated GG yields a visibility representation of GG no wider than 22n−4015\frac{22n-40}{15}. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant's open question about whether 3n−62\frac{3n-6}{2} is a worst-case lower bound on the required width. Also, if GG has no degree-three (respectively, degree-five) internal node, then our visibility representation for GG is no wider than 4n−93\frac{4n-9}{3} (respectively, 4n−73\frac{4n-7}{3}). Moreover, if GG is four-connected, then our visibility representation for GG is no wider than n−1n-1, matching the best known result of Kant and He. As a by-product, we obtain a much simpler proof for a corollary of Wagner's Theorem on realizers, due to Bonichon, Sa\"{e}c, and Mosbah.Comment: 11 pages, 6 figures, the preliminary version of this paper is to appear in Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), Berlin, Germany, 200

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    On Visibility Representations of Non-planar Graphs

    Get PDF
    A rectangle visibility representation (RVR) of a graph consists of an assignment of axis-aligned rectangles to vertices such that for every edge there exists a horizontal or vertical line of sight between the rectangles assigned to its endpoints. Testing whether a graph has an RVR is known to be NP-hard. In this paper, we study the problem of finding an RVR under the assumption that an embedding in the plane of the input graph is fixed and we are looking for an RVR that reflects this embedding. We show that in this case the problem can be solved in polynomial time for general embedded graphs and in linear time for 1-plane graphs (i.e., embedded graphs having at most one crossing per edge). The linear time algorithm uses a precise list of forbidden configurations, which extends the set known for straight-line drawings of 1-plane graphs. These forbidden configurations can be tested for in linear time, and so in linear time we can test whether a 1-plane graph has an RVR and either compute such a representation or report a negative witness. Finally, we discuss some extensions of our study to the case when the embedding is not fixed but the RVR can have at most one crossing per edge
    • …
    corecore