A graph is called a strong (resp. weak) bar 1-visibility graph if its
vertices can be represented as horizontal segments (bars) in the plane so that
its edges are all (resp. a subset of) the pairs of vertices whose bars have a
ϵ-thick vertical line connecting them that intersects at most one
other bar.
We explore the relation among weak (resp. strong) bar 1-visibility graphs and
other nearly planar graph classes. In particular, we study their relation to
1-planar graphs, which have a drawing with at most one crossing per edge;
quasi-planar graphs, which have a drawing with no three mutually crossing
edges; the squares of planar 1-flow networks, which are upward digraphs with
in- or out-degree at most one. Our main results are that 1-planar graphs and
the (undirected) squares of planar 1-flow networks are weak bar 1-visibility
graphs and that these are quasi-planar graphs