21,614 research outputs found

    Selecting surface features for accurate multi-camera surface reconstruction

    Get PDF
    This paper proposes a novel feature detector for selecting local textures that are suitable for accurate multi-camera surface reconstruction, and in particular planar patch fitting techniques. This approach is in contrast to conventional feature detectors, which focus on repeatability under scale and affine transformations rather than suitability for multi-camera reconstruction techniques. The proposed detector selects local textures that are sensitive to affine transformations, which is a fundamental requirement for accurate patch fitting. The proposed detector is evaluated against the SIFT detector on a synthetic dataset and the fitted patches are compared against ground truth. The experiments show that patches originating from the proposed detector are fitted more accurately to the visible surfaces than those originating from SIFT keypoints. In addition, the detector is evaluated on a performance capture studio dataset to show the real-world application of the proposed detector

    Selecting surface features for accurate multi-camera surface reconstruction

    Get PDF
    This paper proposes a novel feature detector for selecting local textures that are suitable for accurate multi-camera surface reconstruction, and in particular planar patch fitting techniques. This approach is in contrast to conventional feature detectors, which focus on repeatability under scale and affine transformations rather than suitability for multi-camera reconstruction techniques. The proposed detector selects local textures that are sensitive to affine transformations, which is a fundamental requirement for accurate patch fitting. The proposed detector is evaluated against the SIFT detector on a synthetic dataset and the fitted patches are compared against ground truth. The experiments show that patches originating from the proposed detector are fitted more accurately to the visible surfaces than those originating from SIFT keypoints. In addition, the detector is evaluated on a performance capture studio dataset to show the real-world application of the proposed detector

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Multi-frame scene-flow estimation using a patch model and smooth motion prior

    Get PDF
    This paper addresses the problem of estimating the dense 3D motion of a scene over several frames using a set of calibrated cameras. Most current 3D motion estimation techniques are limited to estimating the motion over a single frame, unless a strong prior model of the scene (such as a skeleton) is introduced. Estimating the 3D motion of a general scene is difficult due to untextured surfaces, complex movements and occlusions. In this paper, we show that it is possible to track the surfaces of a scene over several frames, by introducing an effective prior on the scene motion. Experimental results show that the proposed method estimates the dense scene-flow over multiple frames, without the need for multiple-view reconstructions at every frame. Furthermore, the accuracy of the proposed method is demonstrated by comparing the estimated motion against a ground truth

    View Registration Using Interesting Segments of Planar Trajectories

    Full text link
    We introduce a method for recovering the spatial and temporal alignment between two or more views of objects moving over a ground plane. Existing approaches either assume that the streams are globally synchronized, so that only solving the spatial alignment is needed, or that the temporal misalignment is small enough so that exhaustive search can be performed. In contrast, our approach can recover both the spatial and temporal alignment. We compute for each trajectory a number of interesting segments, and we use their description to form putative matches between trajectories. Each pair of corresponding interesting segments induces a temporal alignment, and defines an interval of common support across two views of an object that is used to recover the spatial alignment. Interesting segments and their descriptors are defined using algebraic projective invariants measured along the trajectories. Similarity between interesting segments is computed taking into account the statistics of such invariants. Candidate alignment parameters are verified checking the consistency, in terms of the symmetric transfer error, of all the putative pairs of corresponding interesting segments. Experiments are conducted with two different sets of data, one with two views of an outdoor scene featuring moving people and cars, and one with four views of a laboratory sequence featuring moving radio-controlled cars
    corecore