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Abstract

This paper proposes a novel feature detector for selecting local textures that are suit-
able for accurate multi-camera surface reconstruction, and in particular planar patch fit-
ting techniques. This approach is in contrast to conventional feature detectors, which
focus on repeatability under scale and affine transformations rather than suitability for
multi-camera reconstruction techniques. The proposed detector selects local textures that
are sensitive to affine transformations, which is a fundamental requirement for accurate
patch fitting. The proposed detector is evaluated against the SIFT detector [11] on a syn-
thetic dataset and the fitted patches are compared against ground truth. The experiments
show that patches originating from the proposed detector are fitted more accurately to
the visible surfaces than those originating from SIFT keypoints. In addition, the detector
is evaluated on a performance capture studio dataset to show the real-world application
of the proposed detector.

1 Introduction

Establishing correspondences between different views of an object is a longstanding problem
in computer vision and is a fundamental requirement in many computer vision applications,
such as robotic navigation [19], camera calibration [23] and augmented reality [5]. One
approach to the problem is to detect features in every view and then find correspondences
by matching robust feature descriptors across different views [1, 11, 12, 25]. A second
approach is to detect features in a reference image and then use standard stereo reconstruction
techniques [20] to find the correspondences in the other images [15]. In the first approach, the
key requirement upon the feature detector is that it should extract the same feature even with
changes in scale and viewpoint. In the second approach, the key requirement is that it will
select the best textures for surface reconstruction. This paper addresses this requirement, by
asking the question: how should local image textures be selected, so that the visible surface
can be accurately reconstructed using stereo techniques? In particular, we focus on planar
patch fitting techniques [6, 17], as these offer a higher level of generality than techniques
assume the surface surface is parallel to the image plane (the fronto-parallel assumption).

The contribution of this paper is a novel feature detector that extracts image textures
for which a planar patch can be accurately fitted to the corresponding scene surface. The
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proposed feature detector is based upon finding textures that are sensitive to shear transfor-
mations, which are part of the chain of projective transformations between two cameras via
a plane [8]. The performance of the proposed detector is compared with a SIFT keypoint
extractor [11] using a synthetic dataset and results are also shown on a real-world dataset.
The remainder of the paper is organised as follows: section2 reviews some of main feature
detectors and descriptors as well as some planar patch fitting techniques; section3 explains
the planar patch fitting approach used in this paper; section4 describes the proposed fea-
ture detector; section5 shows some experimental results on synthetic and real datasets; and
section6 concludes the paper.

2 Related work

Numerous feature detectors have been proposed in the literature. The Harris [7] and KLT
detectors [22] belong to the family of detectors which use a second moment matrix of im-
age derivatives to find points for which the intensity change is significant in orthogonal di-
rections. Another family of feature detectors is based upon the Hessian matrix of second
derivatives [2] and these tend to detect ‘blob-like’ features. Since image features may exist
at different scales within the image, many feature detectors adopt a multiresolution approach
to find the characteristic scale of the feature [10]. Both Harris-Laplace and Hessian-Laplace
detectors [13] are examples of extensions to earlier feature detectors. The difference-of-
Gaussian detector also selects scale-space extrema and is an approximation to a Laplacian
filter [9, 11]. More recently, affine-invariant detectors/descriptors have been proposed to
improve the repeatability performance with changes in viewpoint [12, 13, 25].

In order to compare the various feature detectors, many performance measures have been
suggested, including: Repeatability, Distinctiveness, Locality, Quantity, Accuracy and Effi-
ciency [24]. Schmidet al. [18] evaluated interest point detectors using the repeatability rate
and the information content and found that their improved version of the Harris detector
[7] offered the best performance. Mikolajczyket al. [14] compared the performance of six
affine region detectors under changes in viewpoint, scale, illumination, defocus and image
compression. Moreels and Perona [16] conducted a similar experiment using a set of 100
3d objects and found that Hessian-Affine feature detector performed best with changes in
viewpoint and that no detector-descriptor combination performs well for viewpoint changes
larger than 25 to 30 degrees.

As an alternative to affine/scale invariant features, this paper uses multi-camera recon-
struction techniques to derive correspondences between features and therefore estimate their
3d position. In particular we review planar patch fitting methods which estimate a depth and
surface orientation for a given rectangular region in the image. Carceroni and Kutulakos [4]
fit a set of ‘surfels’ to the scene surfaces by partitioning the scene volume into a set of voxels
and then searching for a surface element in each voxel. Birchfield and Tomasi [3] iteratively
segment the scene into non-overlapping regions and estimate the affine parameters of each
region in order to find a displacement map for scenes with slanted surfaces. Habbecke and
Kobbelt [6] fit a dense set of planes to the surfaces by iteratively minimising the following
objective function for each planar patch:

E = ∑
c=2

∑
p∈Ω

(I1(p)− Ic(H(N)p))2 (1)

whereI1 is the reference image,I2, ..., In is the set of comparison images,Ω is set of pixels
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p belonging to the patch andH(N) is the homographyH as a function of the plane param-
etersN. Mullins et al. adopt a multiresolution approach to patch estimation by employing a
particle filter to stochastically refine patch estimates in a coarse-to-fine manner [17].

3 Overview of plane fitting approach

The problem of fitting a planar patch to the scene surface from an imaged feature is now
defined. It is assumed that each imaged feature corresponds to a locally planar surface patch
within the scene. Letg = (u,v,1) be the homogeneous co-ordinates of a feature point, lets
be the scale at which the feature was detected and letw be the set of pixels belonging to a
rectangular window around the feature point. A pointg = (u,v,1) on the image plane of a
camera defines a unique ray from the camera centre into the scene, along which the centre
of planar patch must lie. Therefore only one parameter, the depthd, must be determined in
order to find the 3d location of the patch centre. In addition to the location of the patch centre,
the surface orientation of the patch must also be estimated, adding another two parameters
to the search: the anglesθ1 andθ2. θ1 is the angle between the surface normal and the z-axis
andθ2 is the angle between the x-axis and the projection of the surface normal onto the x-y
plane. The notationx= [d,θ1,θ2] is used for the state vector containing the parameters of the
patch andz= {z1,z2, ...,zc} is the set of images from thec cameras surrounding the scene.
The problem is to therefore find the parameters contained in the vectorx with maximum
probability given the input images:

x̂ = argmax
(d,θ1,θ2)∈S

p(x|z) (2)

whereS is the space containing all possible combinations of (d, θ1 andθ2) andp(x|z) is the
probability of the statex given the imagesz= {z1,z2, ...,zn}. Using Bayes’ theorem,p(z|x)
is proportional top(x|z), if p(x) is assumed to be uniform:

p(x|z) ∝ p(z|x) (3)

The conditional probability of the input images given the hypothesised statep(z|x) is es-
timated by using the appearance consistency between the input images via the hypothesised
plane. Two views of a plane may be related to each by using a homography to describe the
mapping between corresponding points in each view [8]. A homographyH is a 3x3 matrix
which transforms homogeneous co-ordinates of a point in one view to the corresponding
homogeneous co-ordinates of the point in a second view according to:

g j = Hi j gi (4)

wheregi andg j are the homogeneous co-ordinates(u,v,1)T of the points in camerai and
cameraj andHi j is 3x3 matrix describing the homography between camerai and camera
j. Since the cameras are calibrated, the homography only has three degrees of freedom.
The homographyHi j may be directly computed from the camera geometry and the plane
n.X +d = 0 with n = (π1,π2,π3)T andX = (x,y,z)T [8]:

Hi j = K j
(
Rj − t jn

T/d
)

K−1
i (5)

whereKi and K j are the 3x3 internal calibration matrices for camerasi and j, Rj is the
rotation matrix for cameraj andt j is the camera centre of cameraj. It is assumed in the
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above expression that the centre of camerai lies at the origin, so that the 3x4 projection
matrix is: Pi = Ki [I |0], whereI is a 3x3 matrix and 0 is a 3x1 matrix. In order to simplify
the following notation,Hi j (x) is used to denote the homography between camerasi and j via
the plane parametrised by the state vectorx. The reprojection error (using sum-of-squared
differences) between two camera views of a plane parametrised by state vectorx is therefore:

ε
2
i→ j(x) = ∑

(u,v)∈w

(zj(g j)−zi(H ji (x)g j))
2 (6)

wherezj(g j) is the interpolated intensity of the image in cameraj at the pointg j . For
clarity, the equation above assumes greyscale intensities, although colour information can
be incorporated by summing over the 3 colour components. Where multiple cameras are
available, the reprojection errors from the cameras are summed:

ε
2(x) = ∑

j∈C

ε
2
i→ j(x) (7)

whereC is the set of cameras. The reprojection error may be used to calculate the probability
p(z|x) by assuming that the reprojection error is normal i.i.d:

p(z|x) ∝ e

(
− ε2(x)

2σ2

)
(8)

whereσ is usually an empirically determined constant controlling the spread of reprojection
errors. In this paper, the probabilityp(z|x) is maximised by using a full search to ensure
that the results are not affected by an optimization technique getting stuck in local max-
ima. However for practical applications, stochastic or gradient-descent strategies in [17] or
[6] may be used. Since the task of estimating patches is ill-defined for surfaces which are
perpendicular to the camera image plane, the estimation accuracy is poor for these patches.
Therefore patches are removed if the angle between the patch and the camera image plane is
greater than a threshold angle.

4 Detecting image features for accurate plane fitting from
multiple images

In order to estimate the parametersx of the plane that minimises the objective function in
equation (7), a natural requirement is that only the true plane parameters minimise the ob-
jective function. With multiple cameras, the depth of the feature is usually sufficiently con-
strained, but accurate surface normal estimation is often difficult, as different orientations
of the plane may give rise to similar reprojection errors. The plane fitting task is therefore
only possible when each combination ofθ1 and θ2 transforms the feature texture to pro-
duce a unique texture. In other words,θ1 and θ2 should have an orthogonal effect upon
the transformed texture. One possible way of ensuring that the surface orientation can be
correctly estimated would be to perform a check to ensure that every combination ofθ1 and
θ2 produces a unique texture. However, this would be a very computationally intensive task,
since it would have to be performed on a texture window for each pixel in the input im-
age. The proposed method therefore checks the sensitivity of the local texture to an affine
transformation, and in particular a shear transformation is used. Both x-shear and y-shear
transformations are parameterised as follows:
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Hsx(cx) =

1 cx 0
0 1 0
0 0 1

 Hsy(cy) =

 1 0 0
cy 1 0
0 0 1

 (9)

where bothHsx andHsy are transformations of a point(x,y,1)T andcx,cy control the amount
of shear in the x and y directions. The sensitivitiesrx(u,v) andry(u,v) of the texture window
f to the transformations are defined as:

rx(u,v) =
(

∂ f
∂cx

)2

ry(u,v) =
(

∂ f
∂cy

)2

(10)

The gradients are estimated by comparing an original texture windowf (m,n) against a
small transformation of the texture:

rx(u,v) = ∑
(m,n)

( f (m+u,n+v)− f (m+u+cxn,n+v))2 (11)

ry(u,v) = ∑
(m,n)

( f (m+u,n+v)− f (m+u,n+v+cym))2 (12)

Since two parameters must be estimated for the surface orientation, we want the texture to
be responsive to shear transformations in both the x and y directions. The actual response
a(u,v) at each pixel is therefore the square-root of the product of the two responses:

a(u,v) =
√

rx(u,v)ry(u,v) (13)

Since the gradient of the texture response to the transform is being measured,cx andcy

need to only cause a small change in the transformed texture. Through experimentation, it
was found that the settingcx andcy to 0.1 caused a sufficient transformation of the texture
for the estimation of the gradients in equations11and12. In common with other detectors, a
feature is added at location(u,v) if its responsea(u,v) is both a local maximum and above a
thresholdT. Since textures that are suitable for multi-camera reconstruction may be present
at multiple scales in the image, the proposed detector is run at multiple levels of a Gaussian
pyramid.

For the experiments in this paper, the responsesrx andry were calculated using a trans-
formed texture window of 7x7 pixels, but for practical applications, an optimization could
be made by taking a Taylor expansion around the centre point(u,v) of the texture window
(with (m,n) as an offset from the centre point):

f (u+m,v+n) = f (u,v)+m
∂ f
∂u

+n
∂ f
∂v

(14)

so that the responsesrx(u,v) andry(u,v) are:

rx(u,v) = ∑
(m,n)

(
cxn

∂ f
∂u

)2

ry(u,v) = ∑
(m,n)

(
cym

∂ f
∂v

)2

(15)
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5 Experimental Results and Discussion

5.1 Experiment 1 - Evaluation on synthetic data

The proposed detector was compared with a SIFT detector for its ability to select suitable
surface features for accurate multi-camera reconstruction. In order to obtain a meaningful
comparison, experiments were conducted on a synthetic dataset so that the estimated patches
could be compared against the ground truth. The synthetic dataset was created using 32
views of a textured cube and was rendered using OpenGL. The cube was textured using the
benchmark ‘graffiti’ image from the feature performance comparison by Mikolajczyket al.
[14]. Figure1 shows an example camera view of the scene and the general camera setup.

A single camera situated in the middle of the top-row (shown as yellow in figure1)
was used as the input to both feature detectors. The SIFT features were detected using the
SIFT++ implementation available from [26]. 63 SIFT features were extracted using a scale-
space threshold of 0.06 and an edge threshold of 10. The proposed detector produced 67
features and was run usingcx = cy = 0.1 in equations11 and12, a thresholdT = 6, and a
window size of 7x7 pixels. Both feature detectors used the same Gaussian pyramid with a
scale factor of 1.26 between layers to give 3 levels per octave.

Patches were then estimated for both sets of features using the other 31 cameras to max-
imise the probability in equation8. Out of the 63 features from the proposed detector, 50
patches were estimated and from the 67 SIFT features, 52 patches were estimated. The rea-
son for having fewer patches than image features is that patches with an angle greater than
40 degrees to the camera image plane were removed, due to poor fitting results. In general,
these removed patches corresponded to the features on the edge of the cube.

The patches originating from each detector were then compared against the ground truth
to give a root mean square errorerrorrms for each estimated parameter:

errorrms =

√√√√ 1
Np

Np

∑
i=1

(x̂i −xi)
2 (16)

whereNp is the number of patches, ˆxi is the estimated parameter for patchi andxi is the
ground truth parameter for patchi.

Figure 2 shows the estimated patches from both the proposed detector and the SIFT
detector and figure3 shows zoomed-in views of the bottom left-hand corner of the cube. It
can be seen from these images that the new detector gives a better fit than the SIFT features.
This is born out by table1, which shows the root mean squared errors against ground truth
for both types of features. The surface orientation parameters are given in radians and the
depth error measurements are relative to the cube which has sides of unit length. As can
be seen from the table and figures, the patches originating from the proposed detector are
more accurately fitted to the scene surface than patches originating from the SIFT keypoint
extractor. The accuracy of depth estimation is slightly better for the patches originating from
the proposed detector, but the real benefit of the proposed detector is shown in the improved
surface normal estimation accuracy.
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(a) (b)

Figure 1: a) Camera Setup b) Example view from one camera

(a) (b)

(c) (d)

Figure 2: (a,c) Estimated patches originating from SIFT features (b,d) Estimated patches
originating from proposed detector
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Root mean squared errors
Feature Detector Depthd θ1 (radians) θ2 (radians)

Proposed method 0.0009 0.07079 0.04257
SIFT 0.0012 0.08986 0.15115

Table 1: Root mean squared errors estimated for depth (d) and surface orientation parameters
(θ1,θ2). The depth errors are relative to the cube which has sides of unit length.

(a)

(b)

Figure 3: (a) Estimated patches originating from SIFT features (b) Estimated patches origi-
nating from proposed detector
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5.2 Experiment 2 - Evaluation on real-world data

In order to show a real-world application of the proposed detector and plane-fitting algo-
rithm, an evaluation is performed on a studio dataset captured with 32 firewire cameras at a
resolution of 1024x768 pixels. The cameras have the same layout as those in figure1, and
were calibrated using the automatic package described by Svobodaet al. [21]. Since the
shape of the subject is more complex than a simple cube, features are detected in the middle
4 cameras along the top-row (see figure1). Figure4 shows the patches overlaid onto the two
different views of the scene. Although there is no ground truth for these data, it is clear that
the estimated patches are close to the relevant surfaces.

Figure 4: Two views of estimated patches from proposed feature detector
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6 Conclusions

We have presented a novel feature detector that selects local textures for which planar patches
can be fitted accurately to the corresponding scene surfaces. The performance of the pro-
posed detector has been compared with a SIFT detector and it has been shown that patches
are more accurately fitted when they originate from the proposed feature detector. There are
many possible improvement or extensions to this work, including: testing on a wider range
of synthetic objects and textures; a full comparison with other feature detectors; and finally,
a more optimized implementation of the detector.
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