3,662 research outputs found

    Planar Ramsey numbers for cycles

    Get PDF
    AbstractFor two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H. By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles

    Planar Ramsey graphs

    Get PDF
    We say that a graph HH is planar unavoidable if there is a planar graph GG such that any red/blue coloring of the edges of GG contains a monochromatic copy of HH, otherwise we say that HH is planar avoidable. I.e., HH is planar unavoidable if there is a Ramsey graph for HH that is planar. It follows from the Four-Color Theorem and a result of Gon\c{c}alves that if a graph is planar unavoidable then it is bipartite and outerplanar. We prove that the cycle on 44 vertices and any path are planar unavoidable. In addition, we prove that all trees of radius at most 22 are planar unavoidable and there are trees of radius 33 that are planar avoidable. We also address the planar unavoidable notion in more than two colors

    Spanning embeddings of arrangeable graphs with sublinear bandwidth

    Full text link
    The Bandwidth Theorem of B\"ottcher, Schacht and Taraz [Mathematische Annalen 343 (1), 175-205] gives minimum degree conditions for the containment of spanning graphs H with small bandwidth and bounded maximum degree. We generalise this result to a-arrangeable graphs H with \Delta(H)<sqrt(n)/log(n), where n is the number of vertices of H. Our result implies that sufficiently large n-vertex graphs G with minimum degree at least (3/4+\gamma)n contain almost all planar graphs on n vertices as subgraphs. Using techniques developed by Allen, Brightwell and Skokan [Combinatorica, to appear] we can also apply our methods to show that almost all planar graphs H have Ramsey number at most 12|H|. We obtain corresponding results for graphs embeddable on different orientable surfaces.Comment: 20 page

    Size-Ramsey numbers of structurally sparse graphs

    Full text link
    Size-Ramsey numbers are a central notion in combinatorics and have been widely studied since their introduction by Erd\H{o}s, Faudree, Rousseau and Schelp in 1978. Research has mainly focused on the size-Ramsey numbers of nn-vertex graphs with constant maximum degree Δ\Delta. For example, graphs which also have constant treewidth are known to have linear size-Ramsey numbers. On the other extreme, the canonical examples of graphs of unbounded treewidth are the grid graphs, for which the best known bound has only very recently been improved from O(n3/2)O(n^{3/2}) to O(n5/4)O(n^{5/4}) by Conlon, Nenadov and Truji\'c. In this paper, we prove a common generalization of these results by establishing new bounds on the size-Ramsey numbers in terms of treewidth (which may grow as a function of nn). As a special case, this yields a bound of O~(n3/2−1/2Δ)\tilde{O}(n^{3/2 - 1/2\Delta}) for proper minor-closed classes of graphs. In particular, this bound applies to planar graphs, addressing a question of Wood. Our proof combines methods from structural graph theory and classic Ramsey-theoretic embedding techniques, taking advantage of the product structure exhibited by graphs with bounded treewidth.Comment: 21 page

    Planar Ramsey graphs

    Get PDF

    An Extension of Ramsey\u27s Theorem to Multipartite Graphs

    Get PDF
    Ramsey Theorem, in the most simple form, states that if we are given a positive integer l, there exists a minimal integer r(l), called the Ramsey number, such any partition of the edges of K_r(l) into two sets, i.e. a 2-coloring, yields a copy of K_l contained entirely in one of the partitioned sets, i.e. a monochromatic copy of Kl. We prove an extension of Ramsey\u27s Theorem, in the more general form, by replacing complete graphs by multipartite graphs in both senses, as the partitioned set and as the desired monochromatic graph. More formally, given integers l and k, there exists an integer p(m) such that any 2-coloring of the edges of the complete multipartite graph K_p(m);r(k) yields a monochromatic copy of K_m;k . The tools that are used to prove this result are the Szemeredi Regularity Lemma and the Blow Up Lemma. A full proof of the Regularity Lemma is given. The Blow-Up Lemma is merely stated, but other graph embedding results are given. It is also shown that certain embedding conditions on classes of graphs, namely (f , ?) -embeddability, provides a method to bound the order of the multipartite Ramsey numbers on the graphs. This provides a method to prove that a large class of graphs, including trees, graphs of bounded degree, and planar graphs, has a linear bound, in terms of the number of vertices, on the multipartite Ramsey number

    Fixed-Parameter Tractability of Token Jumping on Planar Graphs

    Full text link
    Suppose that we are given two independent sets I0I_0 and IrI_r of a graph such that ∣I0∣=∣Ir∣|I_0| = |I_r|, and imagine that a token is placed on each vertex in I0I_0. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms I0I_0 into IrI_r so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixed-parameter algorithm for the token jumping problem on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs, K3,tK_{3,t}-free graphs for any fixed integer t≥3t \ge 3, and it yields fixed-parameter algorithms
    • …
    corecore