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Planar Ramsey numbers for cycles
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Received 19 January 2004; accepted 8 August 2007
Available online 4 October 2007

Abstract

For two given graphs G and H the planar Ramsey number PR(G, H) is the smallest integer n such that every planar graph F on
n vertices either contains a copy of G or its complement contains a copy H. By studying the existence of subhamiltonian cycles in
complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given two graphs G and H, the Ramsey number R(G, H) is the smallest integer n such that every graph F on n
vertices contains a copy of G or its complement contains a copy of H. The determination of Ramsey numbers is, in
general, an extremely difficult problem. Often in such cases graph theorists turn to specific classes of graphs in hope
for some positive results, and the class of planar graphs is one of the most attractive. This was apparently the reason
why Walker [12] in 1969, and, independently (sic!), Steinberg and Tovey [11] in 1993 introduced the notion of planar
Ramsey number.

The planar Ramsey number PR(G, H) is the smallest integer n for which every planar graph F on n vertices contains
a copy of G or its complement contains a copy of H. Note that PR(G, H)�R(G, H), but unlike R(G, H), as a simple
consequence of Turán’s Theorem, the numbers PR(G, H) grow only linearly with |V (H)|. Moreover, they do not need
to be symmetric with respect to G and H. A related feature is that quite often all planar graphs F with PR(G, H)

vertices, out of the two alternatives satisfy only the latter, i.e., F /⊃ G but F c ⊃ H . This is obviously true when G is
not planar, but even for planar G it may be the case (see Theorem 6).

Both papers [12,11] focus on computing the planar Ramsey numbers for complete graphs and link them with the
Four Color Conjecture, and, resp. Four Color Theorem. To pinpoint the values of these numbers, the authors of [11] use
Grünbaum’s Theorem, which generalizes the better known Grötzsch’s Theorem. They show that PR(K3, Kl) = 3l − 3
and PR(Kk, Kl) = 4l − 3 for all k�4 and l�3.

1 Research of the author supported in part by KBN Grant 2 P03A 015 23.
E-mail addresses: I.Gorgol@pollub.pl (I. Gorgol), rucinski@amu.edu.pl (A. Ruciński).
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In this paper we determine all planar Ramsey numbers for pairs of cycles, that is, all numbers PR(Cm, Cn), where
m�3 and n�3. It turns out that for n large enough these numbers do not depend on m, while, on the other hand,
for small n they do not grow with m, which emphasizes the asymmetry mentioned above. In our proofs we rely on
well-known sufficient conditions for the existence of hamiltonian cycles and for pancyclicity. On the other hand, for
some small cycles we make use of programs generating planar graphs [13].

Planar Ramsey numbers were also considered in [1,2]. For more on Ramsey numbers see, e.g., [8]. Throughout the
paper we use the standard graph theory notation (see, e.g., [5]). In particular, �(G), �(G) and �(G) stand, respectively,
for the minimum degree, the independence number and the vertex-connectivity of a graph G. By Gc we denote the
complement of G.

2. Cycles in complements of sparse graphs

The study of planar Ramsey numbers for cycles reduces, in most instances, to finding long cycles in complements
of sparse, but not necessarily planar, graphs. In this section we present three similar results in this direction, all leading
to the determination of the planar Ramsey numbers in question.

In our proofs we will frequently use the well-known sufficient conditions for a graph to be hamiltonian and to be
pancyclic. All of them can be found, for instance, in the monograph [3]. Here is the list of what we will need.

• (Dirac) If �(G)�n/2 then G is hamiltonian.
• (Chvátal–Erdős) If �(G)��(G) then G is hamiltonian.
• (Bondy) If G is hamiltonian and e(G)�n2/4 then G is pancyclic unless G = Kn/2,n/2.

Our first result asserts that there is a subhamiltonian cycle in each graph which, in some sense, is sparse both, locally
and globally. As the example of K3,3 − e shows, Theorem 1 does not need to be true for n�6. Also, it fails to be true
if we instead request a copy of Cn−1 in the complement. Here K2,n−2 is a counterexample.

Theorem 1. Let G be an arbitrary graph on n�7 vertices, at most max{(n
2

) − n2/4, 2n − 4} edges and containing
neither K3 nor K3,3. Then Gc contains Cn−2.

Proof. We have �(Gc)�2. If �(Gc)�2, then Gc is hamiltonian by the Chvátal–Erdős condition. For n�8, we have
e(Gc)�n2/4 and Gc �= K�n/2�,�n/2�. Thus Gc is pancyclic and in particular contains Cn−2. For n= 7, if e(Gc) < 72/4
then e(Gc) = 11 or 12, so there must be at least four diagonals in the C7, and thus there is a C5 in Gc.

If �(Gc)�1, then there is a vertex x which separates a nonempty set of vertices U from the rest. Note that |U |�2,
since G does not contain K3,3. Set W = V − U − {x}. Because G is K3-free, Gc[W ] must be complete. If |U | = 1
then we have Cn−2 in Gc, so consider |U | = 2. Since |W |�4, there are at least two edges from x to W (otherwise there
would be K3,3 in G). So, W ∪ {x} spans a Cn−2. �

The next result is not new. Nevertheless, it fits well with the other theorems here, and we give the proof because of
its simplicity. Together with a lower bound given by the star K1,n−1, it yields that PR(C4, Cn) = n + 1.

Theorem 2 ([6,9,10]). For n�6, the Ramsey number R(C4, Cn) = n + 1. In other words, the complement of every
C4-free graph on n�7 vertices contains Cn−1.

Proof. Let G be a graph fulfilling the assumptions of the theorem. We have �(Gc)�3. If �(Gc)�3 then, by the
Chvátal–Erdős condition, Gc is hamiltonian. It is easy to see that for n�8, the Turán number T (n, C4) is smaller than(

n
2

) − n2/4 (use the well-known bound T (n, C4)� 1
4n(1 + 2

√
n)—see, e.g., [8, p. 144]), and thus Gc is pancyclic,

containing, in particular, Cn−1. For n= 7, T (n, C4)= 9 (see [4]) and
(

n
2

)−n2/4 = 8.75, but it can be checked by hand
that there is no C4-free graph on seven vertices whose complement is hamiltonian.

If �(Gc)�2 then there are two vertices x, y which separate one vertex, a, from the rest. Set W = V − {a, x, y}.
Because G is C4-free, every vertex of W has in Gc at least n − 5 neighbors in W, while x and y have each at least n − 4
neighbors in W. Hence, by Dirac’s condition, Gc[W ] has a Hamilton cycle which can be extended, by adding x and y,
to a cycle Cn−1. �
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Fig. 1. A graph G and its complement.

We now present our main result. Note that the assumption n�12 is only technical and Theorem 3 should remain
true all the way down to n = 9. This is the case for planar graphs, which we prove later using graph generation
programs. This is partly why we waive our hands at the end of the proof and do not show the details for n = 12 and 13.
Theorem 3 is not true for n = 8—see the graph shown in Fig. 1. It is best possible in the sense that it fails if one would
instead request a copy of Cn−1. Again, K2,n−2 is a counterexample.

Theorem 3. Let G be an arbitrary graph on n�12 vertices, at most
(

n
2

) − n2/4 edges and containing neither K5 nor
K3,3. Then Gc contains Cn−2.

Proof. Let G be a graph fulfilling the assumptions of the theorem. Certainly �(Gc)�4, since otherwise we would have
a K5 in G. If �(Gc)�4 then by Chvátal–Erdős condition the graph Gc is hamiltonian. Moreover, |E(Gc)|�n2/4, and
so Gc is also pancyclic and therefore contains Cn−2. Thus, we may assume that �(Gc)�3. Observe that no vertex cut
in Gc separates two vertex sets with at least three vertices each (there would be a K3,3 in G in that case).

Assume first that �(Gc)�4. Then a certain set S of three vertices would separate two vertices x and y from the
set W = V (G) − S − {x, y} in the complement of G. Since the subgraph Gc[W ] has minimum degree at least
n − 8 (otherwise G would contain a K3,3), by Dirac’s condition it contains a Hamilton cycle. Similarly, each vertex
from S has at least n − 7 neighbors in W, so this cycle can be extended successively to a cycle with the vertex
set W ∪ S.

Assume now that �(Gc)�3. Let us remove one vertex v with d(v) = �(Gc). If �(Gc − v)�4 then �(Gc − v)�4,
otherwise there would be a K3,3 in G. In this case Gc − v is hamiltonian and even pancyclic, since it has at least
n2/4 − 3 > (n − 1)2/4 edges.

Next assume that �(Gc − v)�3. Let us remove one vertex u with d(u) = �(Gc − v). If �(Gc − v − u)�4 and
�(Gc−v−u)�3, then a certain set of three vertices S separates two vertices x and y from the set W =V (G)−S−{x, y}.
We have |W | = n − 7 and, for n�13, the vertices x, y, u form in G, together with some three nonneighbors of v in W
a K3,3—a contradiction. For n = 12, it is straightforward to show that S ∪ W spans K3,5 in Gc (or, again, a K3,3 in G),
and thus one can find a cycle through S ∪ W ∪ {u, v}.

Finally, consider the case �(Gc − v − u)�3. Let us remove one vertex w with d(w) = �(Gc − v − u). Let
W =V (G)−{v, u, w}. Note that all but two vertices from W must be among the neighbors of v, u, or w. Hence, n�14.
For the rest of the proof, we assume that n = 14 and each of v, u, w has degree three in W. Similar, but more tedious
argument in the cases n = 12 and 13 is omitted.

Let Nu, Nv and Nw be the (disjoint) neighborhoods of u, v, w and let x, y be the remaining two vertices. To avoid
K5 and K3,3 in G, one can deduce the existence of several edges in Gc. For instance, there xy ∈ E(Gc), moreover,
there is at least one edge in Gc[Nu], and, for each a ∈ Nu at least one edge to a vertex in Nv and at least one edge to a
vertex in Nw, etc. Altogether, the structure of Gc is so rich and spread out that it is easy to find there a Hamilton cycle,
together with two shortcuts which yield the existence of C12 in Gc. �

For planar graphs things seem to be a bit easier, but the proofs for small values of n remain more cumbersome.
In order not to overwhelm the reader with tedious case by case analysis we turned to the existing graph generating
programs to settle some questions for planar graphs with less than 10 vertices. We summarize them now.
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Fact 1. (i) The complements of all planar graphs on nine vertices contain C5, C6 and C7.
(ii) All planar graphs on eight vertices either contain C5 or their complements contain C6.

Proof. (i) It is enough to verify the statement for all edge maximal planar graphs, that is, for all triangulations on
nine vertices. Using the program PLANTRI by Brinkmann and Mc Kay [13] we indeed have checked that all planar
triangulations on nine vertices contain C5, C6 and C7 in their complements.

(ii) Using the same package as above we have checked all planar graphs on eight vertices. The results of our computer
search can be found at [14]. �

Based on Fact 1 we can now easily prove the following result.

Theorem 4. Let G be a planar graph on n�9 vertices. Then Gc contains Cn−2.

Proof. We use induction on n and reduce the statement to the case n = 9 which is settled by Fact 1(i). If n�14 and
Theorem 4 is true for n − 1, then remove a vertex v of degree at most five in G and apply the induction assumption.
There is a Cn−3 in Gc − v and v has at least n − 1 − 5 − 2 = n − 8 > (n − 3)/2 neighbors on that cycle, yielding an
extension to a Cn−2.

For n= 13 consider two cases. If G contains a vertex v of degree at most four then its degree in the complement is at
least eight. The graph Gc − v contains a C10 by the induction assumption, so, again, v has two consecutive neighbors
on that cycle, yielding a copy of C11.

On the other hand, if �(G)�5 then G has 12 vertices of degree five and one vertex v of degree six. Then Gc − v has
the degree sequence 6 × 7 + 6 × 6 and is hamiltonian by Dirac condition. Moreover, it is pancyclic.

The case n=12 can be dealt with similarly. If there is a vertex of degree at least seven in Gc, we are done. Otherwise,
Gc is 6-regular and is hamiltonian by Dirac condition. Since by planarity of G, Gc �= K6,6, it has to be pancyclic.

If n = 11 then, by planarity, �(G)�4. So there is a vertex v of degree at least six in Gc. There is a C8 in Gc − v by
the induction assumption. If v has two adjacent neighbors on this cycle we have C9 in Gc. Otherwise, v has exactly
four neighbors which are nonadjacent on the cycle. In that case there is at least one edge in Gc joining some two of the
remaining four vertices on the C8, since otherwise there would be a K5 in G. Now we are able to lead a C9 through the
vertices of that C8 and vertex v.

In the last step of our reduction, let G be an arbitrary planar graph on 10 vertices. By planarity �(G)�4. So there
is a vertex v of degree at least five in Gc. There is a C7 in Gc − v by the induction assumption. If v has two adjacent
neighbors on this cycle, we have C8 in Gc. Otherwise, v has exactly three neighbors on it which are nonadjacent on
the cycle. Let a, b, c, d be the remaining vertices of the C7 with cd ∈ E(C7). If there is at least one other edge in
Gc among {a, b, c, d}, then it is easy to find a C8 in Gc on the vertices of the C7 and vertex v. Otherwise, let x and
y be the remaining two vertices lying outside the cycle. Note that x is joined in Gc to at least one of c and d, since in
the opposite case there would be a topological minor of K5 in G. Then we have a C8 in Gc through v, x, c, and the
remaining vertices of C7 except d. �

To satisfy those readers who are sceptical about computer supported proofs, we now provide a relatively short,
theoretical proof that all 8-vertex planar graphs have C4 in their complement. Obviously, it fails to be true for C4
replaced by C3, C5 (take G = 2K4) or C6 (the graph in Fig. 1).

Theorem 5. Let G be a planar graph on eight vertices. Then Gc contains C4.

Proof. Note that it is enough to consider triangulations only. Let G be a planar triangulation on eight vertices, and
thus, with 18 edges and minimum degree �(G)�3. Suppose that C4 /⊂ Gc. Then, for every pair of vertices there is at
most one vertex which is nonadjacent in G to both of them.

Assume first that there is a vertex v of degree three in G. Let W = NG(v) = {w1, w2, w3} and U = V (G) − {v} −
W = {u1, u2, u3, u4}. Since every vertex from W may be nonadjacent in G to at most one vertex in U, there is at least
one vertex in U which is adjacent to all vertices from W. Let u1 be that vertex and U ′ = U − {u1}. By planarity of G
there is at least one edge missing between each vertex of U ′ and W. On the other hand, each vertex from W is adjacent
to at least two vertices from U ′, and thus G[W ∪ U ′] = K3,3 − 3K2. Without loss of generality, we may assume that
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wiui+1 /∈ E(G), i = 1, 2, 3. Observe that G[{u1, u2, u3}] must contain an edge, since otherwise the vertices v, u1, u2,
u3 would form a C4 in Gc. Thus, G contains a topological minor of K3,3—a contradiction.

If �(G)�4 then �(Gc)�3. The graph Gc has precisely 10 edges, so there are at least four vertices of degree three
in Gc, and at least two of them must be adjacent in Gc. Let x and y be those vertices. If they have no common neighbor
in Gc, then it is easy to see that there is a topological minor of K3,3 in G.

Hence, consider the case when x and y have exactly one common neighbor z in Gc. Let x′ and y′ be, respectively,
the remaining neighbors of x and y in Gc, and let V (G)\{x, y, z, x′, y′}= {a, b, c}. Clearly, x, y and a, b, c form a copy
of K2,3 in G. Moreover, since �(Gc)�3 and there is no K3,3 in G, there is exactly one edge between z and a, b, c in
Gc. Let az be that edge. Then ax′ ∈ E(G) and we have a topological minor of K3,3 in G— a contradiction. �

3. Planar Ramsey numbers for cycles

Given two graphs, G and H, call a graph Ramsey if it has R(G, H) − 1 vertices, contains no copy of G and its
complement contains no copy of H. Trivially,

PR(G, H)�R(G, H),

and the two numbers coincide if at least one Ramsey graph is planar. Since this is often the case for pairs of cycles, it
is crucial for us to know the values of R(Cm, Cn). Fortunately, the Ramsey numbers for cycles have been determined
already long time ago [6,9,10]: the numbers are provided by the following formula which depends strongly on the
parity of the parameters:

R(Cm, Cn) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6 for m = n ∈ {3, 4},
2n − 1 for m odd and (m, n) �= (3, 3),

max
{
n + m

2
, 2m

}
− 1 for m even and n odd,

n + m

2
− 1 otherwise.

Using the results from the previous section, the above formulas and some known facts about planar graphs, we are
now in position to determine all planar Ramsey numbers for cycles.

Theorem 6. The planar Ramsey numbers PR(Cm, Cn) are as shown in Table 1.

Proof. The lower bounds follow by considering the Ramsey graphs listed in Table 2 (Fig. 2) and noticing that
they are all planar. For the upper bounds we argue as follows. The cases we consider correspond to respective

Table 1
The planar Ramsey numbers for cycles
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Table 2
Planar graphs with no Cm and no Cn in the complement

H (H K1)c⊃

Fig. 2. A graph H and a complement of K1 ∪ H .

zones in Table 1.

(a) For m = 3 and n�5 we have PR(C3, Cn)�n + 2 by Theorem 1.
(b) For m = 4 and n�6 we have PR(C4, Cn)�R(C4, Cn) = n + 1.
(c) For m�5 and n�7 we have PR(Cm, Cn)�n + 2 by Theorem 4.
(d) For m�5 and n = 3, by the Four Color Theorem and the Pigeon-hole Principle, the complement of every planar

graph on nine vertices contains a triangle.
(e) For m�7 and n = 4 we have PR(Cm, C4)�8 by Theorem 2.
(f) For m�5 and n = 5 we have PR(Cm, C5)�9 by Fact 1(i).
(g) For m�5 and n = 6 we have PR(Cm, C6)�9 by Fact 1(i).

Now consider the nine remaining numbers not covered by the cases a–g. For (m, n) = (3, 3), (3, 4), (4, 3), (4, 4),

(4, 5), (5, 4), (6, 4), (6, 6) the upper bounds on PR(Cm, Cn) follow from the inequality PR(Cm, Cn)�R(Cm, Cn).
Finally, PR(C5, C6)�8 by Fact 1(ii). �

4. Remarks

Remark 1. Some theorems presented in Table 1 can be formulated more generally with the first cycle replaced by a
graph not contained in a planar Ramsey graph for this number. For example, for all m�5 and n�10 (zone (c)), and for
every graph G containing Cm, we also have PR(G, Cn) = n + 2, simply because K2,n−1 remains to serve as a Ramsey
graph in this case. As another example, take an arbitrary graph G not contained in the union of two copies of K4. Then
we still have PR(G, C3) = PR(G, C5) = 9 for the same reason as above.

Remark 2. As we mentioned in the Introduction, there is, in general, no symmetry in the numbers PR(G, H). However,
for several pairs of integers m < n we do have PR(Cm, Cn) = PR(Cn, Cm) (namely, for (3, 4), (3, 7), (4, 5), (4, 6),
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(4, 7), (5, 7), (6, 7)). Does it happen by coincidence, or all these cases are somehow related? For what other pairs of
graphs G, H , we have PR(G, H) = PR(H, G)?

Remark 3. As we have seen from Theorem 6, quite often the planar Ramsey numbers coincide with the classic Ramsey
numbers, including the infinite sequence of numbers PR(C4, Cn) = R(C4, Cn) = n + 1 for all n�6. What do these
cases have in common? Can we determine all pairs of graphs G, H for which PR(G, H) = R(G, H)?

Note Added in Proof

For more results on planar Ramsey numbers see also: A. Dudek, A. Rucinski, Planar Ramsey Numbers for Small
Graphs, Congr. Numer. 176 (2005) 201–220.
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