66 research outputs found

    Planar Prior Assisted PatchMatch Multi-View Stereo

    Full text link
    The completeness of 3D models is still a challenging problem in multi-view stereo (MVS) due to the unreliable photometric consistency in low-textured areas. Since low-textured areas usually exhibit strong planarity, planar models are advantageous to the depth estimation of low-textured areas. On the other hand, PatchMatch multi-view stereo is very efficient for its sampling and propagation scheme. By taking advantage of planar models and PatchMatch multi-view stereo, we propose a planar prior assisted PatchMatch multi-view stereo framework in this paper. In detail, we utilize a probabilistic graphical model to embed planar models into PatchMatch multi-view stereo and contribute a novel multi-view aggregated matching cost. This novel cost takes both photometric consistency and planar compatibility into consideration, making it suited for the depth estimation of both non-planar and planar regions. Experimental results demonstrate that our method can efficiently recover the depth information of extremely low-textured areas, thus obtaining high complete 3D models and achieving state-of-the-art performance.Comment: Accepted by AAAI-202

    MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo

    Full text link
    Significant strides have been made in enhancing the accuracy of Multi-View Stereo (MVS)-based 3D reconstruction. However, untextured areas with unstable photometric consistency often remain incompletely reconstructed. In this paper, we propose a resilient and effective multi-view stereo approach (MP-MVS). We design a multi-scale windows PatchMatch (mPM) to obtain reliable depth of untextured areas. In contrast with other multi-scale approaches, which is faster and can be easily extended to PatchMatch-based MVS approaches. Subsequently, we improve the existing checkerboard sampling schemes by limiting our sampling to distant regions, which can effectively improve the efficiency of spatial propagation while mitigating outlier generation. Finally, we introduce and improve planar prior assisted PatchMatch of ACMP. Instead of relying on photometric consistency, we utilize geometric consistency information between multi-views to select reliable triangulated vertices. This strategy can obtain a more accurate planar prior model to rectify photometric consistency measurements. Our approach has been tested on the ETH3D High-res multi-view benchmark with several state-of-the-art approaches. The results demonstrate that our approach can reach the state-of-the-art. The associated codes will be accessible at https://github.com/RongxuanTan/MP-MVS

    Semantically Derived Geometric Constraints for {MVS} Reconstruction of Textureless Areas

    Get PDF
    Conventional multi-view stereo (MVS) approaches based on photo-consistency measures are generally robust, yet often fail in calculating valid depth pixel estimates in low textured areas of the scene. In this study, a novel approach is proposed to tackle this challenge by leveraging semantic priors into a PatchMatch-based MVS in order to increase confidence and support depth and normal map estimation. Semantic class labels on image pixels are used to impose class-specific geometric constraints during multiview stereo, optimising the depth estimation on weakly supported, textureless areas, commonly present in urban scenarios of building facades, indoor scenes, or aerial datasets. Detecting dominant shapes, e.g., planes, with RANSAC, an adjusted cost function is introduced that combines and weighs both photometric and semantic scores propagating, thus, more accurate depth estimates. Being adaptive, it fills in apparent information gaps and smoothing local roughness in problematic regions while at the same time preserves important details. Experiments on benchmark and custom datasets demonstrate the effectiveness of the presented approach

    Polarimetric PatchMatch Multi-View Stereo

    Full text link
    PatchMatch Multi-View Stereo (PatchMatch MVS) is one of the popular MVS approaches, owing to its balanced accuracy and efficiency. In this paper, we propose Polarimetric PatchMatch multi-view Stereo (PolarPMS), which is the first method exploiting polarization cues to PatchMatch MVS. The key of PatchMatch MVS is to generate depth and normal hypotheses, which form local 3D planes and slanted stereo matching windows, and efficiently search for the best hypothesis based on the consistency among multi-view images. In addition to standard photometric consistency, our PolarPMS evaluates polarimetric consistency to assess the validness of a depth and normal hypothesis, motivated by the physical property that the polarimetric information is related to the object's surface normal. Experimental results demonstrate that our PolarPMS can improve the accuracy and the completeness of reconstructed 3D models, especially for texture-less surfaces, compared with state-of-the-art PatchMatch MVS methods

    DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction

    Full text link
    Deep Neural Networks (DNNs) have the potential to improve the quality of image-based 3D reconstructions. However, the use of DNNs in the context of 3D reconstruction from large and high-resolution image datasets is still an open challenge, due to memory and computational constraints. We propose a pipeline which takes advantage of DNNs to improve the quality of 3D reconstructions while being able to handle large and high-resolution datasets. In particular, we propose a confidence prediction network explicitly tailored for Multi-View Stereo (MVS) and we use it for both depth map outlier filtering and depth map refinement within our pipeline, in order to improve the quality of the final 3D reconstructions. We train our confidence prediction network on (semi-)dense ground truth depth maps from publicly available real world MVS datasets. With extensive experiments on popular benchmarks, we show that our overall pipeline can produce state-of-the-art 3D reconstructions, both qualitatively and quantitatively.Comment: changes in V3: re-worked confidence prediction scheme, re-organized text, updated experiments; changes in V2: a reference was update

    Visibility-Aware Pixelwise View Selection for Multi-View Stereo Matching

    Full text link
    The performance of PatchMatch-based multi-view stereo algorithms depends heavily on the source views selected for computing matching costs. Instead of modeling the visibility of different views, most existing approaches handle occlusions in an ad-hoc manner. To address this issue, we propose a novel visibility-guided pixelwise view selection scheme in this paper. It progressively refines the set of source views to be used for each pixel in the reference view based on visibility information provided by already validated solutions. In addition, the Artificial Multi-Bee Colony (AMBC) algorithm is employed to search for optimal solutions for different pixels in parallel. Inter-colony communication is performed both within the same image and among different images. Fitness rewards are added to validated and propagated solutions, effectively enforcing the smoothness of neighboring pixels and allowing better handling of textureless areas. Experimental results on the DTU dataset show our method achieves state-of-the-art performance among non-learning-based methods and retrieves more details in occluded and low-textured regions.Comment: 8 page

    PatchMatch Belief Propagation for Correspondence Field Estimation and its Applications

    Get PDF
    Correspondence fields estimation is an important process that lies at the core of many different applications. Is it often seen as an energy minimisation problem, which is usually decomposed into the combined minimisation of two energy terms. The first is the unary energy, or data term, which reflects how well the solution agrees with the data. The second is the pairwise energy, or smoothness term, and ensures that the solution displays a certain level of smoothness, which is crucial for many applications. This thesis explores the possibility of combining two well-established algorithms for correspondence field estimation, PatchMatch and Belief Propagation, in order to benefit from the strengths of both and overcome some of their weaknesses. Belief Propagation is a common algorithm that can be used to optimise energies comprising both unary and pairwise terms. It is however computational expensive and thus not adapted to continuous spaces which are often needed in imaging applications. On the other hand, PatchMatch is a simple, yet very efficient method for optimising the unary energy of such problems on continuous and high dimensional spaces. The algorithm has two main components: the update of the solution space by sampling and the use of the spatial neighbourhood to propagate samples. We show how these components are related to the components of a specific form of Belief Propagation, called Particle Belief Propagation (PBP). PatchMatch however suffers from the lack of an explicit smoothness term. We show that unifying the two approaches yields a new algorithm, PMBP, which has improved performance compared to PatchMatch and is orders of magnitude faster than PBP. We apply our new optimiser to two different applications: stereo matching and optical flow. We validate the benefits of PMBP through series of experiments and show that we consistently obtain lower errors than both PatchMatch and Belief Propagation
    • …
    corecore