50 research outputs found

    Stack-number is not bounded by queue-number

    Full text link
    We describe a family of graphs with queue-number at most 4 but unbounded stack-number. This resolves open problems of Heath, Leighton and Rosenberg (1992) and Blankenship and Oporowski (1999)

    Stack and Queue Layouts via Layered Separators

    Full text link
    It is known that every proper minor-closed class of graphs has bounded stack-number (a.k.a. book thickness and page number). While this includes notable graph families such as planar graphs and graphs of bounded genus, many other graph families are not closed under taking minors. For fixed gg and kk, we show that every nn-vertex graph that can be embedded on a surface of genus gg with at most kk crossings per edge has stack-number O(logn)\mathcal{O}(\log n); this includes kk-planar graphs. The previously best known bound for the stack-number of these families was O(n)\mathcal{O}(\sqrt{n}), except in the case of 11-planar graphs. Analogous results are proved for map graphs that can be embedded on a surface of fixed genus. None of these families is closed under taking minors. The main ingredient in the proof of these results is a construction proving that nn-vertex graphs that admit constant layered separators have O(logn)\mathcal{O}(\log n) stack-number.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Mixed Linear Layouts of Planar Graphs

    Full text link
    A kk-stack (respectively, kk-queue) layout of a graph consists of a total order of the vertices, and a partition of the edges into kk sets of non-crossing (non-nested) edges with respect to the vertex ordering. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 11-stack 11-queue layout in which every edge is assigned to a stack or to a queue that use a common vertex ordering. We disprove this conjecture by providing a planar graph that does not have such a mixed layout. In addition, we study mixed layouts of graph subdivisions, and show that every planar graph has a mixed subdivision with one division vertex per edge.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Clustered 3-Colouring Graphs of Bounded Degree

    Full text link
    A (not necessarily proper) vertex colouring of a graph has "clustering" cc if every monochromatic component has at most cc vertices. We prove that planar graphs with maximum degree Δ\Delta are 3-colourable with clustering O(Δ2)O(\Delta^2). The previous best bound was O(Δ37)O(\Delta^{37}). This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree Δ\Delta that exclude a fixed minor are 3-colourable with clustering O(Δ5)O(\Delta^5). The best previous bound for this result was exponential in Δ\Delta.Comment: arXiv admin note: text overlap with arXiv:1904.0479

    Graph product structure for non-minor-closed classes

    Full text link
    Dujmovi\'c et al. (FOCS 2019) recently proved that every planar graph is a subgraph of the strong product of a graph of bounded treewidth and a path. Analogous results were obtained for graphs of bounded Euler genus or apex-minor-free graphs. These tools have been used to solve longstanding problems on queue layouts, non-repetitive colouring, pp-centered colouring, and adjacency labelling. This paper proves analogous product structure theorems for various non-minor-closed classes. One noteable example is kk-planar graphs (those with a drawing in the plane in which each edge is involved in at most kk crossings). We prove that every kk-planar graph is a subgraph of the strong product of a graph of treewidth O(k5)O(k^5) and a path. This is the first result of this type for a non-minor-closed class of graphs. It implies, amongst other results, that kk-planar graphs have non-repetitive chromatic number upper-bounded by a function of kk. All these results generalise for drawings of graphs on arbitrary surfaces. In fact, we work in a much more general setting based on so-called shortcut systems that are of independent interest. This leads to analogous results for map graphs, string graphs, graph powers, and nearest neighbour graphs.Comment: v2 Cosmetic improvements and a corrected bound for (layered-)(tree)width in Theorems 2, 9, 11, and Corollaries 1, 3, 4, 6, 12. v3 Complete restructur

    The Queue-Number of Posets of Bounded Width or Height

    Full text link
    Heath and Pemmaraju conjectured that the queue-number of a poset is bounded by its width and if the poset is planar then also by its height. We show that there are planar posets whose queue-number is larger than their height, refuting the second conjecture. On the other hand, we show that any poset of width 22 has queue-number at most 22, thus confirming the first conjecture in the first non-trivial case. Moreover, we improve the previously best known bounds and show that planar posets of width ww have queue-number at most 3w23w-2 while any planar poset with 00 and 11 has queue-number at most its width.Comment: 14 pages, 10 figures, Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018
    corecore