36,910 research outputs found

    Monotone Grid Drawings of Planar Graphs

    Full text link
    A monotone drawing of a planar graph GG is a planar straight-line drawing of GG where a monotone path exists between every pair of vertices of GG in some direction. Recently monotone drawings of planar graphs have been proposed as a new standard for visualizing graphs. A monotone drawing of a planar graph is a monotone grid drawing if every vertex in the drawing is drawn on a grid point. In this paper we study monotone grid drawings of planar graphs in a variable embedding setting. We show that every connected planar graph of nn vertices has a monotone grid drawing on a grid of size O(n)×O(n2)O(n)\times O(n^2), and such a drawing can be found in O(n) time

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Straight-line Drawability of a Planar Graph Plus an Edge

    Full text link
    We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing

    Planar L-Drawings of Directed Graphs

    Full text link
    We study planar drawings of directed graphs in the L-drawing standard. We provide necessary conditions for the existence of these drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem. Motivated by this result, we focus on upward-planar L-drawings. We show that directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing are exactly those admitting a bitonic (resp. monotonically increasing) st-ordering. We give a linear-time algorithm that computes a bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Drawings of Planar Graphs with Few Slopes and Segments

    Get PDF
    We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on nn vertices has a plane drawing with at most 5/2n{5/2}n segments and at most 2n2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). In a companion paper, drawings of non-planar graphs with few slopes are also considered.Comment: This paper is submitted to a journal. A preliminary version appeared as "Really Straight Graph Drawings" in the Graph Drawing 2004 conference. See http://arxiv.org/math/0606446 for a companion pape

    Drawing Planar Graphs with a Prescribed Inner Face

    Full text link
    Given a plane graph GG (i.e., a planar graph with a fixed planar embedding) and a simple cycle CC in GG whose vertices are mapped to a convex polygon, we consider the question whether this drawing can be extended to a planar straight-line drawing of GG. We characterize when this is possible in terms of simple necessary conditions, which we prove to be sufficient. This also leads to a linear-time testing algorithm. If a drawing extension exists, it can be computed in the same running time
    corecore