4,605 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    Dynamic, Latency-Optimal vNF Placement at the Network Edge

    Get PDF
    Future networks are expected to support low-latency, context-aware and user-specific services in a highly flexible and efficient manner. One approach to support emerging use cases such as, e.g., virtual reality and in-network image processing is to introduce virtualized network functions (vNF)s at the edge of the network, placed in close proximity to the end users to reduce end-to-end latency, time-to-response, and unnecessary utilisation in the core network. While placement of vNFs has been studied before, it has so far mostly focused on reducing the utilisation of server resources (i.e., minimising the number of servers required in the network to run a specific set of vNFs), and not taking network conditions into consideration such as, e.g., end-to-end latency, the constantly changing network dynamics, or user mobility patterns. In this paper, we formulate the Edge vNF placement problem to allocate vNFs to a distributed edge infrastructure, minimising end-to-end latency from all users to their associated vNFs. We present a way to dynamically re-schedule the optimal placement of vNFs based on temporal network-wide latency fluctuations using optimal stopping theory. We then evaluate our dynamic scheduler over a simulated nation-wide backbone network using real-world ISP latency characteristics. We show that our proposed dynamic placement scheduler minimises vNF migrations compared to other schedulers (e.g., periodic and always-on scheduling of a new placement), and offers Quality of Service guarantees by not exceeding a maximum number of latency violations that can be tolerated by certain applications

    Semantic validation of affinity constrained service function chain requests

    Get PDF
    Network Function Virtualization (NFV) has been proposed as a paradigm to increase the cost-efficiency, flexibility and innovation in network service provisioning. By leveraging IT virtualization techniques in combination with programmable networks, NFV is able to decouple network functionality from the physical devices on which they are deployed. This opens up new business opportunities for both Infrastructure Providers (InPs) as well as Service Providers (SPs), where the SP can request to deploy a chain of Virtual Network Functions (VNFs) on top of which its service can run. However, current NFV approaches lack the possibility for SPs to define location requirements and constraints on the mapping of virtual functions and paths onto physical hosts and links. Nevertheless, many scenarios can be envisioned in which the SP would like to attach placement constraints for efficiency, resilience, legislative, privacy and economic reasons. Therefore, we propose a set of affinity and anti-affinity constraints, which can be used by SPs to define such placement restrictions. This newfound ability to add constraints to Service Function Chain (SFC) requests also introduces an additional risk that SFCs with conflicting constraints are requested or automatically generated. Therefore, a framework is proposed that allows the InP to check the validity of a set of constraints and provide feedback to the SP. To achieve this, the SFC request and relevant information on the physical topology are modeled as an ontology of which the consistency can be checked using a semantic reasoner. Enabling semantic validation of SFC requests, eliminates inconsistent SFCs requests from being transferred to the embedding algorithm.Peer Reviewe
    • …
    corecore