B Universit
of Glasgovz

Cziva, R., Anagnostopoulos, C. and Pezaros, D. P. (2018) Dynamic,
Latency-Optimal vNF Placement at the Network Edge. In: IEEE
Conference on Computer Communications (INFOCOM 2018), Honolulu,
HI, USA, 15-19 Apr 2018, pp. 693-701. ISBN 9781538641286
(doi:10.1109/INFOCOM.2018.8486021)

This is the author’s final accepted version.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/153654/

Deposited on: 09 January 2018

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/INFOCOM.2018.8486021
http://eprints.gla.ac.uk/153654/
http://eprints.gla.ac.uk/153654/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Dynamic, Latency-Optimal vNF Placement
at the Network Edge

Richard Cziva, Christos Anagnostopoulos and Dimitrios P. Pezaros
School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland
r.cziva.l @research.gla.ac.uk, christos.anagnostopoulos @glasgow.ac.uk, dimitrios.pezaros @ glasgow.ac.uk

Abstract—Future networks are expected to support low-
latency, context-aware and user-specific services in a highly
flexible and efficient manner. One approach to support emerging
use cases such as, e.g., virtual reality and in-network image
processing is to introduce virtualized network functions (vNF)s
at the edge of the network, placed in close proximity to the
end users to reduce end-to-end latency, time-to-response, and
unnecessary utilisation of the core network. While placement of
vNFs has been studied before, it has so far mostly focused on
reducing the utilisation of server resources (i.e., minimising the
number of servers required in the network to run a specific set
of vNFs), and not taking network conditions into consideration
such as, e.g., end-to-end latency, the constantly changing network
dynamics, and user mobility patterns.

In this paper, we first formulate the Edge vNF placement
problem to allocate vNFs to a distributed edge infrastructure,
minimising end-to-end latency from all users to their associated
vNFs. Furthermore, we present a way to dynamically re-schedule
the optimal placement of vNFs based on temporal network-wide
latency fluctuations using optimal stopping theory. We evaluate
our dynamic scheduler over a simulated nation-wide backbone
network using real-world ISP latency characteristics. We show
that our proposed dynamic placement scheduler minimises vINF
migrations compared to other schedulers (e.g., periodic and
always-on scheduling of a new placement), and offers Quality
of Service guarantees by not exceeding a maximum number of
latency violations that can be tolerated by certain applications.

Keywords—Network Function Virtualization, Latency, Edge
Network, Resource Orchestration, Optimal Stopping Theory

I. INTRODUCTION

The penetration of Content Delivery Networks (CDN)
in recent years has demonstrated the benefits of deploying
application-aware intelligence in the network. Continuing in
this direction and building on Software-Defined Networking
(SDN), future telecommunication networks are now expected
to support low-latency, context-aware and user-specific ser-
vices (also called “value-added” services) carrying large vol-
umes of traffic while being managed in a highly flexible
and efficient manner [1]. Example applications include high-
definition low-latency video encoders and content caches, web
and P2P index engines, personalised firewalls and security
functions, and tactile Internet and virtual or augmented reality
applications that demand fast and low-latency in-network data
processing.

One approach to support these emerging use cases of
the future Internet is to introduce and manage virtualized
network services (also called virtual Network Functions or
vNFs) not only at the provider’s internal Network Function
Virtualization (NFV) infrastructure, but also at the distributed

implementing VNF placement and

Dynamic vNF orchestrator, ---- Network statistics collector
placement scheduling strategies
88

. Retrieves network statistics
!\ (eg., latency measurements,
— ~——_topology information)

Manages the X =] VNF4
placement of all VNFs ",

Provider's Iriternal
NFV infragtructure *~}._

' WNF3

= /
= /
\ VvNF2 /
o N \\ Y w 5G base s\‘atigr} /
low VI -to-user N .) N
E2E latency - ~>-Home Router EfiHEiEs e
AT T Ecjge Server _— \
User at home User at work User on train

(WiFi connection) (WiFi connection) (mobile connection)

Fig. 1: A high-level architecture of the system; the dynamic
orchestrator manages the placement of all vNFs and continu-
ously monitors the dynamics of network properties.

Multi-Access Edge Computing (MEC) infrastructure of the
network [2] [3]. Edge computing devices can include home
routers managed by the ISP of the user, IoT or enterprise
gateways that connect many users to the Internet, as well
as next generation base stations equipped with storage and
computing capabilities, as shown in Figure 1. In order to
run services at the network edge, one can use virtualization
technologies such as Virtual Machines or more preferably
lightweight Linux containers (e.g., LXC or Docker) that allow
vNFs to be placed even on low-cost devices (e.g., home
routers), as presented in [4]. However, while placing vNFs
near end-users radically reduces vNF-to-user end-to-end (E2E)
latency (the latency experienced between an end-user and the
associated VNF), time-to-response, and unnecessary utilisation
of the core network, the location of edge vNFs has to be
carefully managed to accommodate movements of end-users
(that are expected to happen constantly due to the small cell
sizes of next generation mobile architecture (5G)) and also
to keep up with varying traffic dynamics that cause highly
variable latency across network links [5] [6].

Orchestration and placement of vNFs has been one of the
main NFV research challenges due to the complexity of service
chains and the dynamics of the emerging traffic patterns. While
many research projects have proposed solutions for static vNF
placement (e.g., [7], [8]), to the best of our knowledge,
placement of vNFs in a distributed edge NFV infrastructure
has not been studied before. Furthermore, most NFV resource
orchestration schemes calculate placement only for a specific
service chain using a static network condition (topology and

traffic) and do not re-compute placement to migrate VNFs
when these temporal network properties change. The lack of
dynamic orchestration and re-calculation of VNF placement
often results in “latency violations” for users, where vNF-
to-user E2E latency exceeds a desired value (e.g., latency
violation is when a video cache VNF has an upper bound
of 100 ms for vNF-to-user E2E latency, but due to network
congestion the actual vNF-to-user E2E latency increases to
130 ms for a period of time). On the other hand, the number
of VNF migrations triggered by re-optimising the placement
of vNFs has to be minimised since vNF migrations cause
temporal service interruption and high network overhead while
transferring their state across physical hosting devices [9].

Contribution & Research Outcome: In this paper, we
advocate that Edge vNF's need to be dynamically placed in syn-
ergy with changing network dynamics (e.g., latency fluctuating
on links), user demands (e.g., certain vNFs are used in certain
times of the day) and mobility (e.g., users move continuously
with the mobile devices) to support low vNF-to-user E2E
latency. Our main contributions are: (i) we formulate and solve
“Edge vNF placement”, a realistic vNF placement problem;
(i) we provide a time-optimised scheduler that strives to
achieve latency-optimal allocation of vNFs in next-generation
Edge networks using the fundamentals of optimal stopping
theory [10]; and (iii) we provide the mathematical analyses
and theorems for the considered dynamic re-calculation of
the optimal VNF placement. We show that by re-calculating
the optimal placement and migrating vNFs at a carefully
selected time, unnecessary VNF migrations can be prevented
(saving resources for the operators), while the number of
latency violations in the network is always bound. We present
experimental results using a simulated nation-wide network
based on real-world latency characteristics and vNF latency
requirements.

The remainder of this paper is structured as follows. We
formulate the basic placement model in Section II and intro-
duce the dynamic scheduling in Section III. In Section IV, we
evaluate our proposed placement and our dynamic scheduler
using various experiments comparing number of migrations
performed and latency violations encountered by diverse place-
ment scheduling schemes. Section V discusses related work,
and Section VI concludes the paper.

II. OPTIMAL EDGE VNF PLACEMENT

In this section, we introduce and formalise the Edge
vNF placement problem as an Integer Linear Program (ILP)
to calculate the latency-optimal allocation of VNFs in next-
generation edge networks.

A. Rationale

With recent advances of virtualization and NFV, vNFs
can be hosted on any physical server, for instance an edge
device close to the user or in a distant cloud [11] [3] [12].
In order to provide the best possible vINF-to-user E2E latency,
the operators are aiming to place VNFs in close proximity to
their users, by first utilising edge devices that are close to
the user and falling back to hosting vNFs in the provider’s
internal cloud when edge devices are out of capacity. We

Network parameters Description

G = (H,E,U) Graph of the physical network.
H = {hi,h2,hj,...,hg} Compute hosts (e.g., edge devices) within the
network.
E={ei1,e2,em,....€E} All physical links in the network.
U= {u1,u2,%o,...,uu} All users associated with network functions.
P = {p1,p2,Pk,---,pp} All paths in the network.
W; Hardware capacity {cpu, memory,io} of the
hosts h; € H.
Cm Capacity of the link e,, € E.
Am Latency on the link e,, € E.
Zy Last host in path p;, € P.
vNF parameters Description
N = {n7,n3,n?,..., n%} Network functions to allocate, where the VNF
ny € N is associated to user u, € U.
R; VvNF’s host requirements {cpu, memory,io}
of WWF n; € N.
0; The maximum latency VNF n; € N tolerates
from its user.
Derived parameters Description
bijk Bandwidth required between the user and the vNF

n; in case it is hosted at h; using the path py.
Derived from the physical topology and the vNF
requests.

Lijk Latency between the user of the VNF n; in case
it is hosted at h; and uses the path py. Derived
from the physical topology and the vNF requests.

Variables Description

Xijk Binary decision variable denoting if n; is hosted
at h; using the path py or not.

TABLE I: Table of parameters for our System model.

also accommodate different bandwidth requirements of various
types of vNFs.

B. System Model

Table I shows all the parameters used for the formulation.
We represent the physical network as an undirected graph
G = (H,E,U), where H, E and U denote the set of hosts, the
links between them, and the users in the topology, respectively.
We assume that vNFs can be placed to any host in this
graph, meaning that all physical hosts have cpu, memory,io
capabilities to host vINFs. Also, we assume that all links have a
physical limit on their bandwidth (e.g., 1 Gbit/s or 100 Mbit/s)
that is taken into account for the placement.

As there are different types of vNFs (e.g., lightweight
firewalls or resource-intensive Deep Packet Inspection mod-
ules), we introduce cpu, memory,io requirements for each
n;. On top of the compute requirements, all vINFs have delay
requirements according to the service provider’s Service Level
Agreements (SLA) that are denoted with 6;. Similarly, all vINFs
specify bandwidth reservations required along the path from
their user (since some vNFs are used heavily by the users,
some are not). These bandwidth requirements are materialised
using the derived parameter b;; that denotes the bandwidth
required along the path p;, in case VNF n{ (vNF associated to
user 1,) is hosted at h;. Another important derived parameter
of the model, /;;, denotes the latency from a user to a vNF in
case n¢ VNF is hosted at a certain host (h;) while its traffic is
routed using a certain path py. I, is calculated by summing
all A, individual latency values of each link along the path
pr. from user u, (user of VNF nf) to the vINF hosted at host

h;. Finally, let X;;; be our main binary decision variable for
the model, that is:

1
Xijr = {0

C. Problem Formulation for Optimal Placement

if we allocate n{ to h; using path py
otherwise

)]

The Edge vNF placement problem is defined as follows:

Problem 1. Given the set of users U, the set of vNF hosts H,
the set of individual vNFs N, and a latency matrix l, we need
to find an appropriate allocation of all vNFs that minimises
the total expected end-to-end latency from all users to their
respective vNFs:

prLEPN2EN h;€H

Eq. 2 looks for the values of Xj;;, while it is subject to
the following constraints:

Z"QEN Zmeﬂ” XijrRy <Wj,Vh; € H (3)

Zh,eﬂ-ﬂ Zme@ Xijelije < 0;,¥ny € N @)
J .

Zh'EH—H Xijk =1,Vng e N,Vp, € P 5)

ZMH Xijkbiji < Con,Vem € pi,¥p €P (6)
Xijk = 0,77/? 7& Zk,an eN, Vpk eP, Vh; e H @)

Constraint (3) ensures that the hardware limitations of hosts
are adhered to (since CPU, memory, and IO resources are
finite, we can only host a certain number of vNFs at particular
hosts). Constraint (4) ensures that the maximum vNF-to-user
E2E latency tolerance (#;) is never exceeded at placement.
Constraint (5) states that each vNF must be allocated to exactly
one of the hosts (for instance to a nearby edge device or the
Cloud), while constraint (6) takes bandwidth requirements of
vNFs (b;jk) and link capacities (linkcap(m)) along a path,
and ensures that none of the physical links along the path
get overloaded. Finally, constraint (7) ensures that the selected
user-to-vNF path is valid, meaning that it ends with the host
of the vNF.

III. DYNAMIC PLACEMENT SCHEDULING

In this Section, we present a way to schedule the re-
computation of the placement presented in Section II to fit
a real-world scenario, where the E2E user-to-vNF latency
changes over time due to events such as congestion on any
of the links in the path or user mobility resulting in a longer
path between the user and the vNF [13].

A. Rationale

After a VNF placement is retrieved by implementing and
running the ILP model presented in (Section II), the binary
decision variables X ;i = ;) are instantiated to the values 0
or 1, such that the objective latency function F({x;jk, lijx })
is minimised w.r.t. latency values [;;z. Let us denote this
instantiation Zy. Now, we have to consider a dynamic envi-
ronment where the latency matrix /;;;, between vNF i located
at host j using path k varies with time due to, e.g., temporal
load variation at the vNF hosting platform, the position (i.e.,
physical distance) of the user from the vNF, temporal network
utilisation, etc. This implies that l,fjk varies with time ¢, and
hence the overall latency F; = Zm’k zijklf.jk varies with
time given an initial vNF placement Z,. This time dependency
evidently results to changes in the objective function F which
indicates that, at some time instance t, the placement Z;
may not minimize F;. In this case, one should re-evaluate
the minimisation problem (Section II) with up-to-date latency
values, hence obtaining a new vNF placement 7, at every time
instance.

Based on a new VNF placement, vNFs might be needed
to migrate from one host to another in order for the new
placement Z; to minimise the objective function (overall
minimum latency) F;. This migration cost due to different
placement configurations is non-negligible. Specifically, given
placements Z; and Z, at time instances ¢t and 7 with 7 > {,
respectively, that both minimise the expected latencies F; and
F., respectively, the migration cost M;_,, is defined as:

Moy = Il 2]), (8)

ijk

with I(z,2’) = 0 if x = 2/, and 1 otherwise. We encounter
the problem to determine when a new optimal VNF place-
ment needs to be evaluated to avoid possibly redundant re-
computation and additional cost for vNF migration from one
host to another. The trade-off here is that, at time instance 7 >
t, we can tolerate some deviation from the optimal (minimum)
latency computed at time instance ¢ to void a new optimal
placement at 7 along with a possible migration cost M;_,,
with expected migration cost E[M;] = nhP(z};, = a];),
where n is the number of users and h is the number of hosts. To
materialise this tolerance, we assume that a vNF ¢ can tolerate
some latency increase, up to its ;. As a real-world example, a
strictly real-time packet processing vNF can have a maximum
of 10 ms latency tolerance [14]. That is, we define as VNF
latency tolerance violation at time t as the indicator:

1 if I, >0
Lt, = ijk ¢ 9
ik {O otherwise ©)

Since each VNF is only using one path and is allocated to one
server, a single vNF’s tolerance can be defined as:

Li=) > Li (10)
ik
while, at time ¢, the violation tolerance for all vNFs is then:

Li=> L an

We are monitoring the evolution of the overall violation toler-
ance L; with time in order to determine when to re-evaluate the
optimisation placement problem in light of minimising the cost
of migration. In the remainder, we employ Optimal Stopping
Theory principles to formalise this dynamic decision making
problem.

B. Problem Formulation for Dynamic Placement Scheduling

Let us accumulate the user’s violations in terms of latency
tolerance from time instance ¢ = 0, where we obtained the
optimal placements of all the vNF by minimising F, up to the
current time instance ¢, i.e., we obtain the following cumulative
sum of overall violations up to ¢:

t
vi= 3 L. (12)
k=0

Given the initial optimal placement Z,, latency tolerance 6;
per VNF i, and expected migration cost E[M,] independent
of time, we require that the maximum latency toleration of the
system users should not exceed a tolerance threshold © > 0.
That is, at any time instance ¢, if Y; < © then we do not
enforce a re-evaluation of the vINFs placement, hence avoid
incurring any possible VNF migration cost Mg_;. If Y; >
O, then we should re-compute a new optimal placement and
incur an expected migration cost E[M_,;]. We allow © to
be carefully set and adjusted by operators to reflect a specific
QoS level and control the rate of latency violations allowed.
We can also extend the model to implement various QoS levels
by setting up different values of © for diverse sets of users
(e.g., subscribers paying for a premium vNF service have a
lower O than other flat-charged customers).

The challenge is to find the (optimal stopping) time in-
stance t* for deriving an optimal placement for the vNFs,
such that Y; be as close to the system’s maximum tolerance
© as possible. This © can then reflect the Quality of Service
offerings of the network provider. If Y; exceeds this threshold,
then we incur a given expected vNF migration cost E[M,].
Specifically, our goal is to maximise the cumulative sum of
tolerances up to time ¢ without exceeding ©. To represent this
condition of minimising the distance of the cumulative sum
of violations from the maximum tolerance ©, we define the
following reward function:

_ Y it Y, <0,
F(¥e) = {AE[MO] if Y; > 0,

where factor A € [0, 1] weighs the importance of the migration
cost to the reward function. Formally, the time-optimised
problem is defined as finding the optimal stopping time t*
that maximises the expected reward in (13):

13)

Problem 2. Find the optimal stopping time t* where the
supremum in (14) is attained:

sup E[f(Y3)]. (14)
t>0

The solution of Problem 2 is classified as an optimal
stopping problem where we seek a criterion (a.k.a. optimal
stopping rule) when to stop monitoring the evolution of the
cumulative sum of overall violations in (12), and start off a

new re-evaluation of the optimisation for deriving optimal vNF
placements. Obviously, we can re-evaluate the vNF placement
optimisation algorithm at every time instance, but this comes at
the expense of frequent vNF migrations. On the other hand, we
could delay the re-evaluation of the optimal placement at the
expense of a higher deviation from the initial optimal solution,
since we are dealing with a dynamic environment w.r.t. latency.
The idea is to tolerate as much latency violations as possible
w.r.t. © but not to exceed this. The optimal stopping rule we
are trying to find will provide an optimal dynamic decision-
making rule for maximising the expected reward (since Y; is a
random variable) from any other decision-making rule. Before
proceeding with proving the uniqueness and the optimality of
the proposed optimal stopping rule, we outline some essential
preliminaries of the theory of optimal stopping below.

C. Solution Fundamentals

The theory of optimal stopping [15], [10] is concerned
with the problem of choosing a time instance to take a certain
action in order to maximise an expected payoff. A stopping
rule problem is associated with:

e a sequence of random variables Y7, Yo, ..
distribution is assumed to be known;

e and a sequence of reward functions (fi(y1,...,¥))1<t
which depend only on the observed values v, ...,y; of
the corresponding random variables.

., whose joint

An optimal stopping rule problem is described as follows:
We are observing the sequence of the random variable (Y;)1<¢
and, at each time instance t, we choose either to sfop observing
and apply our decision (which, in this case, is the re-evaluation
of our optimal vNF placement and possible vNF migration)
or continue (with the existing VNF placement without re-
evaluating its optimality). If we stop observing at time instance
t, we induce a reward f; = f(y;). We desire to choose
a stopping rule or stopping time to maximise our expected
reward.

Definition 1. An optimal stopping rule problem is to find the
optimal stopping time t* that maximises the expected reward:
E[fi+] = supg<;<7 E[ft]. Note, T might be <.

The information available up to time ¢, is a sequence [F;
of values of the random variables Y7, ...,Y; (ak.a. filtration).

Definition 2. The I-stage look-ahead (I-sla) stopping rule
refers to the stopping criterion

t* = 1nf{t Z 0: ft Z E[ft-‘rl'Ft]} (15)

In other words, t* calls for stopping at the first time
instance ¢ for which the reward f; for stopping at ¢ is (at
most) as high as the expected reward of continuing to the next
time instance ¢ 4+ 1 and then stopping.

Definition 3. Let A; denote the event { fi > E[fi11|F¢]}). The
stopping rule problem is monotone if Ag C Ay C Ay C ...
almost surely (a.s.)

A monotone stopping rule problem can then be expressed
as follows: A; is the set on which the 1-sla rule calls for
stopping at time instance ¢. The condition A; C A;+1 means

that, if the 1-sla rule calls for stopping at time ¢, then it will
also call for stopping at time ¢ + 1 irrespective of the value
of Yi+1. Similarly, A; C A;11 C Apyo C ... means that, if
the 1-sla rule calls for stopping at time ¢, then it will call for
stopping at all future times irrespective of the values of future
observations.

Theorem 1. The [-sla rule is optimal for monotone stopping
rule problems.

We refer the interested reader to [15] for proof. O

In the remainder, we propose a 1-sla stopping rule which,
based on Theorem 1, is optimal for our Problem 2.

D. Optimally-Scheduled vNF Placement

At the optimal stopping time ¢*, we re-evaluate the optimal
placement of the vNFs, i.e., deriving the new optimal place-
ment I;» and incur a migration expected cost E[M,] given
that A > 0.

Theorem 2. Given an initial optimal vNF placement I, at
time t = 0, we re-evaluate the optimal placement I, at time
instance t such that:

e-Y,
inf {r: Y (P(L =)< (Y: — AE[Mo])(1 - FL(© ~ Y7))}
- =0
(16)

where Fp,(0) = Zf:o P(L =1)and P(L ={) is the cumula-
tive distribution and mass function of L in (11), respectively.

Proof: The target is to find an optimal 1-sla stopping rule,
that is to find the criterion in (15) to stop observing the random
variable Y; and then re-evaluate the VNF placement. Based
on the filtration F; up to time instance ¢, we focus on the
conditional expectation E[f(Y:41)|Y: < ©], that is:

Elf(Yi+1)|Y: < O] =

E[Y;11]Y: £0,Y;11 < O]P(Yi11 < O)+

E[)\E[M()”Y't < 97)/t+1 > 9]P(Y{5+1 > @) =

E[Y, + LIL <© - V]P(L < 6 - Y,)+

EAEMo]|IL >© —Y|P(L >0 -Y;) =

0-Y; O-Y;

ST (Vi + OP(L =0+ EMo](1 - Y P(L=10) =
=0 =0

o-Y;

> P(L =10) + (Y — AE[Mo))FL(© — V) + AE[My].
=0

For deriving the 1-sla, we have to stop at the first time
instance ¢ where E[f(Y;41)|Y: < 0] <Y, that is, at that ¢:

0-Y;

3" P(L = 0) + (Y — AE[M])FL(© — Y;) + AE[M,] < Vi,
=0

which completes the proof. [|

Theorem 2 states that starting at ¢ = 0, we stop at the first
time instance ¢ > 0 where the condition in (16) is satisfied.

Based on this criterion, we maximise the expected reward
in (13). The proposed 1-sla stopping rule in Theorem 2 is
optimal based on Theorem 1, given that Problem 2 is ‘mono-
tone’. This means that we stop at the first time ¢ such that
fe(Y2) > E[fi41(Yeqr1)|Fy], with the event {Y; < ©} € ;.
That is, any additional observation at time ¢ + 1 would not
contribute to the reward maximisation. We then proceed with
the following:

Theorem 3. The I-sla rule in (16) is optimal for our vNF
placement Problem 2.

Proof: Based on Theorem 1, our 1-sla rule is optimal
when the difference E[fi11(Yit1)|Ft] — f:(Y:) is monoton-
ically non-increasing with Y;. Given the filtration F;, this
difference is non-increasing when Y; € [0, ©], therefore the
1-sla rule is unique and optimal for Problem 2.]

After any re-evaluation of the optimal vNF placement with
optimal solution Z;, we observe the cumulative sum of the
latency violations Y3 for & > t. Then, we evaluate the 1-
sla optimal criterion in (16) at every time instance k for
possible triggering of the rule. The computational complexity
of this evaluation depends on the number of vNFs in the
entire system. The stopping criterion evaluation should be of
trivial complexity, avoiding time-consuming decision-making
on whether to activate the re-evaluation or not. From (16), the
stopping criterion depends on the calculation of a summation
from 0 to © — Y}, at time instance k. Evidently, we can
recursively evaluate this sum at time % by simply using the sum
up to time k—1 plus a loop of length E[| Y}, — Y41 +1|]. Hence,
the time complexity of evaluating the sum at k is O(N), where
N is the number of vNFs in the entire system.

IV. EVALUATION

We have implemented the dynamic placement scheduler,
as presented in Section III. To show the properties of such
system, we have designed three experiments. After introducing
the experimental environment (Section IV-A) that we modelled
using a real-world topology and actual latency values, we
evaluate the optimal placement with static network conditions
(as presented in Section II) and show the latency benefits of
running VNFs at the network edge instead of running vNFs at
distant Cloud DCs (Section IV-B). As a second experiment, we
present how continuously-changing latency causes the system
to deviate from an once optimal placement and how it relates
to latency violations experienced by end users (Section IV-C).
Finally, in Section IV-D, we show the dynamics and adaptive
behaviour of the proposed placement scheduler by comparing
it to three alternative schedulers.

A. Evaluation environment

a) Network topology: As a realistic network topology,
we have used the Jisc nation-wide NREN backbone network!,
as reported by Topology-zoo®. To introduce edge resources,
we have assumed compute capacity (i.e., a physical server)
at all of the points of presence of the Jisc network topology,

Thttp://jisc.co.uk
Zhttp://topology-zoo.org

TABLE II: Latency tolerance of different vINF types

Type of network function Maximum delay

Real-time (e.g., packet processing functions) 10 ms

Near real-time (e.g., control plane functions) 30 ms
100 ms

Non real-time (e.g., management functions)

each added server being capable of running a limited number
of vNFs. This deployment scenario (adding compute servers
next to already existing network devices of a provider) is the
suggested deployment by ETSI’'s MEC, since it is allows low-
cost deployment and interoperability with already deployed
network devices [3]. Furthermore, we have introduced three
Cloud DCs in the Jisc topology (attached to the London,
Bristol and Glasgow POPs) to simulate the provider’s internal
NFV infrastructure that has unlimited capacity for vNFs as
opposed to the limited capacity set for the edge.

b) Latency tolerance of vNFs: Latency tolerance for
each vNF is an important aspect of this work. As different
vNFs have different latency requirements, we split vNFs into
three categories based on their latency tolerance, and assign
a 0; tolerance to each VNF n;, representing the maximum
latency between the VNF and the end-user beyond which the
vNF becomes unusable. As shown in Table II, some real-time
functions such as, e.g., inline packet processing (access points,
virtual routers and switches, deep packet inspection) cannot
afford more than 10 ms from their user. Some “near real-
time” vNFs, however, can accommodate up to 30 ms delay.
Examples of the latter include control plane functions such
as, e.g., analytics solutions and location-based services. As a
third category, we introduce non real-time functions (e.g., OSS
systems) that have high delay tolerance of 100 ms. In our
experiments, we used an equally distributed mix of real-time,
near real-time and non real-time vNFs, however, our claims
below can be generalised for any type of vNFs.

c) Latency modelling of the network links: Latency
has been modelled based on millions of real-world E2E
latency measurements collected from New Zealand’s research
and education wide-area network provider, REANNZ? using
Ruru [16]. Based on the collected empirical data, we observed
that latency between locations in wide area has marginal
long memory (giving a Hurst exponent of 0.6 on average).
As a result, we modelled latency of the links using Gamma
distributions (k = 2.2, § = 0.22), as shown in Figure 2a. Gamma
distribution has been fitted due to its asymmetric, long-tail
property that represents well the increased latency caused by
congestion and routing issues in wide area networks. In order
to obtain latency values for individual links, we sampled this
distribution to create a representative time series as shown
Figure 2b.

B. Optimal Static Placement

Since our optimisation problem was formulated as an
ILP, we implemented it using the Gurobi* solver. The solver
calculates the optimal placement (and cumulative user-to-vNF
E2E latency as an objective function) for our problem detailed

3http://reannz.co.nz
“https://www.gurobi.com

mm
L \’\

(a) Probability distribution function of
latency

(b) Latency time-series

Fig. 2: Statistical latency characteristics of a physical link.

Allocating VNFs to edge devices and Cloud DCs et
Allocating vNFs to Cloud DCs only ===
Edge nodes reach resource capacily ->

Average latency from users to their vNFs (ms)
e

10 50 100 200 300 400 500 600 700 800 900 1000
Number of total users (3 vNFs per user)

Fig. 3: Comparing the average vNF-to-user E2E latency be-
tween edge and Cloud deployments.

in Section II. To show the benefits of running vNFs at the
network edge, we compare two scenarios:

1) Cloud-only deployment: vNFs are only allocated to a set
of Cloud DCs (three DCs in our case).

2) Two-tier edge deployment: in addition to the Cloud DCs,
all points of presence of the backbone network have
equal, but finite amount of computing capabilities to host
vNFs. When edge devices run out of resources, vNFs are
allocated to the Clouds that are further away, yet incur
higher latency from the users.

In this experiment, we have assigned end users to edge
locations in a round robin fashion and set a fixed user-to-
edge latency of 3 ms, a fair estimation for an average last hop
latency based on the studies in [6]. For this experiment, we
have assumed 3 vNFs per user (one with real-time, one with
near real-time and one with non real-time latency requirement)
and assigned computing capabilities to all edge nodes with a
total capacity of 1000 vNFs (ca. 40 vNFs per edge node).

In Figure 3, we show the average latency from users to their
vNFs. The Cloud-only deployment gives an average latency of
10 ms between users and their vNFs, while running vNFs at
the edge results in a 3 ms average latency until the edge nodes
reach the limits of their capacity and vNFs. When edge nodes
run out of resources, the average VNF-to-user E2E latency
starts converging to that of the Cloud-only scenario since,
from this point onward, vNFs are being allocated to the cloud
servers, resulting in longer communication paths. Therefore,
placing vNFs at the network edge can result in significantly
lower (up to 70% decrease) vNF-to-user E2E latency.

\

W

% & ® 3
‘‘‘‘‘‘‘‘‘‘ o Time nstance.

(a) Deviation from optimal alloca-
tion per time instance.

(b) Number of latency violations per
time instance.

Fig. 4: Deviation from the optimal placement and the number
of violations per time instance.

C. Analysing Latency Violations

Since the latency matrix [changes over time (due to
changes in link latency and in users’ physical location), the sys-
tem deviates from a previously optimal placement over time.
This behaviour is shown in Figure 4a, where we highlighted
the difference between an old value of the objective function
(Eq. 2) and the value of this objective function calculated at
every time instance ¢ (a time instance can be e.g., 5 minutes
on a production deployment) based on the temporal latency
parameters. As shown, successive objective values can deviate
between -25% an 200% from each other.

These deviations from a previously optimal allocation can
result in latency violations which note that a VNF n; expe-
riences higher vINF-to-user E2E latency than the 6; threshold
used for the previous (optimal) placement, as it is shown in
Figure 4b. As it can be seen by looking at Figure 4b and
Figure 4a at the same time, while deviations from an optimal
placement happen at any time, not all deviations are respon-
sible for latency violations (since a deviation can distribute
between all users and vNFs not violating any particular vNF-
to-user E2E latency requirement). It is important to note that
the number of violations counted at different time instances is
the key for calculating the optimal time for migration, since
we are using its cumulative distribution and mass functions in
Eq. 14 as P(L = ¢) to predict the number of latency violations
the system will experience at the next time instance. These
properties are unique for the network topology, vNF locations
and the physical locations of the users. We envision learning
P(L = {) for a period of time (e.g., 100 time instances)
before kicking off the placement scheduler. While in operation,
we continuously update P(L = ¢) based on the experienced
violations.

D. Placement Scheduling Using Optimal Stopping Time

1) Basic behaviour: For this experiment, we run the system
for 800 time instances which represents 2 days and 18 hours
of operations in case 5 minutes is selected for a time instance
by the operator. We present the behaviour of our placement
scheduling solution described in Section III. As shown in
Figure 5a, the system experiences accumulated latency vio-
lations towards the latency tolerance threshold © set by the
operator for the system (or © can be set for a subset of
users to differentiate QoS received by different groups of
users). After some time, just before reaching this threshold,

(b) Distribution of the number of
latency violations per time.

(a) Our scheduler optimises for a
new placement avoiding reaching the
violation threshold.

Fig. 5: Our proposed scheduler triggers the optimisation just
before reaching a latency violation threshold.

Migrating every time instance
Our scheduler based atoptimalstopping ime (our soluon)
10000 |- Our scheduler using P based on normal distripution —— _|

Migrating every 100 time instance —=—

1000 -

100 H

Number of cumulati

N

L L
0 100 200 300 400 500 600 700 800
Time

Fig. 6: Comparison of the number of migrations with various
migration scheduling strategies.

the system triggers the re-calculation of the placement and
performs vNF migrations in order to reach the new latency-
optimal location while zeroing the accumulation of latency.
As also shown in Figure 5a, the scheduling algorithm is fully
adaptive to the number of latency violations experienced by
unpredictable latency deviations. As an example, the second
migration happens much later from the optimal point than the
first one.

It is also important to note that Eq 16 relies on F(£) =
Zf:o P(L = 1) and P(L = /() that are the cumulative
distribution and mass functions of L in (11), respectively. In
order to learn P(L = {¢), we left the system running for
100 time instances (that would mean around 8 hours if 5
minutes is selected for a time instance by the operator) before
scheduling the first re-allocation of the placement. This is
required, since the optimal stopping is calculated based on the
previously-learned distribution of latency violations per time
instance P(L = ¢). It is important to note that the properties
of P(L = {) determine when to trigger a migration and it can
be in various stages of the system.

2) Comparison with other placement schedulers: In Fig-
ure 6 and Figure 7, we analyse the trade-off between the
number of migrations and the number of latency violations.
We have evaluated the following four placement scheduling
strategies:

a) Scheduling at every time instance: Scheduling every
time instance means that the allocation of vINFs is re-computed
and re-arranged at every time instance (e.g., every 5 minutes),

125%

' Migrating every time instance ——
Our scheduler based on optimal stopping time (our solution)
Our scheduler using P based on normal distribution ——

stance —=—

ting every 100 fime

igrat time ins
Maximum number of violations tolerated ©

25% -

Number of

Fig. 7: Comparing of the number of cumulative violations with
various scheduling strategies.

based on the temporal latency parameters of the network. As
shown in Figure 6, migrating vINFs at every time instance re-
sults in a 2-3 orders of magnitude higher number of migrations,
since every time instance a new placement is calculated and
therefore vNF migrations are conducted (vNFs are moved to
new devices or new network routes are selected between each
user and their vNFs). As expected, this results in zero latency
violations at every time instance since vNFs are always at their
optimal location, as shown in Figure 7.

b) Scheduling at optimal stopping time using learned
P(L = {): This approach, which is the one we have adopted
in this work, minimises the number of migrations while it
guarantees that the system never reaches the maximum number
of allowed violations ©. This solution depends on the learned
distribution of latency violations at every time instance which
we gathered by leaving the system to run for 100 time instances
before scheduling any re-optimisation of the placement. As
shown in Figure 6, our strategy re-computes the placement two
times and performs only 12 vNF migrations while, as shown
in Figure 7, it got very close, reaching 87% of the latency
violations threshold of the system. From the Figures we can
also observe that our scheduler can eliminate at least 76.9%
and up to 94.8% of the vNF migrations compared to other
schedulers.

¢) Scheduling a new placement using P(L = () follow-
ing the Normal distribution: The distribution of experienced
latency violations is a key parameter in our model, as shown
in Eq. 16. As presented before, in order to get the best
result, we advise a learning phase for the system, where the
P(L = ¢) distribution of the latency violations is learned.
In this experiment, however, instead of using the learned
P(L = {) based on previous observations, we assume that the
latency violations in the system follow a Normal distribution
N (2.5,0.5) and therefore we used our optimal stopping time
scheduler with this fixed distribution instead of the learned
distribution. The difference between the two distributions is
shown in Figure 5b. While assuming a Normal distribution for
P(L = ?¢) eliminates the need for learning, it initiates a new
placement much sooner than our scheduler using the learned
distribution of latency violations as shown in Figures 6 and
7. In our case, re-calculation of the placement is scheduled
sooner as the probabilities of getting high number of latency
violations at a time instance are higher compared to the learned
distribution. While this results in a sub-optimal solution, an

operator could start with such approximated distribution for
P(L = ¢) and adapt the distribution of latency violations over
time to the actual experienced latency violations.

d) Scheduling a new placement at fixed periodic in-
tervals: This strategy initiates vNF migrations at set time
intervals, independent of the number of latency violations
experienced before. This is the most basic scheduling strategy a
network operator could implement by, e.g., initiating a network
configuration batch-job re-allocating vNFs at the same time ev-
ery night. Looking at the number of migrations in Figure 6, this
strategy results in a moderate number of migrations compared
to other strategies. Also, as shown in Figure 7, if the selected
time interval is short enough (e.g., every 100 time instances),
the cumulative number of latency violations never reaches the
threshold. However, it is important that this strategy does not
depend on P(L = /), the latency violations experienced and
therefore does not adhere to the latency violation threshold ©,
meaning that a long interval (e.g., every 500 time instances in
our case) would result in violating the threshold. In fact, our
solution tackles the problem of systematically selecting the
right time to re-compute the placement without manual and
constant tuning from the operator.

As shown, each scheduler has a distinct behaviour. While
scheduling the re-optimisation of the placement every time
instance results in zero latency violations, it requires many
vNF migrations, performed at every time instance. On the
contrary, migrating periodically results in fewer migrations but
it requires a constant tuning from an operator to select the right
time for re-optimisation of the placement. Our solution using
optimal stopping theory selects the right time for placement
just by looking at the previously experiences latency violations
noted in P(L = /¢). In order to show the importance of
P(L = {), we have also presented a scheduler that estimates
the latency distribution and does not learn it.

V. RELATED WORK

Moving intelligence from traditional servers at the centre
of the network to the network edge is gaining significant
attention from both the research and the industry communities,
as discussed in [17] and [4]. The term “fog computing” [18]
has been defined to offload computation to nearby devices
(forming a “fog”), while the “multi-access edge computing
(MEC)” [3] by ETSI advocated the use of edge servers to
run customised services for users. Already presented industrial
solutions promoting the edge include ADVA’s One Network
Edge offering that provides a comprehensive range of edge
services running on specific, enhanced, yet simplified packet
forwarding devices. In research, the benefits of an edge in-
frastructure have been explored from various angles. As an
example, the authors in [19] have presented the prominent
work on “cloudlets” that bring Cloud to the mobile users
by exploiting computing services in their spatial vicinity.
As another example, the authors of [4] present how one
can use container network functions at the network edge to
provide services such as, e.g., DDoS protection and remote
network troubleshooting. Our work contributes to this field by
presenting a dynamic, latency-based vNF placement that can
be used by the aforementioned technologies to support latency-
sensitive applications.

With the rise of 5G networks, ultra-low and predictable
end-to-end latency is becoming increasingly important as the
key enabler for many new and visionary applications. Achiev-
ing ultra-low latency has been attempted at various points
of the networking stack, from the OS kernel [20] to 5G
millimeter-wave cellular networks [21]. In contrast to these
works, to the best of our knowledge, our approach is the first
to investigate an end-to-end latency optimisation problem from
a wider, high-level perspective, and optimised the physical lo-
cation of edge vNFs based on real-time latency measurements
on the links and the number of latency violations encountered.

Orchestrating and managing vNFs in different NFV infras-
tructures has been a popular research topic and it is often
related to the traditional Virtual Machine (VM) placement
problem. As a prominent example for vNF placement, in [7],
the authors have presented VNF-P, a generic model for efficient
placement of virtualized network functions. Some other works
have also taken latency as a parameter in VNF orchestration,
similar to what we are proposing in this paper. As an example,
in [13] the authors presented a latency-aware composition of
virtual network functions that identifies the order and place-
ment location of VNF chains. In contrast to their optimisation
which targets DCs, in this paper we have formulated a novel
placement model for a distributed network edge and have let
the placement to follow latency trends dictated by the SLA
violations allowed.

VI. CONCLUSIONS

In this paper, we advocated that in order to sustain low
end-to-end latency from users to their vNFs in a contin-
uously changing network environment, one has to migrate
vNFs to optimal locations numerous times during the life
of a NFV system. We have therefore defined an optimal
placement model with a dynamic scheduler that adapts to
changes in network latency over the infrastructure and re-
evaluates the placement of vNFs according to the number of
latency violations permitted in the system. We have evaluated
the proposed VNF orchestrator using a simulated nation-wide
network topology with real-world latency characteristics and
users running multiple latency-sensitive VNFs.

Our results show that our dynamic VNF placement sched-
uler reduces the number of migrations by 94.8% and 76.9%
compared to a scheduler that runs every time instance and
one that would periodically trigger vINF migrations to a new
optimal placement, respectively. By applying such dynamic
and latency-aware scheduling on top of a VNF placement
optimisation, operators can reduce network utilisation and min-
imise service interruption while meeting the service guarantees
to subscribed users.

ACKNOWLEDGEMENTS

The work has been supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) projects
EP/L026015/1, EP/N033957/1, and EP/P004024/1, and by the
European Cooperation in Science and Technology (COST)
Action CA 15127: RECODIS - Resilient communication and
services. This research is funded by the EU H2020 GNFUV
Project/Action RAWFIE-OC2-EXP-SCI (Grant No. 645220),
under the EC FIRE+ initiative.

(1]

(2]

(3]

(4]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia,
0. Queseth, M. Schellmann, H. Schotten, H. Taoka et al., “Scenarios
for 5g mobile and wireless communications: the vision of the metis
project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35,
2014.

R. Cziva and D. P. Pezaros, “On the latency benefits of edge nfv,” in
Proceedings of the ANCS. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 105-106.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing - a key technology towards 5g,” ETSI White Paper 11,
2015.

R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv
to the network edge,” IEEE Communications Magazine, vol. 55, no. 6,
pp. 24-31, 2017.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5g be?” IEEE Journal on selected areas
in communications, vol. 32, no. 6, pp. 1065-1082, 2014.

C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and
D. Pei, “Wifi can be the weakest link of round trip network latency in
the wild,” in INFOCOM 2016. 1IEEE, 2016, pp. 1-9.

H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in CNSM. 1EEE, 2014, pp. 418-423.

M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in CNSM, 2015 11th International
Conference on. IEEE, 2015, pp. 50-56.

A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4. ACM, 2014, pp. 163-174.

G. Peskir and A. N. Shiryaev, Optimal stopping and free-boundary
problems. Springer Science & Business Media, 2006.

M. Chiosi et al., “Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges & Call for Action,” ETSI White paper,
2012.

R. Cziva, S. Jouet, and D. P. Pezaros, “GNFC: Towards Network
Function Cloudification,” in Proc. of 2015 IEEE NFV-SDN, Nov 2015,
pp. 142-148.

B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5g,” in Proceedings
of the 2015 Ist IEEE Conference on Network Softwarization (NetSoft),
April 2015, pp. 1-6.

F. B. Jemaa, G. Pujolle, and M. Pariente, “Qos-aware vnf placement op-
timization in edge-central carrier cloud architecture,” in GLOBECOM,
Dec 2016, pp. 1-7.

A. Q. Frank and S. M. Samuels, “On an optimal stopping problem
of gusein-zade,” Stochastic Processes and their Applications, vol. 10,
no. 3, pp. 299-311, 1980.

R. Cziva, C. Lorier, and D. P. Pezaros, “Ruru: High-speed, flow-
level latency measurement and visualization of live internet traffic,” in
Proceedings of the SIGCOMM Posters and Demos. ACM, 2017, pp.
46-47.

A. Manzalini and R. Saracco, “Software networks at the edge: A shift
of paradigm,” in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), Nov 2013, pp. 1-6.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13-16.

T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the third ACM
workshop on Mobile cloud computing and services. ACM, 2012, pp.
29-36.

R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: predictable low latency for data center applications,” in
Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
2012, p. 9.

R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi,
“Achieving ultra-low latency in 5g millimeter wave cellular networks,”
IEEE Communications Magazine, vol. 55, no. 3, pp. 196-203, 2017.

