30 research outputs found

    Fast View Synthesis with Deep Stereo Vision

    Full text link
    Novel view synthesis is an important problem in computer vision and graphics. Over the years a large number of solutions have been put forward to solve the problem. However, the large-baseline novel view synthesis problem is far from being "solved". Recent works have attempted to use Convolutional Neural Networks (CNNs) to solve view synthesis tasks. Due to the difficulty of learning scene geometry and interpreting camera motion, CNNs are often unable to generate realistic novel views. In this paper, we present a novel view synthesis approach based on stereo-vision and CNNs that decomposes the problem into two sub-tasks: view dependent geometry estimation and texture inpainting. Both tasks are structured prediction problems that could be effectively learned with CNNs. Experiments on the KITTI Odometry dataset show that our approach is more accurate and significantly faster than the current state-of-the-art. The code and supplementary material will be publicly available. Results could be found here https://youtu.be/5pzS9jc-5t

    On the confidence of stereo matching in a deep-learning era: a quantitative evaluation

    Full text link
    Stereo matching is one of the most popular techniques to estimate dense depth maps by finding the disparity between matching pixels on two, synchronized and rectified images. Alongside with the development of more accurate algorithms, the research community focused on finding good strategies to estimate the reliability, i.e. the confidence, of estimated disparity maps. This information proves to be a powerful cue to naively find wrong matches as well as to improve the overall effectiveness of a variety of stereo algorithms according to different strategies. In this paper, we review more than ten years of developments in the field of confidence estimation for stereo matching. We extensively discuss and evaluate existing confidence measures and their variants, from hand-crafted ones to the most recent, state-of-the-art learning based methods. We study the different behaviors of each measure when applied to a pool of different stereo algorithms and, for the first time in literature, when paired with a state-of-the-art deep stereo network. Our experiments, carried out on five different standard datasets, provide a comprehensive overview of the field, highlighting in particular both strengths and limitations of learning-based strategies.Comment: TPAMI final versio

    Depth Estimation in Stereo Biomedical Images via Proxy-Supervised Deep Learning

    Get PDF
    In order to estimate depth through supervised deep learning-based stereo methods, it is necessary to have access to precise ground truth depth data. While the gathering of precise labels is commonly tackled by deploying depth sensors, this is not always a viable solution. For instance, in many applications in the biomedical domain, the choice of sensors capable of sensing depth at small distances with high precision on difficult surfaces (that present non-Lambertian properties) is very limited. It is therefore necessary to find alternative techniques to gather ground truth data without having to rely on external sensors. In this thesis, two different approaches have been tested to produce supervision data for biomedical images. The first aims to obtain input stereo image pairs and disparities through simulation in a virtual environment, while the second relies on a non-learned disparity estimation algorithm in order to produce noisy disparities, which are then filtered by means of hand-crafted confidence measures to create noisy labels for a subset of pixels. Among the two, the second approach, which is referred in literature as proxy-labeling, has shown the best results and has even outperformed the non-learned disparity estimation algorithm used for supervision

    Deep learning based stereo matching on a small dataset

    Full text link
    Deep learning (DL) has been used in many computer vision tasks including stereo matching. However, DL is data hungry, and a large number of highly accurate real-world training images for stereo matching is too expensive to acquire in practice. The majority of studies rely on large simulated datasets during training, which inevitably results in domain shift problems that are commonly compensated by fine-tuning. This work proposes a recursive 3D convolutional neural network (CNN) to improve the accuracy of DL based stereo matching that is suitable for real-world scenarios with a small set of available images, without having to use a large simulated dataset and without fine-tuning. In addition, we propose a novel scale-invariant feature transform (SIFT) based adaptive window for matching cost computation that is a crucial step in the stereo matching pipeline to enhance accuracy. Extensive end-to-end comparative experiments demonstrate the superiority of the proposed recursive 3D CNN and SIFT based adaptive windows. Our work achieves effective generalization corroborated by training solely on the indoor Middlebury Stereo 2014 dataset and validating on outdoor KITTI 2012 and KITTI 2015 datasets. As a comparison, our bad-4.0-error is 24.2 that is on par with the AANet (CVPR2020) method according to the publicly evaluated report from the Middlebury Stereo Evaluation Benchmark
    corecore