4 research outputs found

    Literature review

    Get PDF
    The increase of data-driven decision making in digital-facing organisations in the 2010’s has brought methodologies such as A/B testing into the toolbox of online marketers. A/B testing in particular has become an essential part of the design process for advertisements, websites, and any user-facing interfaces. This thesis aims to form a critical appraisal of A/B testing as a method by conducting a systematic literature review on how much the topic has been studied before. In addition, this thesis identifies the common pitfalls seen in implementation of A/B tests. The motivation to form a critical look into the subject rises from the rapid growth of the popularity of A/B testing. As the amount of companies utilising the methodology rises, it is important to review the topic to identify current best practices and possible deficiencies in research

    Assessing stationarity in web analytics: A study of bounce rates

    Get PDF
    Evidence-based methods for evaluating marketing interventions such as A/B testing have become standard practice. However, the pitfalls associated with the misuse of this decision-making instrument are not well understood by managers and analytics professionals. In this study, we assess the impact of stationarity on the validity of samples from conditioned time series, which are abundant in web metrics. Such a prominent metric is the bounce rate, which is prevalent in assessing engagement with web content as well as the performance of marketing touchpoints. In this study, we show how to control for stationarity using an algorithmic transformation to calculate the optimum sampling period. This distance is based on a novel stationary ergodic process that considers that a stationary series presents reversible symmetric features and is calculated using a dynamic time warping algorithm in a self-correlation procedure. This study contributes to the expert and intelligent systems literature by demonstrating a robust method for sub-sampling time-series data, which are critical in decision making

    On Experimentation in Software-Intensive Systems

    Get PDF
    Context: Delivering software that has value to customers is a primary concern of every software company. Prevalent in web-facing companies, controlled experiments are used to validate and deliver value in incremental deployments. At the same that web-facing companies are aiming to automate and reduce the cost of each experiment iteration, embedded systems companies are starting to adopt experimentation practices and leverage their activities on the automation developments made in the online domain. Objective: This thesis has two main objectives. The first objective is to analyze how software companies can run and optimize their systems through automated experiments. This objective is investigated from the perspectives of the software architecture, the algorithms for the experiment execution and the experimentation process. The second objective is to analyze how non web-facing companies can adopt experimentation as part of their development process to validate and deliver value to their customers continuously. This objective is investigated from the perspectives of the software development process and focuses on the experimentation aspects that are distinct from web-facing companies. Method: To achieve these objectives, we conducted research in close collaboration with industry and used a combination of different empirical research methods: case studies, literature reviews, simulations, and empirical evaluations. Results: This thesis provides six main results. First, it proposes an architecture framework for automated experimentation that can be used with different types of experimental designs in both embedded systems and web-facing systems. Second, it proposes a new experimentation process to capture the details of a trustworthy experimentation process that can be used as the basis for an automated experimentation process. Third, it identifies the restrictions and pitfalls of different multi-armed bandit algorithms for automating experiments in industry. This thesis also proposes a set of guidelines to help practitioners select a technique that minimizes the occurrence of these pitfalls. Fourth, it proposes statistical models to analyze optimization algorithms that can be used in automated experimentation. Fifth, it identifies the key challenges faced by embedded systems companies when adopting controlled experimentation, and we propose a set of strategies to address these challenges. Sixth, it identifies experimentation techniques and proposes a new continuous experimentation model for mission-critical and business-to-business. Conclusion: The results presented in this thesis indicate that the trustworthiness in the experimentation process and the selection of algorithms still need to be addressed before automated experimentation can be used at scale in industry. The embedded systems industry faces challenges in adopting experimentation as part of its development process. In part, this is due to the low number of users and devices that can be used in experiments and the diversity of the required experimental designs for each new situation. This limitation increases both the complexity of the experimentation process and the number of techniques used to address this constraint

    Towards Automated Experiments in Software Intensive Systems

    Get PDF
    Context: Delivering software that has value to customers is a primary concern of every software company. One of the techniques to continuously validate and deliver value in online software systems is the use of controlled experiments. The time cost of each experiment iteration, the increasing growth in the development organization to run experiments and the need for a more automated and systematic approach is leading companies to look for different techniques to automate the experimentation process. Objective: The overall objective of this thesis is to analyze how to automate different types of experiments and how companies can support and optimize their systems through automated experiments. This thesis explores the topic of automated online experiments from the perspectives of the software architecture, the algorithms for the experiment execution and the experimentation process, and focuses on two main application domains: the online and the embedded systems domain. Method: To achieve the objective, we conducted this research in close collaboration with industry using a combination of different empirical research methods: case studies, literature reviews, simulations and empirical evaluations. Results and conclusions: This thesis provides five main results. First, we propose an architecture framework for automated experimentation that can be used with different types of experimental designs in both embedded systems and web-facing systems. Second, we identify the key challenges faced by embedded systems companies when adopting controlled experimentation and we propose a set of strategies to address these challenges. Third, we develop a new algorithm for online experiments. Fourth, we identify restrictions and pitfalls of different algorithms for automating experiments in industry and we propose a set of guidelines to help practitioners select a technique that minimizes the occurrence of these pitfalls. Fifth, we propose a new experimentation process to capture the details of a trustworthy experimentation process that can be used as basis for an automated experimentation process. Future work: In future work, we plan to investigate how embedded systems can incorporate experiments in their development process without compromising existing real-time and safety requirements. We also plan to analyze the impact and costs of automating the different parts of the experimentation process
    corecore