
Thesis for The Degree of Doctor of Philosophy

On Experimentation in Software-Intensive Systems

David Issa Mattos

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2021

On Experimentation in Software-Intensive Systems

David Issa Mattos

Copyright ©2021 David Issa Mattos
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-465-6
Doktorsavhandlingar vid Chalmers tekniska högskola.
Ny serie nr 4932.
ISSN 0346-718X

Technical Report No 195D.
Department of Computer Science & Engineering
Division of Interaction Design and Software Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“For a human being, nothing comes naturally.
We have to learn everything we do.”

- P.P.

iv

Abstract

Context: Delivering software that has value to customers is a primary concern
of every software company. Prevalent in web-facing companies, controlled
experiments are used to validate and deliver value in incremental deployments.
At the same that web-facing companies are aiming to automate and reduce the
cost of each experiment iteration, embedded systems companies are starting to
adopt experimentation practices and leverage their activities on the automation
developments made in the online domain.
Objective: This thesis has two main objectives. The first objective is to
analyze how software companies can run and optimize their systems through
automated experiments. This objective is investigated from the perspectives
of the software architecture, the algorithms for the experiment execution and
the experimentation process. The second objective is to analyze how non
web-facing companies can adopt experimentation as part of their development
process to validate and deliver value to their customers continuously. This
objective is investigated from the perspectives of the software development
process and focuses on the experimentation aspects that are distinct from
web-facing companies.
Method: To achieve these objectives, we conducted research in close collab-
oration with industry and used a combination of different empirical research
methods: case studies, literature reviews, simulations, and empirical evalua-
tions.
Results: This thesis provides six main results. First, it proposes an architecture
framework for automated experimentation that can be used with different types
of experimental designs in both embedded systems and web-facing systems.
Second, it proposes a new experimentation process to capture the details of
a trustworthy experimentation process that can be used as the basis for an
automated experimentation process. Third, it identifies the restrictions and
pitfalls of different multi-armed bandit algorithms for automating experiments
in industry. This thesis also proposes a set of guidelines to help practitioners
select a technique that minimizes the occurrence of these pitfalls. Fourth, it
proposes statistical models to analyze optimization algorithms that can be used
in automated experimentation. Fifth, it identifies the key challenges faced by
embedded systems companies when adopting controlled experimentation, and
we propose a set of strategies to address these challenges. Sixth, it identifies
experimentation techniques and proposes a new continuous experimentation
model for mission-critical and business-to-business.
Conclusion: The results presented in this thesis indicate that the trustwor-
thiness in the experimentation process and the selection of algorithms still
need to be addressed before automated experimentation can be used at scale
in industry. The embedded systems industry faces challenges in adopting
experimentation as part of its development process. In part, this is due to
the low number of users and devices that can be used in experiments and the
diversity of the required experimental designs for each new situation. This
limitation increases both the complexity of the experimentation process and
the number of techniques used to address this constraint.
Keywords Experimentation, Embedded Systems, Multi-armed bandits, Auto-
mated experimentation, Optimization, Experimentation process.

Acknowledgments

First, I would like to express my sincere gratitude to my supervisors. I would
like to thank my supervisor, Prof. Jan Bosch, for the patience in guiding
me through this research while giving me the freedom to explore the topics
that interest me. I would also like to thank my co-supervisor, Prof. Helena
Holmström Olsson, for the invaluable support and feedback on my research. I
could not have asked for better mentors.

I would like to thank all the companies I have worked with. Working with
them was a great motivator to pursue this research and explore new topics.
In particular, I would like to thank Anas Dakkak for the fruitful discussions
and collaboration. I would also like to thank all my co-authors. I have
learned a lot about specific topics and research in general from working with
each one of you: Jan Bosch, Helena H. Olsson, Anas Dakkak, Krister Bergh,
Pavel Dmitriev, Aleksander Fabijan, Erling Mårtensson, Robin Sveningson,
Francisco G. O. Neto, Jennifer Horkoff, Richard Svensson, Alessia Knauss, Nikos
Diamantopoulos, Jeffrey Wong, Ilias Gerostathopoulos, Matthew Wardrop,
Tobias Mao, Colin McFarland, Aiswarya Munappy, Aita Korshani, Jonn Lantz,
Teodor Fredriksson, Érika M. S. Ramos, Cecilia J. Bergstad, Yuchu Liu, Lucas
Ruud, and Hongyi Zhang.

Next, I would like to thank all at the Interaction Design and Software
Engineering Division for making it a great work. I would like to thank especially
Terese Besker and Magnus Ågren for the discussions and friendship.

I am grateful to my parents and my grandfather for all the encouragement
to pursue this dream.

I would like to express my deepest gratitude to my life companion Érika,
for your love, care and patience. Finally, I would like to thank William for
bringing me such joy during this year and a half.

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems, and Software Program (WASP), funded by the Knut
and Alice Wallenberg Foundation and the Software Center.

vii

List of Publications

Included publications

This thesis includes the following publications:

[A] Mattos, D. I., Bosch, J. and Olsson, H. H. “Your system gets better
every day you use it: towards automated continuous experimentation”
43rd Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), 2017, pp.256-265.

[B] Mattos, D. I., Bosch, J., Olsson, H. H., Dakkak, A. and Bergh, K. “Au-
tomated Optimization of Software Parameters in a Long Term Evolution
Radio Base Station”
Annual IEEE Systems Conference (SysCon), 2019, pp. 1-8.

[C] Mattos, D. I., Dmitriev, P., Fabijan, A. Bosch, J. and Olsson, H. H.
“An activity and metric model for online controlled experiments”
International Conference on Product-Focused Software Process Improve-
ment (PROFES), 2018, pp.182-198.

[D] Mattos, D. I., Bosch, J. and Olsson, H. H. “Multi-armed bandits in
the wild: Pitfalls and strategies in online experiments”
Information and Software Technology, 2019, v.113, pp.68-81.

[E] Mattos, D. I., Bosch, J. and Olsson, H. H. “Statistical Models for the
Analysis of Optimization Algorithms with Benchmark Functions”
IEEE Transactions on Evolutionary Computation, 2021.

[F] Mattos, D. I., Bosch, J. and Olsson, H. H. “Challenges and Strategies
for Undertaking Continuous Experimentation to Embedded Systems:
Industry and Research Perspectives”
19th International Conference on Agile Software Development (XP), 2018,
pp.277-292.

[G] Mattos, D. I., Dakkak, A., Bosch, J. and Olsson, H. H. “The HURRIER
Process for Experimentation in Business-to-Business Mission-Critical
Systems”
In submission to the Journal of Software: Evolution and Process, 2020.

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision but are not included in this thesis.

[a] Mattos, D. I., Bosch, J. and Olsson, H. H. “More for less: automated
experimentation in software-intensive systems”
International Conference on Product-Focused Software Process Improve-
ment (PROFES), 2017, pp.146-161.

[b] Mattos, D. I., Mårtensson, E., Bosch, J. and Olsson, H. H. “Optimiza-
tion Experiments in the Continuous Space”
International Symposium on Search Based Software Engineering (SSBSE),
2018, pp.264-279.

[c] Sveningson, R., Mattos, D. I. and Bosch, J. “Continuous experimenta-
tion for software organizations with low control of roadmap and a large
distance to users: an exploratory case study”
International Conference on Product-Focused Software Process Improve-
ment (PROFES), 2019, pp.528-544.

[d] Mattos, D. I., Bosch, J. and Olsson, H. H. “Leveraging Business
Transformation with Machine Learning Experiments”
International Conference on Software Business (ICSOB), 2019, pp.183-
191.

[e] Mattos, D. I., Bosch, J. and Olsson, H. H. “ACE: Easy Deployment of
Field Optimization Experiments”
European Conference on Software Architecture (ECSA), 2019, pp.264-279.

[f] Oliveira Neto, F. G, Horkoff, J., Svensson, R., Mattos, D. I. and Knauss,
A. “Evaluating the Effects of Different Requirements Representations on
Writing Test Cases”
International Working Conference on Requirements Engineering: Foun-
dation for Software Quality (REFSQ), 2020, pp.257-274.

[g] Diamantopoulos, N., Wong, J. Mattos, D. I., Gerostathopoulos, I.,
Wardrop, M., Mao, T. and McFarland, C. “Engineering for a Science-
Centric Experimentation Platform”
Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), 2020,
pp.191-200.

[h] Mattos, D. I., Dakkak, A., Bosch, J. and Olsson, H. H. “Experimenta-
tion for Business-to-Business Mission-Critical Systems: A Case Study”
Proceedings of the International Conference on Software and System
Processes (ICSSP), 2020, pp.95-104.

[i] Munappy, A. R., Mattos, D. I., Dakkak, A., Bosch, J. and Olsson, H.
H. “From Ad-Hoc Data Analytics to DataOps”
Proceedings of the International Conference on Software and System
Processes (ICSSP), 2020, pp.165-174.

xi

[j] Mattos, D. I., Bosch, J., Olsson, H. H. Korshani, A. M. and Lantz,
J. “Automotive A/B Testing: Challenges and Lessons Learned from
Practice”
46th Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), 2020, pp.101-109.

[k] Fredriksson, T., Mattos, D. I., Bosch, J. and Olsson, H. H. “Data
Labelling: An Empirical Investigation into Industrial Challenges and
Mitigation Strategies”
International Conference on Product-Focused Software Process Improve-
ment (PROFES), 2020, pp.202-216.

[l] Fredriksson, T., Mattos, D. I., Bosch, J. and Olsson, H. H. “An
Empirical Evaluation of Algorithms for Data Labeling”
To appear at the 45th IEEE Computer Society Signature Conference on
Computers, Software and Applications (COMPSAC), 2021.

[m] Dakkak, A., Mattos, D. I. and Bosch, J. “Perceived benefits of Contin-
uous Deployment in Software-Intensive Embedded Systems”
To appear at the 45th IEEE Computer Society Signature Conference on
Computers, Software and Applications (COMPSAC), 2021.

[n] Mattos, D. I. and Ramos, E. M. S. “Bayesian Paired-Comparison with
the bpcs Package”
In submission to the Journal of Behavior Research Methods, 2021.

[o] Ramos, E. M. S., Mattos, D. I. and Bergstad, C. J. “Roundtrip, free-
floating and peer-to-peer: A Bayesian behavioral analysis of carsharing”
In submission to the Sustainability, 2021.

[p] Liu, Y., Mattos, D. I., Bosch, J., Olsson, H. H. and Lantz, J. “Size
matters? Or not: A/B testing with limited sample in automotive embed-
ded software”.
To appear at the 2021 47th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA).

[q] Fredriksson, T., Mattos, D. I., Bosch, J. and Olsson, H. H. “Machine
Learning Algorithms for Labeling: Where and How They are Used?”
In submission to a conference, 2021.

[r] Fredriksson, T., Mattos, D. I., Bosch, J. and Olsson, H. H. “Assessing
the Suitability of Semi-Supervised Learning Datasets with Item Response
Theory”.
To appear at the 2021 47th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA).

[s] Mattos, D. I., Ruud, L., Bosch, J. and Olsson, H. H. “On the Assessment
of Benchmark Suites for Algorithm Comparison”.
In submission to a journal, 2021.

[t] Dakkak, A., Mattos, D. I. and Bosch, J. “Success Factors when Tran-
sitioning to Continuous Deployment in Software-Intensive Embedded
Systems”.

xii

To appear at the 2021 47th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA).

[u] Dakkak, A., Zhang, H., Mattos, D. I. and Bosch, J. “Dimensions in
data collection for embedded software-intensive systems”.
In submission to a conference (2021).

[v] Zhang, H., Dakkak, A., Mattos, D. I., Bosch, J. and Olsson, H. H.
“Towards Federated Learning: A Case Study in the Telecommunication
Domain”.
In submission to a conference (2021).

Research Contribution

My contribution to the publications produced in this doctoral research is listed
below using the CRediT (Contributor Roles Taxonomy) author statement [1]:

Included publications

• Paper A: Conceptualization, methodology, software development, vali-
dation, formal analysis, investigation, data curation, writing - original
draft, writing - reviewing and editing, and visualization.

• Paper B: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper C: Conceptualization, methodology, validation, formal analysis,
investigation, data curation, writing - original draft, writing - reviewing
and editing, and visualization.

• Paper D: Conceptualization, methodology, software development, vali-
dation, formal analysis, investigation, data curation, writing - original
draft, writing - reviewing and editing, and visualization.

• Paper E: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper F: Conceptualization, methodology, validation, formal analysis,
investigation, data curation, writing - original draft, writing - reviewing
and editing, and visualization.

• Paper G: Conceptualization, methodology, validation, formal analysis,
investigation, data curation, writing - original draft, writing - reviewing
and editing, and visualization.

Other publications

• Paper a: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper b: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing and, visualization.

• Paper c: Supervision, writing - original draft, writing - review and editing.

• Paper d: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper e: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

xiv

• Paper f: Investigation, and writing - review and editing

• Paper g: Conceptualization, methodology, writing - original draft, and
writing - reviewing and editing.

• Paper h: Conceptualization, methodology, validation, formal analysis,
investigation, data curation, writing - original draft, writing - reviewing
and editing, and visualization.

• Paper i: Conceptualization, methodology, investigation, writing - review
and editing.

• Paper j: Validation, formal analysis, data curation, writing - original
draft, writing - reviewing and editing, and visualization.

• Paper k: Writing - original draft, and writing - reviewing and editing.

• Paper l: Conceptualization, methodology, formal analysis, writing - origi-
nal draft, and writing - reviewing and editing.

• Paper m: Writing - reviewing and editing.

• Paper n: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper o: Software development, formal analysis, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper p: Conceptualization, methodology, writing - original draft, writing
- reviewing and editing.

• Paper q: Conceptualization, methodology, formal analysis, writing -
original draft, and writing - reviewing and editing.

• Paper r: Conceptualization, methodology, formal analysis, writing -
original draft, and writing - reviewing and editing.

• Paper s: Conceptualization, methodology, software development, valida-
tion, formal analysis, investigation, data curation, writing - original draft,
writing - reviewing and editing, and visualization.

• Paper t: Writing - reviewing and editing.

• Paper u: Conceptualization, methodology, investigation, writing - original
draft, writing - reviewing and editing

• Paper v: Conceptualization, methodology, investigation, writing - original
draft, writing - reviewing and editing

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xiii

1 Introduction 1

2 Background 5
2.1 Experiments in software systems 5
2.2 Randomized experiments . 5
2.3 Other experimental designs . 6

2.3.1 Factorial and fractional experiments 6
2.3.2 Quasi-experiments . 6
2.3.3 Crossover experiments 7
2.3.4 Multi-armed bandit experiments 7

2.4 Continuous experimentation. 7
2.5 Experimentation models . 8

2.5.1 The Build-Measure-Learn model 8
2.5.2 The ESSSDM model . 9
2.5.3 The QCD model . 9
2.5.4 HYPEX model . 9
2.5.5 The RIGHT model . 10

2.6 Automated experiments . 10
2.6.1 Algorithms for online optimization 11

2.7 Experimentation in the embedded systems. 11
2.8 Experimentation in the B2B domain. 12

3 Research approach 15
3.1 Objectives . 15

3.1.1 Objective 1 . 15
3.1.2 Objective 2 . 16

3.2 Research context . 17
3.2.1 Company collaborations 17

3.3 Research strategies . 19
3.3.1 Field study . 19

xv

xvi CONTENTS

3.3.1.1 Case studies 19
3.3.2 Sample studies . 20

3.3.2.1 Literature review 21
3.3.3 Laboratory experiments 21

3.3.3.1 Controlled experiments 21
3.3.3.2 Benchmarking studies 21

3.3.4 Summary . 22
3.4 Data analysis . 22

3.4.1 Thematic coding . 23
3.4.2 Statistical analysis . 24

3.4.2.1 The frequentist paradigm 24
3.4.2.2 The Bayesian paradigm 25

3.5 Validity considerations . 25
3.5.1 Construct validity . 26
3.5.2 Internal validity . 26
3.5.3 External validity. 27
3.5.4 Conclusion validity . 28

4 Contributions of this thesis 29
4.1 General overview . 29
4.2 Included publications . 32

4.2.1 Paper A: “Your system gets better every day you use it:
towards automated continuous experimentation” 32
4.2.1.1 Summary of the study 32
4.2.1.2 Research method 32
4.2.1.3 Main results 32

4.2.2 Paper B: “Automated Optimization of Software Parame-
ters in a Long Term Evolution Radio Base Station” . . 33
4.2.2.1 Summary of the study 33
4.2.2.2 Research method 33
4.2.2.3 Main results 34

4.2.3 Paper C: “An activity and metric model for online con-
trolled experiments” . 35
4.2.3.1 Summary of the study 35
4.2.3.2 Research method 35
4.2.3.3 Main results 35

4.2.4 Paper D: “Multi-armed bandits in the wild: Pitfalls and
strategies in online experiments” 35
4.2.4.1 Summary of the study 35
4.2.4.2 Research method 36
4.2.4.3 Main results 36

4.2.5 Paper E: “Statistical Models for the Analysis of Opti-
mization Algorithms with Benchmark Functions” 36
4.2.5.1 Summary of the study 36
4.2.5.2 Research method 37
4.2.5.3 Main results 37

4.2.6 Paper F: “Challenges and Strategies for Undertaking Con-
tinuous Experimentation to Embedded Systems: Industry
and Research Perspectives” 37

CONTENTS xvii

4.2.6.1 Summary of the study 37
4.2.6.2 Research method 37
4.2.6.3 Main results 38

4.2.7 Paper G: “The HURRIER Process for Experimentation
in Business-to-Business Mission-Critical Systems” . . . 38
4.2.7.1 Summary of the study 38
4.2.7.2 Research method 39
4.2.7.3 Main results 39

4.3 Related publications . 39
4.3.1 Paper a: “More for less: automated experimentation in

software-intensive systems” 40
4.3.2 Paper b: “Optimization Experiments in the Continuous

Space” . 40
4.3.3 Paper c: “Continuous experimentation for software orga-

nizations with low control of roadmap and a large distance
to users: an exploratory case study” 41

4.3.4 Paper e: “ACE: Easy Deployment of Field Optimization
Experiments” . 41

4.3.5 Paper g: “Engineering for a Science-Centric Experimen-
tation Platform” . 41

4.3.6 Paper h: “Experimentation for Business-to-Business
Mission-Critical Systems: A Case Study” 42

4.3.7 Paper j: “Automotive A/B Testing: Challenges and
Lessons Learned from Practice” 42

4.3.8 Paper n: “Bayesian Paired-Comparison with the bpcs
Package” . 43

4.3.9 Paper p: “Size matters? Or not: A/B testing with limited
sample in automotive embedded software” 43

4.3.10 Paper s: “On the assessment of benchmark suites for
algorithm comparison” 43

5 Paper A: Your system gets better every day you use it: to-
wards automated continuous experimentation 45
5.1 Introduction . 46
5.2 Background . 48

5.2.1 Controlled experiments 48
5.2.2 Reinforcement Learning in experiments 48
5.2.3 Software architectures for adaptation 49

5.3 Research Method . 49
5.4 Architecture qualities . 50

5.4.1 External adaptation control 51
5.4.2 Data collection as an integral part of the architecture . 51
5.4.3 Performance reflection 51
5.4.4 Explicit representation of the learning component . . . 52
5.4.5 Decentralized adaptation 52
5.4.6 Knowledge exchange . 52

5.5 Architecture analysis . 53
5.6 Architecture framework . 55

5.6.1 The architecture framework 55

xviii CONTENTS

5.7 Automated experiments in a human-robot interaction problem 57

5.7.1 Proxemics distance in Human-Robot Interaction 57

5.7.2 Experimental results . 60

5.8 Conclusion . 60

5.8.1 Research Challenges . 62

6 Paper B: Automated Optimization of Software Parameters in
a Long Term Evolution Radio Base Station 65

6.1 Introduction . 66

6.2 Background . 67

6.2.1 Overview of a Radio Base Station 67

6.2.2 LTE Optimization Overview 67

6.2.3 Radio Base Station Parameters and Metrics 68

6.2.3.1 Metrics . 68

6.2.3.2 Parameters . 68

6.2.4 The Online Optimization Problem 69

6.3 Experimental setup . 71

6.3.1 The ACE system . 71

6.3.2 Testing bed setup . 71

6.4 Results . 73

6.4.1 Experimental runs . 73

6.4.2 Optimization of multiple parameters 73

6.4.3 Integration in a deployed RBS 75

6.4.4 Limitations . 75

6.5 Related work . 77

6.6 Conclusion . 78

7 Paper C: An activity and metric model for online controlled
experiments 81

7.1 Introduction . 82

7.2 Background and related work 83

7.3 Research Method . 85

7.3.1 Data collection . 85

7.3.2 Data analysis . 86

7.3.3 Validity considerations 86

7.4 Findings . 87

7.4.1 Customer feedback is an important source of experimen-
tation ideas. 87

7.4.2 Metrics guide experiments towards long-term goals and
help prioritize hypotheses. 88

7.4.3 Metrics evolve and capture the experiment assumptions. 88

7.5 The experimentation process framework 89

7.5.1 The experimentation activity model 89

7.5.1.1 Experiment development phase. 90

7.5.1.2 Experiment execution phase. 92

7.5.1.3 Experiment analysis phase. 93

7.5.2 The experiment metric model. 94

7.6 Conclusion . 96

CONTENTS xix

8 Paper D: Multi-armed bandits in the wild: Pitfalls and strate-
gies in online experiments 99
8.1 Introduction . 100
8.2 Background . 100

8.2.1 A/B experiments . 101
8.2.2 Multi-Armed Bandit . 102

8.3 Research method . 103
8.3.1 Multiple case study . 103

8.3.1.1 Definition and planning 103
8.3.1.2 Data selection and collection 103
8.3.1.3 Data analysis 105

8.3.2 Simulations . 105
8.3.3 Threats to validity . 106

8.3.3.1 Construct validity. 106
8.3.3.2 External validity. 106
8.3.3.3 Internal validity. 106

8.4 Results . 107
8.4.1 Decision errors in näıve MAB implementations 107

8.4.1.1 Pitfall . 107
8.4.1.2 Simulation . 107
8.4.1.3 Strategies . 108

8.4.2 Bad variation lockdown 109
8.4.2.1 Restriction . 109
8.4.2.2 Strategies . 110

8.4.3 Decision errors due to violations of assumptions 111
8.4.3.1 Pitfalls . 111
8.4.3.2 Simulation . 112
8.4.3.3 Strategies . 114

8.4.4 Lack of Sample Ratio Mismatch quality check in MAB
algorithms . 114
8.4.4.1 Restriction . 114
8.4.4.2 Strategy . 115

8.4.5 Increased complexity in ramp-up procedures in MAB
algorithms . 115
8.4.5.1 Restriction . 115
8.4.5.2 Strategy . 116

8.4.6 Increasing regret in experiments due to Simpson’s Para-
dox in MAB algorithms 116
8.4.6.1 Pitfall . 116
8.4.6.2 Simulation . 117
8.4.6.3 Strategy . 118

8.4.7 Adaptive allocation based on a single metric 119
8.4.7.1 Restrictions . 119
8.4.7.2 Strategy . 120

8.5 Discussion . 120
8.5.1 Use cases for multi-armed bandits 121

8.5.1.1 Content-serving systems 121
8.5.1.2 Short-term campaigns 123
8.5.1.3 Targeting experiments 123

xx CONTENTS

8.5.1.4 Other cases . 123
8.5.2 Guidelines . 123

8.6 Conclusion . 124
8.7 Appendix . 124

8.7.1 Multi-Armed Bandit algorithms used in the simulations 124
8.7.1.1 Explore-First algorithm with parameter N . . 124

8.7.2 The Softmax algorithm 126
8.7.3 The UCB1 algorithm . 126
8.7.4 Further extensions . 127

9 Paper E: Statistical Models for the Analysis of Optimization
Algorithms with Benchmark Functions 129
9.1 Introduction . 130
9.2 Related work . 131
9.3 Bayesian Data Analysis . 132

9.3.1 Bayesian tools . 133
9.3.2 Bayesian inference and MCMC 133
9.3.3 Posterior and intervals 133

9.3.3.1 Equal tail interval 134
9.3.3.2 Highest Posterior Density (HPD) Interval . . . 134
9.3.3.3 Region of Practical Equivalence (ROPE) . . . 134

9.3.4 Model checking . 135
9.3.4.1 Sampling convergence 135
9.3.4.2 Choice of priors 135
9.3.4.3 Model comparison 136
9.3.4.4 Sensitivity analysis 137
9.3.4.5 Posterior predictive checking 137
9.3.4.6 Sample size and power analysis 137

9.4 The empirical data . 137
9.4.1 The algorithms . 138
9.4.2 The benchmark functions 139
9.4.3 The experimental conditions 139
9.4.4 The logged metrics . 139
9.4.5 The research questions 140

9.5 Statistical Models . 141
9.5.1 Compensating the effects of benchmarks 142
9.5.2 Probability of success 143

9.5.2.1 The model . 143
9.5.2.2 Model interpretation 144
9.5.2.3 Remarks . 145

9.5.3 Algorithm relative improvement over Random Search . 146
9.5.3.1 The model . 146
9.5.3.2 Model interpretation 147
9.5.3.3 Remarks . 148

9.5.4 Ranking comparison . 148
9.5.4.1 The model . 148
9.5.4.2 Model interpretation 149
9.5.4.3 Remarks . 150

9.5.5 Number of function evaluations to converge to a solution 151

CONTENTS xxi

9.5.5.1 The model . 152
9.5.5.2 Model interpretation 153
9.5.5.3 Remarks . 155

9.5.6 Multiple group comparison of CPU time 155
9.5.6.1 The model . 156
9.5.6.2 Model interpretation 156
9.5.6.3 Remarks . 157

9.5.7 Extending the models 158
9.6 Conclusion . 158

10 Paper F: Challenges and Strategies for Undertaking Contin-
uous Experimentation to Embedded Systems: Industry and
Research Perspectives 161
10.1 Introduction . 162
10.2 Background . 163
10.3 Research method . 165

10.3.1 Literature review . 165
10.3.2 Multiple case study . 166

10.4 Challenges and proposed strategies 167
10.4.1 Technical Challenges . 168

10.4.1.1 Lack of over the air (OTA) updates and data
collection, . 168

10.4.1.2 Lack of experimentation tools that integrate
with their existing tooling 168

10.4.1.3 Expensive testing environments 170
10.4.1.4 Experimentation constraints in real-time and

safety-critical systems. 170
10.4.2 Business Challenges . 171

10.4.2.1 Determining good experimentation metrics and
metrics validation. 171

10.4.2.2 Privacy concerns regarding user data. 171
10.4.2.3 Lack of sharing user data in business-to-business

(B2B) solutions. 171
10.4.2.4 Lack of insights obtained from the collected data.172
10.4.2.5 Long release cycles 172

10.4.3 Organizational Challenges 173
10.4.3.1 Managing multiple stakeholders in the experi-

ment design. 173
10.4.3.2 Highest Paid Person Opinion - HiPPO. 173
10.4.3.3 Tuning experiments is repetitive and requires

highly qualified engineers. 173
10.5 Validity Threats . 174
10.6 Conclusion . 174

11 Paper G: The HURRIER Process for Experimentation in Business-
to-Business Mission-Critical Systems 177
11.1 Introduction . 178
11.2 Background and related work 179

11.2.1 Continuous experimentation 179

xxii CONTENTS

11.2.2 Experimentation processes 181
11.2.2.1 The Build-Measure-Learn model 181
11.2.2.2 The ESSSDM model 182
11.2.2.3 The QCD model 182
11.2.2.4 HYPEX model 182
11.2.2.5 The RIGHT model 182

11.3 Research Method . 183
11.3.1 The case study . 183

11.3.1.1 The case company 183
11.3.1.2 Data collection 184
11.3.1.3 Data analysis 186

11.3.2 Identification of the HURRIER process 187
11.3.3 Validity considerations 188

11.4 Continuous experimentation and practices 189
11.4.1 Types of experiments 189

11.4.1.1 Business-driven experiments 189
11.4.1.2 Regression-driven experiments 189
11.4.1.3 Optimization and tuning experiments 190
11.4.1.4 Customer support experiments 190

11.4.2 Experimentation practices and techniques 190
11.4.2.1 Experiment design and analysis 190
11.4.2.2 Variation assignment 192
11.4.2.3 Implementation techniques 193
11.4.2.4 Release techniques 194

11.5 Examples . 195
11.5.1 Example A: Business-driven experiments 195
11.5.2 Example B: Regression-driven experiments 197
11.5.3 Example C: Optimization and tuning experiments . . . 199
11.5.4 Example D: Customer support experiments 200

11.6 The HURRIER Continuous Experimentation Process 200
11.6.1 The R&D organization 201

11.6.1.1 Pre-study . 201
11.6.1.2 Incremental development 203

11.6.2 The internal validation 203
11.6.2.1 Continuous integration 204
11.6.2.2 Simulation . 204
11.6.2.3 Internal laboratory evaluation 204

11.6.3 Single customer validation 204
11.6.3.1 Customer laboratory evaluation 205
11.6.3.2 Passive launch 205
11.6.3.3 Restricted launch 205
11.6.3.4 One customer gradual rollout 205

11.6.4 Multiple customer validation 206
11.6.5 The internal and the customer feedback channels 206

11.7 Discussion . 207
11.7.1 RQ1:What are the types of experiments that are con-

ducted in Ericsson and that are relevant in the develop-
ment of mission-critical B2B systems? 207

CONTENTS xxiii

11.7.2 RQ2: What are the current continuous experimentation
practices used at Ericsson in the development of mission-
critical B2B systems? 208

11.7.3 RQ3: Can the HURRIER process can be used to drive
CE in mission-critical B2B systems at Ericsson? 209

11.7.4 RQ4: What are the current CE challenges and opportu-
nities in mission-critical B2B systems observed at Ericsson?210

11.8 Conclusion . 211

12 Discussion 213
12.1 Objective 1 . 213

12.1.1 RQ1: What are the characteristics of an automated
experimentation architecture? 214

12.1.2 RQ2: How can we utilize automated experimentation to
optimize an existing software-intensive systems? 215

12.1.3 RQ3: What are the main components to run trustworthy
online controlled experiments? 215

12.1.4 RQ4: How are multi-armed bandit (MAB) algorithms
used in online field experiments? 216

12.1.5 RQ5: How can we improve the conclusion validity on
the analysis of optimization algorithms with benchmark
functions in different domain-specific research questions? 217

12.2 Objective 2 . 217
12.2.1 RQ6: How can the embedded systems industry adopt

continuous experimentation in their development process?218
12.2.2 RQ7: How experimentation can be conducted in mission-

critical business-to-business systems? 221

13 Conclusion 223
13.1 Future work on experimentation. 224

13.1.1 Automating experiments. 224
13.1.1.1 Experimentation ontology 224
13.1.1.2 Hypotheses generation 224
13.1.1.3 Counterfactual analysis 225

13.1.2 Small-sample experiments 225
13.1.3 Longitudinal experiments 226
13.1.4 Causal inference beyond experiments 226

Bibliography 229

xxiv CONTENTS

Chapter 1

Introduction

Understanding the customer preferences and needs has become of strategic
importance for software development companies to survive and grow. Today,
software development companies use the collected data to assist their decision-
making and gain insights into customer preferences [2,3]. Customer data enables
companies to timely adapt their business strategies and gain a competitive
edge by delivering better products and services to their customers [4, 5].

From web-facing to embedded systems, software development organizations
collect data from multiple sources to help them in their decision-making and
development process [6]. Even if technically correct, software functionalities
might not be relevant, be implemented in a suboptimal way, fail to deliver
value to the customers, or can deteriorate the customer experience [7–9]. To
succeed and maintain a competitive advantage, companies need to prioritize
the development of software features and functionalities that deliver value and
that are relevant to the customers [2, 7, 10].

Previous studies show that, often in the development of systems, the prioriti-
zation of a feature is driven by guesswork, previous experiences, beliefs of those
involved in the feature selection process, and partial or incomplete knowledge
of the customer preferences [2, 7, 11]. This ad-hoc prioritization process might
not be aligned with the actual user preferences, behaviors, or even with the
company’s business goals. This mismatch is leading some software industries
to look towards a more systematic way to deliver value in their development
approaches [2,12]. To make more informed decisions, these software companies
rely on several qualitative and quantitative customer feedback techniques such
as surveys, interviews, participant observations, prototypes, mock-ups, feature
usage, product data, and support data to determine and validate a feature
value [6].

However, not all of the mentioned customer feedback techniques are adequate
for fast-iterative software development, a large and diverse user base, business-
to-business applications, or for the development of embedded systems. For
example, although interviews and participant observations can generate valuable
insights on user behavior, these techniques are expensive, they can take several
months, and they are based on a limited number of participants, which means
that these methods generate small amounts of data. Even observational studies
with a sample of hundreds of people can be biased towards a user segment if the

1

2 CHAPTER 1. INTRODUCTION

software is used by several thousands of users or the study might not have power
enough to detect a small effect size that still has practical significance [13].

Therefore, companies need additional techniques to collect a larger amount
of trustworthy and unbiased structured data to help in the development and
decision-making of not only larger modifications with a big impact but also
incremental changes in smaller functionalities. Companies are investing in the
collection and analysis of post-deployment data to improve and optimize their
current products, to drive innovation in features, and to generate insights on
user preferences [14,15].

A controlled randomized experiment is an empirical method where an ob-
server can test a hypothesis by manipulating one or more factors on randomized
subjects while keeping the other parameters constant and observe effects on
the outcome variables [16]. This technique allows the observer to make causal
inferences regarding the manipulated factors and the outcome variables. Com-
bining post-deployment data with randomized experiments allows software
companies to establish a causal inferences relationship between changes in
their software and observed user behavior. Although not the only possible
design, A/B testing stands as one of the simplest and key techniques to run
experiments in online software systems. A/B testing is widely used in industry
and has gained significant research interest in the past decade [2, 17–21].

Web-facing software companies have long verified the benefits of online
experiments and utilize it as a standard development practice [2, 18–22]. With
the increasing number of simultaneous and overlapping experiments, it is
becomes unfeasible for the development organization to grow its size and
number of data scientists at the same rate. This situation is leading companies
to look for different techniques that can automate the experimentation process
and reduce the cost of time for each experimental iteration [18,23, 24]. In this
scenario, machine learning, artificial intelligence and self-adaptation techniques
can aid the experiment organization to automate this process and run more
experiments at a lower cost [25,26] and to increase the trustworthiness of the
experimentation platform to make the process less prone to human mistakes [27].

At the same time, the embedded systems domain (automotive, telecom-
munication, and consumer electronics) is still in the early stages of running
experiments but they see experimentation and in particular automated experi-
ments as one of the approaches that can increase their competitiveness [28–31].

This thesis analyzes experimentation from these two aspects, automated
experimentation, and experimentation in the embedded systems domain. First,
we analyze how to support and optimize their software systems through au-
tomated experiments. This is investigated through the perspectives of the
software architecture, the algorithms for the experiment execution, and the
experimentation process. Second, we analyze how embedded systems companies
can adopt continuous experimentation to continuously validate and deliver
value to their customers. This is investigated from the perspectives of the
software development process and focuses on the experimentation aspects that
are distinct from web-facing companies.

This thesis was conducted in the context of the WASP (Wallenberg Artificial
Intelligence, Autonomous Systems, and Software Program, and in the context
of the Software Center. We have focused on conducting research in close collab-
oration with industry partners and on problems relevant to them. Considering

3

the included and related publications produced during this thesis, we have
collaborated with 12 different companies globally. All the included publications
originated from discussions with our industrial partners and address specific
problems faced by them.

The remainder of this thesis is organized as follows. Chapter 2 contains a
background review of the main concepts used throughout this thesis. Chapter
3 presents the objectives of this thesis, the research questions, and an overview
of the different research strategies and data analysis methods used in the
included publications. Chapter 4 discusses each included providing a summary
of its main contributions as well as how they relate to the other publications
produced in this doctoral research but not included in this thesis. Chapters 5
to 11 contains the included publications. Chapter 12 discusses the proposed
objectives and research questions in light of the included publications. Finally,
chapter 13 concludes this thesis and discusses potential research directions for
experimentation in software-intensive systems.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This section introduces the central concepts that are relevant and used through-
out this thesis. For topics that are related to one specific paper, we refer to
the background and related work section of each individual paper.

2.1 Experiments in software systems

Research and industry have long used the term controlled experiments [17,32] to
refer to experimentation in software systems. However, the applied methodology
does not control for other parameters and variables that can influence the
experiment result, [33,34] and term randomized experiments (without the word
controlled) is more accurate.

Since the experiments are often applied in natural settings (as opposed to
contrived settings of a traditionally controlled experiment) a more appropriate
term would be field experiments [35]. The classification as field experiments also
emphasizes better many of the challenges faced by software organizations, which
are not seen in properly controlled experiments, such as metric sensitiveness
and experiments being sized to samples of hundreds of thousands.

In the subsequent chapters of this thesis, we used the terms controlled exper-
iments, field experiments, and randomized experiments without any distinction,
despite all of them being better categorized as randomized field experiments.
For other field experimental designs such as quasi-experiments, multi-armed
bandits, or crossover designs we refer to them by the appropriated name. The
term experiment refers to any experimental design (randomized or not).

2.2 Randomized experiments

The two-group design, also called A/B testing, is the simplest randomized
experimental design used in software experimentation [2, 16]. In this design,
users are randomly assigned to different variants of the product. The control
variant represents the current system, without any modifications, and the
treatment variant, is the system with a modification X. The modification X can
be modifications in existing functionalities of the system (e.g. a different set of
parameters for each variation), or the system with a new feature or functionality

5

6 CHAPTER 2. BACKGROUND

(e.g. different implementation of a new feature). Both variants are properly
instrumented to send data to the research and development organization.
The different variations are randomly assigned to different users, and, after a
predetermined period of time, the metrics for each variation are statistically
compared. If the only consistent difference between the experiments’ variants
is the modification X, the randomization assumptions hold true, the users of
both groups are comparable, the metrics have adequate sensitiveness, and the
experiment is properly powered, the research and development organization
can establish a causal relationship between the modification in the system and
the change in the metrics between the different variations. Kohavi et al. [2]
provide an in-depth discussion of common experimental design techniques used
in online experiments.

2.3 Other experimental designs

The software industry has also explored a range of other designs such as
factorial and fractional designs [2], non-randomized designs such as quasi-
experiments [36,37], where randomization is not applied to the treatments, and
multi-armed bandits experiments [38], where the treatments are dynamically
allocated based on their past metric performance.

2.3.1 Factorial and fractional experiments

Factorial and fractional experiments are specific types of randomized experi-
ments. In factorial experiments, more than one experimental factor is evaluated
at the same time [16]. This design introduces a larger number of experimental
groups but it is able to detect an interaction between factors, which can lead
to significant learning for the organization [2].

Fractional factorial experiments are a reduction of factorial designs to
reduce the number of experimental groups by assuming that higher-order
interactions are negligible. This design aims to identify the factors that have
a higher impact. To achieve that, this design confounds the main low-order
interaction effects (depending on the resolution of the design) with the higher-
order interactions [16]. Kohavi et al. [2] considers this design a bad practice due
to the common presence of interactions and the impact these have in result.

In online experiments, both factorial and fractional experiments are called
multi-variate experiments (MVT).

2.3.2 Quasi-experiments

Quasi-experiments are a specific type of experiment that supports causal and
counterfactual inference similarly to randomized control experiments, with the
key characteristic that it lacks random assignment [33, 36, 37]. The assignment
of variations to the subjects occurs by using a cut-off criterion to divide the
groups. The criterion can be based on natural conditions such as demographic
data or on other criteria or artificial conditions such as clustering methods based
on different characteristics. Since quasi-experiments do not use randomization
to minimize selection bias this can decrease internal validity, since additional

2.4. CONTINUOUS EXPERIMENTATION. 7

confounding factors can be introduced during the assignment. However, well-
planned transparent designs can minimize internal validity threats. One of
the key motivating factors to use quasi-experimental designs compared to
randomized designs is in situations where its randomization is impractical or
unethical. In the analysis, matching techniques can be used to reduce the
variation between the experimental groups [36,37].

2.3.3 Crossover experiments

Crossover experimental design is a particular type of design that the same
subjects receive a series of treatments over time [39]. In this design, each
subject serves as its own control since we measure and evaluate within-subjects
variance. One of the challenges of crossover designs, is potential the presence
of carryover or learning effects is identified. In this case, if not controlled
for that the variance can significantly increase (or decrease) invalidating the
design, because the subjects change as they are exposed to different treatments.
However, if the presence of carryover is known, different groups with different
treatment sequences can be created to estimate the carryover effects [39]. One
of the advantages of crossover designs is when there is a limited number of
subjects that do not present carryover effects.

2.3.4 Multi-armed bandit experiments

A multi-armed bandit experiment is a type of experiment design that that aims
to minimize the cumulative regret by allocating fewer users to under-performing
variants. As an example, if A is the current system and B is the system with a
modification. Initially, both A and B are allocated with 50% of the users. If A
is under-performing B, the design shifts the user allocation to B, and be would
have more than 50% of the users. This type of design is aimed at minimizing
the average number of users that are exposed to worse variations. In Chapter
9, we provide an overview and comparisons of multi-armed bandit designs and
controlled experiments.

2.4 Continuous experimentation.

Continuous experimentation has often been referred to as the process of running
experiments systematically and continuously in the software organization [32].
However, research does not provide a systematic definition or scope to what
constitutes continuous experimentation. Despite the reference to experiments,
continuous experimentation has been used to refer to a broad range of other
techniques that are not experimental design but rather field evaluations such
as canary releases, dark launches, or online optimization.

Yaman et al. [40] defined continuous experimentation as “as an experiment-
driven development approach that may reduce such development risks by
iteratively testing product and service assumptions that are critical to the
success of the software”. The definition reinforces the term experiment-driven
and the authors refer to “experiment-driven development as a means of testing
critical product assumptions in the software development process”. However,

8 CHAPTER 2. BACKGROUND

the proposed definition does not emphasize the use of Design of Experiments
(DoE) [16] in the experimentation-driven process.

Schermann et al. [41] state that “Continuous experimentation guides de-
velopment activities based on data collected on a subset of online users on a
new experimental version of the software. It includes practices such as canary
releases, gradual rollouts, dark launches, or A/B testing”. This statement
expands continuous experimentation from the original design of experiments
or experiment-driven to the evaluation of experimental software, the evalua-
tion process can be through experiments or not. This change in scope moves
experimentation from the methodology aspect to the state

Giaimo et al. [42] refer to continuous experimentation as a way to “system-
atically deploy and run instrumented software variants during the development
phase in order to collect data from the field of application.”

In this thesis, we consider continuous experimentation as the definition of
“techniques that are used to systematically and continuously evaluate, with an
experiment methodology, the software deployed in the field”. This definition
differs from the others in different aspects. While this definition broadens the
scope of experimentation it emphasizes that the techniques should be evaluated
with an experimental methodology.

2.5 Experimentation models

Despite the simplicity of the A/B testing experimental design, running trust-
worthy experiments systematically in a software development organization
presents many challenges. These challenges can be grouped from the business,
organizational, and from the technical perspective [32]. From the business
perspective, an experiment can have multiple metrics that might move in
opposite directions. The analysis of these experiments is a challenging process,
as they can involve multiple stakeholders. It also requires a clear view on how
these metrics connect to the business goals of the company [27,43,44]. From
the organizational perspective, a vertical organizational structure might not be
willing to accept experimentation as part of the development process [2]. From
the technical perspective, even companies with a large user base have difficulties
in sizing their experiments for high confidence levels and power. Collecting
such an amount of data can take between weeks and months [23,45] and might
require specialize statistical models to improve metric sensitiveness [43] or
domain-specific modifications in the experimentation process [23].

Challenges in these three perspectives have led researchers to investigate
and develop multiple experimentation-driven models. These models are used
for both introducing, refining, and scaling experimentation inside companies.

2.5.1 The Build-Measure-Learn model

The Lean Startup methodology [46] proposes an approach for companies to
continuously and systematically innovate from a startup perspective. The
methodology employs a Build-Measure-Learn cycle to ensure that the software
development is aligned with the customer’s wishes. One of the key aspects of
this Build-Measure-Learn cycle is running scientific experiments to validate
customer needs and ensure that the product is aligned with these needs.

2.5. EXPERIMENTATION MODELS 9

The build phase reinforces the use of a minimum viable product to steer
the product roadmap’s direction in a startup environment. The measure
phase emphasizes instrumentation needs in the products to measure users’ and
systems’ behavior. The learn phase uses collected post-deployment data to
understand and learn movements in hypothesis metrics. This methodology
describes a general experimentation process similar to experiments for learning
and innovation.

2.5.2 The ESSSDM model

The Early Stage Software Startup Development Model (ESSSDM) [47] proposes
an operational support, based on lean principles, for practitioners to investigate
multiple ideas in parallel and scale their decision-making process. The model
consists of three steps. The first is the generation, in which the startup (or
the existing company) generates ideas to expand their product portfolio. The
second is the prioritization of the potential ideas in a backlog. The third is the
systematic validation funnel using a Build-Measure-Learn loop similar to the
Lean Startup methodology. In this step, multiple ideas can be investigated
and validated in parallel. The funnel is divided into four stages: the validate
problem, the validate solution, the validate the minimum viable product on
a small scale, and the validate the minimum viable product on a large scale.
This model supports the use of experiments for learning and innovation in a
similar manner as the Build-Measure-Learn model.

2.5.3 The QCD model

The QCD model (Quantitative/qualitative Customer-driven Development) [48]
explores the continuous validation of customer value instead of relying on
up-front requirement specification. The QCD model treats requirements as
hypotheses that need customer feedback for validation at the beginning of the
development process. All hypotheses are gathered in a hypotheses backlog,
where they are prioritized and selected for evaluation. In the validation cycle,
the selected hypothesis is evaluated through both quantitative and qualitative
feedback. If the hypothesis is not confirmed through the evaluation techniques,
it can be refined in another hypothesis for a future iteration or abandoned.
This model provides a higher-level experimentation process abstraction. It
considers both qualitative and quantitative data analysis methods.

2.5.4 HYPEX model

The HYPEX (Hypothesis Experiment Data-Driven Development) model [5] is
a development for companies aiming to shorten the feedback loop to customers.
Instead of spending engineering efforts on large pieces of non-validated function-
ality, the HYPEX model reinforces the need for an iterative and incremental
approach. The model divides the development process into six steps:

1. Generation of a feature backlog.

2. Feature prioritization and gap specification.

3. Implementation of a minimum viable feature (MVF).

10 CHAPTER 2. BACKGROUND

4. Analysis and comparison of the actual behavior with the expected one.

5. Generation of hypotheses to explain the actual behavior of the MVF.

6. Deciding if the feature should be abandoned, iterated once more, or if it
should be considered completed.

2.5.5 The RIGHT model

The RIGHT (Rapid Iterative value creation Gained through High-frequency
Testing) [7,8] is a model for driving experiments in a startup environment. The
RIGHT process model uses the Build-Measure-Learn loop to help a startup
company to achieve the company’s vision through continuous experiments.
Hypotheses that implement business strategies are generated and prioritized,
minimum viable features or products are implemented and instrumented, and
data are collected. The analysis of the collected data helps the decision-making
process in a similar manner to the HYPEX model [5], where decisions to
continue iterating, abandoning, or moving on to the next cycle are made. The
RIGHT model describes a high-level experimentation process that can be used
in innovation and learning experiments.

2.6 Automated experiments

While experimentation can be automated in different levels of abstraction,
from complete iterations with higher-level hypotheses, hypotheses generation
to compilation results, it has been mostly discussed in software development in
terms of sequential optimization and in experiment execution.

Bosch and Olsson [26] first proposed the concept of automated experimen-
tation in software systems with aim of letting the system own and control the
experiments as opposed to the R&D organization.

Sequential optimization experiments refer to the use of sequential exper-
iments to optimize a particular system behavior. In these experiments, a
hypothesis about a feature change is manually made by developers. This
hypothesis is commonly a change in parameter values and an optimization
algorithm searches for the optimal value for this parameter based on live user
response. The simplest optimization algorithm is a grid search with the use of
sequential A/B tests or A/B/n tests.

The architecture framework proposed in Chapter 5 provides a general
architecture framework for automated experimentation, that is not restricted
only to sequential optimization. However, its instantiation as well as most
of the work on automated experimentation focus on sequential optimization
[29,30,49–51].

A different perspective is on automating the deployment and execution of
A/B testing. This has been the standard approach taken by online companies
to reduce the cost of each experiment iteration. In this perspective, both
hypotheses generation (from parameter modifications to large functionalities)
and the learning of the experiments are out of the scope of the experimentation
system and is conducted mainly by experiment owners and development teams.
This perspective on automating the experiment execution process is discussed
in chapter 7.

2.7. EXPERIMENTATION IN THE EMBEDDED SYSTEMS. 11

2.6.1 Algorithms for online optimization

A range of algorithms has been proposed and used in both research and industry.
While it is not of interest to this thesis to overview all possible algorithms that
can be used for sequential optimization experiments, we provide below a brief
description of four classes of algorithms that can be used.

In the context of combinatorial or discrete optimization, multi-armed bandit
algorithms have been used for optimization combined with regret minimization
[38]. These algorithms assume that there is a finite (and often small) number of
variations to choose from. Based on the user response, new users are allocated
more to best-performing variants.

For optimization of continuous (linear) variables with regret minimization,
χ-bandits algorithms can be used [29, 52]. This class of algorithms divides
the search space into a tree of possibilities. The growth direction of the tree
depends on the user response.

For optimization of continuous variables without considering regret mini-
mization, a range of black-box optimization algorithms can be used. Examples
of these algorithms are Bayesian Optimization [53], Evolutionary and Nature-
inspired Algorithms [54,55], the Nelder-Mead [56] among others.

Finally, automated hyperparameter tuning in machine learning has provided
a range of algorithms that can be used to run automated experiments with
mixed discrete and continuous variables. Examples of these algorithms are the
Tree-Parzen Estimator [57], BOHB [58], HPBandster [59], and the SMAC [60].
These algorithms provide more flexibility in the specification of the search
space, better performance in the case of a low number of data points at the
expense of higher computational time for each iteration which can limit its
usage in live settings.

The choice and comparison of these algorithms are often conducted utilizing
a group of benchmark functions [61, 62] (benchmark suites) and utilizing
frequentist statistical methods [63]. However, these statistical methods are often
misused, in particular in the case of evolutionary algorithm comparisons, and
do not take into account correlation due to repeated measures, interpretation of
effect size, family-wise error correction, verification of the model assumptions or
simply utilize non-parametric tests for individual benchmark function ranking.
The lack of systematic comparison between these algorithms increases the
difficulty to make an informed decision regarding the selection of an appropriate
optimization algorithm.

2.7 Experimentation in the embedded systems.

The first research discussing the experiments in embedded systems appeared
in 2012 [64]. This paper discusses the possibility of utilizing experimentation
to drive innovation in embedded systems and identifies general challenges,
such as experimentation in safety systems, managing multiple stakeholders,
and hardware limitations. It also presents an initial infra-structure to run
experiments in embedded systems with a case study in infotainment systems
in the automotive industry.

The case study presented in Chapter 5 and in [65, 66] instantiated an
experimentation framework in the Robot Operating System (ROS) in a research

12 CHAPTER 2. BACKGROUND

mobile autonomous vehicle in a proxemics distance problem.

Giaimo et al. [42] investigated the broader range of continuous experimen-
tation techniques in a systematic literature review. The study concludes that
there are more conceptual analysis and challenges identification than proposed
solutions. Continuous experimentation has started to gain visibility and be
applied in the automotive domain. Giaimo and Berger [67] discuss continuous
experimentation in the context of self-driving vehicles. The paper presents
functional (such as instrumentation, logging, data feedback to a remote server)
and non-functional (separation of concerns, safety, short cycle to deployment)
requirements to achieve continuous software evolution. Giaimo et al. [68] inves-
tigated the perception of practitioners on the automotive domain on the use
of experimentation in the automotive domain. While the perception is posi-
tive practitioners see safety and organizational structure as major challenges.
Mattos et al. [31], discuss challenges and lessons from the automotive industry
when starting to run the first A/B experiments. While some challenges are
visible in other domains, such as the number of variants, suppliers, or the low
number of users to run, others are specific to the automotive domain and do not
generalize to other domains, such as restrictions imposed by the AUTOSAR
architecture.

However, experimentation in the automotive industry has only recently
started and both practice and research in this domain still does not have
sufficient evidence and validated processes for running in other automotive
companies or generalization to other embedded systems.

In the context of embedded telecommunication software systems, we have
investigated the use of continuous experimentation techniques in collaboration
with Ericsson and Sony Mobile [29, 30, 69]. The continuous experimentation
perspective in the embedded telecommunication domain is discussed in detail
in Chapter 11.

2.8 Experimentation in the B2B domain.

One important aspect of CE in the business-to-business (B2B) domain is the
difference between customers and users. Customers acquire or subscribe to a
product or service for the users [70,71]. In the business-to-customer domain,
the customers are also the users, and generally acquire or subscribe to the
product for themselves. Therefore, in the B2B domain, vendors usually sell
products and services to other companies that sell products or services to users.
A distinctive factor is that user data, product usage, and user feedback are not
readily or easily available for the vendors without prior agreements. This can
restrict the data collection, user feedback, and even new deployments aimed at
product improvement.

Yaman et al. [40] describe the process of introducing continuous experi-
mentation in companies with an established development process using two
company cases with pure software products, Ericsson and a digital business
consulting company. The study investigates the introduction of experimenta-
tion in a cloud service platform, describing relevant decision points taken (such
as the target of the experiment, how to update the experiment design, etc),
benefits from the experiment (new insights, reduced development effort, etc)

2.8. EXPERIMENTATION IN THE B2B DOMAIN. 13

and challenges (access to end-users, inexperience with experimentation, length
of the process, etc). Rissanen and Münch [71] investigate challenges, benefits,
and organizational aspects when introducing CE in the B2B domain. They
identified that customers play a major role when designing and deploying an
experiment.

We have further investigated the use of experimentation in the business-to-
business domain in Chapter 11.

14 CHAPTER 2. BACKGROUND

Chapter 3

Research approach

In this chapter, we present the research objectives of this thesis, the specific
research questions for each objective, and the research strategies and methods
used in the included publications.

3.1 Objectives

This thesis has two main objectives that are investigated and discussed in detail
in the seven included papers (chapters 5 to 11). These objectives are divided
in multiple research and sub research questions. The mapping between the
research questions and the included publications can be visualized in figure 4.1.

3.1.1 Objective 1

The first objective of this thesis is the analysis of how software companies can
support and optimize their systems with automated experiments.

Web-facing companies recurrently report the benefits of conducting exper-
iments as part of their product development [4, 13, 18, 19, 45, 72, 73]. While,
in large-scale companies, experimentation has scaled to several thousands of
experiments a year most of these experiments are created, developed, and con-
ducted by humans. This thesis investigates how software companies automate
part of their experimentation processes as well as how research developments
can increase the level of automation in experiments. This thesis study the
automated experiments from the perspective of software architectures for auto-
mated experimentation on chapters 5 and 6, the algorithms for the experiment
execution on chapters 8 and 9 and the experimentation process on chapter 7.

For this objective, the following research questions and sub-questions are
discussed in the included publications:

• RQ1: What are the characteristics of an architecture for automated
experimentation?

– RQ1a: What architectural software qualities support automated
experimentation?

– RQ1b: What are the existing software architectures that support
these qualities?

15

16 CHAPTER 3. RESEARCH APPROACH

• RQ2: How can we utilize automated experimentation to optimize an
existing software-intensive systems?

• RQ3: What are the main components to run trustworthy online con-
trolled experiments?

– RQ3a: What are the set of activities that are conducted in each
experiment iteration?

– RQ3b: What is the role and lifecycle of metrics in the evolution of
experiments?

• RQ4: How are multi-armed bandit (MAB) algorithms used in online
field experiments?

– RQ4a: What are the restrictions and pitfalls associated with MAB
algorithms applied to software online experiments?

– RQ4b: What are the decisions involved in the design of MAB-based
online experiment?

• RQ5: How can we improve the conclusion validity on the analysis of
optimization algorithms with benchmark functions in different domain
specific research questions?

3.1.2 Objective 2

The second objective of this thesis is the analysis of how non web-facing
companies can adopt continuous experimentation as part of their development
process.

Research in continuous experimentation has mainly focused on driving
experimentation in web-facing business-to-customer companies that have high-
speed deployment cycles, constant connectivity, and user data collection. How-
ever, continuous experimentation can have a significant impact in software-
intensive companies developing embedded, telecommunication, mission-critical
and business-to-business systems. These companies face many different chal-
lenges compared to web-facing companies, including safety-regulated environ-
ments, larger development and deployment cycles, non-constant connectivity,
higher distance to users in terms of data collection and ownership, service level
agreements among others. All these differences impact how experimentation
is planned and conducted. This thesis investigates the challenges related to
conducting experimentation in these companies on chapter 10 and the differ-
ent types of experiments, techniques, and processes in business-to-business
mission-critical systems on chapter 11.

For this objective, the following research questions and sub-questions are
discussed in the included publications:

• RQ6: How can the embedded systems industry adopt continuous experi-
mentation in their development process?

– RQ6a: What are the recognized challenges towards continuous
experimentation faced by the embedded systems industry?

3.2. RESEARCH CONTEXT 17

– RQ6b: What are the recommended strategies to facilitate the use
of continuous experimentation in the embedded systems domain?

• RQ7: How experimentation can be conducted in mission-critical business-
to-business systems?

– RQ7a: What are the types of experiments that can be conducted
and that are relevant in mission-critical B2B systems?

– RQ7b: What are the current continuous experimentation practices
used in mission-critical B2B systems?

– RQ7c: What processes can be used to drive CE in mission-critical
B2B systems?

– RQ7d: What are the current CE challenges and opportunities in
mission-critical B2B systems?

To achieve these objectives discussed in the previous section, this thesis
utilizes a range of different research methods, such as literature reviews, exper-
imental simulations, case studies, and empirical evaluations in collaboration
with multiple companies. In the next sections, we provide an overview of these
methods and the collaborations with the industry.

3.2 Research context

This research was conducted in the context of two initiatives, the WASP and
the Software Center.

The Wallenberg AI, Autonomous Systems and Sofware Program (WASP) 1

is a research initiative that focus on the development of artificial intelligence
and autonomous systems acting in collaboration with humans, adapting to and
learning from their environment through sensors information and knowledge,
forming intelligent systems-of-systems. Software is seen as the main enabler
of these systems. Automated experiments allows software to be optimized
through the interaction with humans and the environment. The first objective
of this thesis is placed in the WASP context. Both Sony Mobile and Ericsson,
which were part of studies in the context of automated experiments and online
optimization are affiliated to WASP initiative.

The Software Center 2 is a initiative that runs research projects in active,
close and long-term collaboration with industrial and academic partners. Both
objectives of this thesis are placed in the context of the Software Center. Many
of the publications had collaboration with Software Center companies, such as
papers B, D, e for objective 1, and papers F, h, G, j, and p for objective 2.

3.2.1 Company collaborations

In the context of these two initiatives, we have collaborated with multiple
industrial partners. Below, we provide a brief description of each company
collaboration that was part of the included publications and their experience and

1https://wasp-sweden.org/research/
2https://www.software-center.se/about/mission/

18 CHAPTER 3. RESEARCH APPROACH

relation to experimentation. Since both Ericsson and Microsoft are explicitly
mentioned in the included publications (chapters 6, 7 and 11). The other
companies, referred as Company I-VIII, remain anonymous as requested by
them when conducting the study.

Ericsson Ericsson AB is a multinational networking and telecommunications
company that develops, produces, and sells telecommunication equipment,
services, software, and infrastructure to telecommunication operators in both
mobile and fixed broadband. Ericsson employs over 95,000 people in around
180 countries. Over the last 10 years, Ericsson started the transition from
traditional development to agile and towards DevOps. In the last 5 years, CE
started to get attention and promotion inside Ericsson, and although continuous
experimentation is not a well-defined process throughout the company, several
teams independently conduct over a thousand field experiments a year, in
different products and parts of the system. Experiments in Ericsson are used in a
large number of use cases ranging from innovation and new feature development
to legacy assurance and performance optimization. We have collaborated with
multiple teams, areas, and products spread over seven locations in five countries.

Microsoft Microsoft Corporation is a multinational technology company
that develops, manufactures, licenses supports, and sells computer software,
personal computers, consumer electronics, and services. The Analysis and
Experimentation group at Microsoft is one of the leading groups in online
experiments running over 20 000 experiments a year [45] in multiple types of
systems such as web, personal computer, mobile, embedded systems, and cloud
infrastructure.

Company I Company I is a travel fare aggregator and travel engine provider.
It develops booking and travel solutions used by both individuals and the travel
industry. A/B testing methodologies are an integral part of the development
process of the company.

Company II Company II is a multinational company that provides telecom-
munication and networking systems. The company is adopting continuous
development practices and is looking for new strategies to deliver more value
to their customers by optimizing their products.

Company III Company III is a global automotive manufacturer and supplier
of transport solutions. As the company’s products are continuously growing in
complexity and software size, the company is looking for strategies to prioritize
its R&D effort and deliver more value to its customers. As many employees have
experience in web software development, experimentation is getting traction in
some development teams.

Company IV Company IV is a global software company that develops and
provides embedded systems software solutions related to autonomous driving
technology for the automotive industry. Autonomous driving is an emerging

3.3. RESEARCH STRATEGIES 19

and fast-moving technology and the company is looking to deliver competitive
solutions faster by adopting continuous development practices.

Company V Company V is a global software company that develops both
software and hardware solutions for home consumers. The company already
has experience running continuous experimentation in their web systems and
is starting to run experiments in their hardware solutions.

Company VI Company VI is a multinational company that manufactures
embedded systems and consumer electronics. In recent years, the company
started to adopt experimentation in their software solutions and is looking for
data-driven strategies in their embedded systems products.

Company VII Company VII is a company that develops experimentation
solutions for its customers. The company offers A/B/n, MVT, and other
experimentation tools for websites along with frameworks for experimentation
in mobile platforms. The company developed its own statistics engine and
offers solutions using MAB algorithms to customers. The company’s cus-
tomers include several multinational companies from different domains, from
entertainment to large news agencies.

Company VIII Company VIII is a software company focused on website
optimization and offering experimentation tools and solutions for A/B testing
and MABs. The company’s customers include several multinational companies
in North America, Asia, and Europe.

3.3 Research strategies

In this section, we provide an overview of the research strategies and the
research methods utilized in the appended publications of this thesis. We
utilize the ABC classification framework provided by Stol and Fitzgerald [35]
to describe each research strategy and additional publications for each research
method.

3.3.1 Field study

Field studies refer to any research conducted in a real-world setting [35]. In
this kind of study, researchers do not actively control or change any parameters
or variables of the context. The main goal is to understand the phenomena of
interest in a concrete and realistic scenario at the expense of a lower precision
of the measurements and lower generalizability of the findings, reducing both
the internal and external validity.

3.3.1.1 Case studies

An exploratory case study is a common research field study strategy in software
engineering [74–77]. While there are many definitions of what constitutes a case
study [78], we utilize the broader and widely used definition of Runeson and

20 CHAPTER 3. RESEARCH APPROACH

Höst [77]: “Case study in software engineering is an empirical inquiry that draws
on multiple sources of evidence to investigate one instance (or a small number of
instances) of a contemporary software engineering phenomenon within its real-
life context, especially when the boundary between the phenomenon and context
cannot be clearly specified” . In contrast with other types of research, this
definition emphasizes the need for a real-life context and that of a contemporary
phenomenon [78,79]. In this thesis, we conduct case studies following the five
major process steps guidelines [77,79].

The first step consists of the case study design. In this step, the objectives
are defined in terms of the object of study, the context, theoretical frame of
reference, research questions, methods to collect the data, and selection strategy
for the data collection [80].

The second step consists of the preparation of the procedures and protocols
for data collection. The protocols refer to the field procedure to guide the data
collection with the aim of preventing the researchers to miss collecting data
that was planned or not attaining ethical considerations (such as informed
consent, handling sensitive results, etc.). The protocol is a dynamic procedure
that is updated when the plans of the study change.

The third step consists of collecting data from multiple sources. These
sources can be of three different degrees [81]: The first degree consists of data
collected from direct contact with the subjects or objects of study (such as
interviews). The second degree consists of data collected indirectly from obser-
vations without interaction. The third degree consists of data from the analysis
of artifacts that were already produced and compiled (such documents). In this
thesis, we mainly collected first (interviews) and third degree (documentation)
data. Due to the exploratory and explanatory nature of our interview-based
case studies, these were designed to be semi-structured with open questions [80].
The number of interviews was decided based on saturation (when no new
information or viewpoint is gained) and availability of subjects.

The fourth step consists of the analysis of the collected data. While in case
studies we can conduct both qualitative and quantitative data analysis, the
case studies presented in this thesis focus only on qualitative data analysis
based on thematic coding [82]. We describe the thematic process used in more
detail in section 3.4.1.

Finally, the fifth step consists of reporting the results. This thesis reports
the results of four case studies in chapters 7, 8, 10 and 11.

While the described process is similar to other empirical studies, a case
study allows a flexible approach with multiple iterations over the steps give
the constraints of the specific objectives and protocols of the study [77].

3.3.2 Sample studies

A sample study is a strategy that aims to achieve the generalizability of the
findings [35]. This kind of research is unobtrusive and does not manipulate
any variables. While there are many types of sample studies (e.g. data mining,
surveys, literature reviews) we focus, on this thesis, on the literature review.

3.3. RESEARCH STRATEGIES 21

3.3.2.1 Literature review

A literature review is a type of secondary study that aims to identify evidence
concerning a specific technology, current gaps and suggest areas of investigation,
and provide a framework for positioning new research activities [83].

In this thesis, we have performed literature reviews to identify existing
software architectures and architectural qualities for an automated experimen-
tation system in chapter 5 and to identify existing challenges and solutions for
conducting experiments in the embedded systems in chapter 10.

We have performed these literature reviews in accordance with the pro-
cedures summarized by Kitchenham [83], to minimize publication bias and
increase the completeness of the search.

3.3.3 Laboratory experiments

A laboratory experiment is a research strategy that aims to observe and measure
the behavior of a sample of a population (e.g. algorithms or software systems)
in an artificial setting recreated to represent a concrete application or set of
applications [35]. In a laboratory experiment, we have high control of the
measurements and of external factors at the expense of the realism of the
application. The artificial setting differentiates this research strategy from the
commonly used field experiments in A/B testing.

Chapter 5 conducts a laboratory experiment evaluation of a mobile robot.
The environment, as well as the task, was controlled without randomization
of the experimental subjects to the different variation instances as it was an
online optimization application. Similarly, chapter 6 also utilizes a laboratory
experiment without randomization for the online optimization application of a
radio base station.

3.3.3.1 Controlled experiments

A controlled experiment is a vital part of the scientific and engineering method.
This method consists of elucidating information about why and how a system
works based on observation measurements. The process of understanding how
and why of a system is supported by the creation of empirical models [16]. In an
experiment, we have one or more input variables (the changes we are applying,
also known as independent variables), response variables (the observation of
interest, also known as dependent variables), controllable and uncontrollable
variables that can influence the response variable.

As discussed in the chapter 2, if the subjects are randomized into the
experimental groups we call it randomized controlled experiments.

In controlled experiments, we can fix the values of controllable variables in
order to minimize the effects of uncontrollable variables in the response. We
have utilized controlled experiments in Chapter 8 to observe the differences
between A/B testing and multi-armed bandits under different circumstances.

3.3.3.2 Benchmarking studies

Benchmarking studies are another type of laboratory experiment where re-
searchers set up a contrived environment to analyze and measure the difference

22 CHAPTER 3. RESEARCH APPROACH

between different techniques, such as algorithms. The environment is controlled
and consists of a number of benchmarks where the multiple techniques are
evaluated and their behavior is measured.

In the specific context of benchmarking for the comparison of optimization
algorithms, researchers have discussed many aspects of what consists of good
benchmarks. The survey by Bartz-Beielstein et al. [63] provides an extensive
survey that discusses different topics for promoting good benchmark practices,
from objective statement, selection, and characteristics of benchmarks, to the
analysis and presentation of results. However, from the analysis perspective
they focus solely on the usage of frequentist statistics and null hypothesis
testing, while their well-known limitations and pitfalls of frequentist statistics
are not considered and alternative analyses such as Bayesian Data Analysis
(BDA) and item response theory are not mentioned.

Chapter 9 addresses the specific conclusion validity problem that is common
in the analysis of optimization algorithms utilizing benchmark studies.

3.3.4 Summary

Table 3.1 shows an overview of the research strategies and methods used in
each appended paper.

Paper Research strategy Comments

A Sample study and laboratory ex-
periment

Literature review combined with
a laboratory experiment evalua-
tion with a mobile robot.

B Laboratory experiment Experimental evaluation in a con-
trolled environment testbed with
Ericsson.

C Field study Interview-based case study with
Microsof.t

D Field study and laboratory exper-
iments

Interview-based case study with 5
companies and simulation-based
controlled experiment.

E Laboratory experiments Benchmark simulations to illus-
trate the proposed statistical
models.

F Sample study and field study Literature review and a multiple
case study with 5 companies.

G Field study Interview-based study with Eric-
sson.

Table 3.1: Summary of the research strategy used in the appended publications.

3.4 Data analysis

In this thesis, we have used primarily two data analysis methods, thematic
coding, and statistical analysis. Below, we describe the theoretical foundations

3.4. DATA ANALYSIS 23

of these methods and how they were used in each appended publication.

3.4.1 Thematic coding

The data collected from our case studies, such as including interview transcripts,
documentation, meeting notes, workshop material, etc, were analyzed utilizing
the thematic coding process described by Braun and Clarke [82]. Thematic
analysis is a qualitative research method for identifying, analyzing, and re-
porting patterns observed in the collected data. This process can be taken
further to interpret different aspects of a research topic and provide a rich set
of details. Different from other qualitative thematic decomposition analyses,
such as grounded theory and interpretative phenomenological analysis (IPA)
which are theoretically bounded, thematic analysis is not research methodology
itself but a data analysis procedure. And as in such, thematic analysis allows
themes to emerge [82].

It is worth noting that within thematic analysis the themes are not a
property of the data but they emerge from the links and understanding we
make from them [84].

Thematic analysis can be divided into inductive and theoretical thematic
analyses [82]. An inductive thematic analysis allows themes to be strongly linked
to the data without a pre-existing coding frame or analytic pre-conceptions.
Theoretical thematic analysis tends to be driven by a specific theoretical area,
construct, or coding frame.

Braun and Clarke [82] present a six-phase process. The first phase consists
of familiarizing the data. This is done by the researchers in several ways, such
as participating in the interviews, transcription, reading, initial ideas, etc. In
the second phase, the researchers generate the initial codes by highlighting
interesting features of the data in a systematic way. In the third phase,
researchers search for potential themes from the identified codes in phase two.
In the fourth phase, the researchers review the potential themes in relation to
the extracted codes and with the entire data. This phase generates a thematic
map of the analysis. In the fifth phase, the researchers define and name the
themes in relation to the overall story of the analysis and contextualizing it
with existing research or theoretical constructs. The last phase consists of
producing a report including a discussion of the proposed research questions that
motivated the research and selection of compelling data extracts as examples
of the collected data.

Chapter 5 has conducted an inductive thematic analysis to find the relevant
architectural qualities in the data collected from the literature review. Chapter
7 has conducted an inductive thematic analysis from interviews, diagrams of
the process, and the platform architecture to identify the presented findings
and the proposed experimentation framework. Chapter 8 has conducted an
inductive thematic analysis of the interviews to identify and group the presented
restrictions, pitfalls, and strategies. Chapter 10 has conducted a theoretical
thematic analysis on the interviews, workshop material, and literature review
for categorizing the observed challenges and an inductive thematic analysis to
categorize the strategies. Finally, chapter 11 has utilized an inductive thematic
analysis on the interviews and in the additional collected data to derive the
HURRIER.

24 CHAPTER 3. RESEARCH APPROACH

3.4.2 Statistical analysis

Statistical analysis is the process of analyzing, summarizing, interpreting, and
presenting the collected quantitative data. While statistical analysis can be
used for describing tendencies and summarizing the data, in this thesis we focus
on inferential statistical analysis, which aims to draw conclusions from the
data considering observational or measurement errors and sampling variation.
Statistical inference relates to creating statistical models to draw inferences on
the population from data collected from a sample.

In this thesis, we utilize the two paradigms of statistical inference, frequen-
tist, and Bayesian that are explained next.

3.4.2.1 The frequentist paradigm

The frequentist paradigm refers to obtaining point estimation for statistical
model parameters under the frequency view of probability. Under this paradigm,
parameters and hypotheses are seen as unknown fixed quantities that we want
to estimate. For inference, frequentist statistics rely on procedures such as
hypothetical repeated sampling of the data (frequency view) [85]. Frequentist
statistics is the standard approach for evaluating experimental results in online
experimentation, where big data and a large number of metrics and hypotheses
are conducted simultaneously. Frequentist estimation is usually based on the
maximum likelihood estimator (MLE) or in variations of it, such as the quasi
or penalized maximum likelihood estimator.

Unfortunately, frequentist methods for null hypothesis testing have often
been misused by scientists and practitioners looking for a dichotomy tool to
assess a particular problem without evaluating the size of the observed effect or
with a discussion with complementary analysis [86]. By utilizing statistical tests
as black-box tools, many pitfalls and misuses have been observed in different
fields of science. We list some of the observed pitfalls.

[a] Lack of separation between the effect size and sample size in the p-
value [87].

[b] Lack of information regarding the null hypothesis [87–89].

[c] Misinterpretation of the actual meaning of the p-value (including by
instructors in statistics) [89–91].

[d] Misinterpretation of the meaning of confidence intervals [92,93];

[e] Lack of transparency in the reporting of the statistical procedures (such
as providing the value of test statistics, the actual value of the p-value,
confidence intervals) [92];

[f] Common problems related to the misuse of the statistical tests such as
not verifying the statistical test assumptions, not controlling for corre-
lated samples, not controlling for family-wise errors in multiple group
comparisons [94].

In this context, the Bayesian paradigm has gained attention from researchers
and practitioners as it naturally solves many of the problems listed above.

3.5. VALIDITY CONSIDERATIONS 25

Chapter 8 analyzes the results of the simulation experiments with multi-
armed bandits and A/B testing utilizing the frequentist paradigm since this is
the most common paradigm in A/B testing.

3.4.2.2 The Bayesian paradigm

The Bayesian paradigm, also called Bayesian Data Analysis, treats all unknown
quantities in the statistical model as random variables, contrasting with the
fixed constants from the frequentist approach. With the use of appropriated
conjugated priors, Bayesian inference can lead to analytical and tractable
solutions for the posterior distribution of the parameters. However, most
practical problems require a Markov Chain Monte Carlo (MCMC) sampler to
find numerical solutions for the posterior distribution of the parameters.

The main idea behind Bayesian data analysis is the reallocation of credibility
across possibilities [88]. In practical terms, we start with a prior explanation
of the results before seeing any data and a model on how the data is generated.
As we collect new data, our beliefs about the system are reallocated. The
probability of candidate explanations that do not fit the data well is therefore
reduced. In this updating process, we get a probability distribution of each
possible explanation of the data. This allows us to obtain the credible (or
uncertain) intervals [93,95].

The process of allocating explanations into probability distributions happens
through the principles of conditional probabilities and the Bayes theorem:

P(h|d) =
P(d|h) · P(h)

P(d)
, (3.1)

where d represents the data, h the explanation (or hypothesis), P(h|d) is the
conditional probability of the hypothesis given the observed data. Below are
common names for the factors in the Bayes theorem:

• P(d|h) is called the likelihood of the data d under the hypothesis h.

• P(h) is called the prior.

• P(h|d) is called the posterior. The posterior represents the probability
distribution of each parameter estimate (our hypothesis h) given our
observed data

• P(d) is called the marginal likelihood and it is a constant, that is often
impossible to compute analytically.

In chapter 9, we provide different Bayesian statistical models that can be
used to evaluate optimization algorithms, which are used in online optimization
problems. These models are used to answer different research questions and
incorporate random-effect terms to model the repeated measures that are
common in benchmarking applications [96].

3.5 Validity considerations

In this section, we present the main validity threats and considerations of the
results discussed in this thesis.

26 CHAPTER 3. RESEARCH APPROACH

3.5.1 Construct validity

Construct validity refers to what extent the operational measures represent
what is under investigation according to the research questions [77]. In case
studies, a threat to the construct validity could be if the interview questions
(or concepts) are not interpreted in the same way by the researchers and the
interviewees.

Another definition in closer context to experimentation is: “(construct
validity) involves accepting a set of operations as an adequate definition of
whatever is to be measured” [97]. In online field experiments, a construct
validity threat is the misuse of a non-validated metric (such as click-through
rate) as a latent measurement to a more complex construct (such as customer
satisfaction).

In our presented case studies in chapters 7, 8, 10 and 11, we specifically
address threats to construct validity by selecting interviewees and companies
relevant to the research questions. In those cases, if any concept was not
properly understood or if the interviewee’s answer indicated misunderstanding,
these concepts were explained and given examples to illustrate.

The laboratory experiments did not present construct threats as the inter-
pretation of the measurements was directly connected to the definition. None
of the measurements were based on latent variables, that required further
validation.

3.5.2 Internal validity

Internal validity refers to whether the unaccounted factors could impact the
results of the investigated factors when causal relations are examined [77,98].

In the context of experiments, Campbell et al. [98] describe internal validity
as the minimum requirement of which for which the results of any experiment
are interpretable. Campbell et al. also point eight primary classes of variables
that can produce confounded effects if not controlled in the design. These
variables are:

[a] History of the events. The order of the events between measurements
and the introduction of the experimental variable matters.

[b] Maturation process. The experimental subjects can change over time
(e.g. getting tired).

[c] Testing. Taking the effects of a test on the scores of a second testing.
E.g. a pretest can influence the result of the test.

[d] Instrumentation. Instruments should be calibrated to measure the pro-
duced changes in the measurement.

[e] Statistical regression. If the subjects (one or more) have been selected
from an extreme measurement group, it is more likely that an effect will
be observed.

[f] Selection of respondents. A bias in the selection process can lead to
non-comparable groups before introducing the treatment.

3.5. VALIDITY CONSIDERATIONS 27

[g] Experimentation mortality. A differential loss of respondents (not at
random) impacts the validity. E.g. a treatment leads more people to give
up on the experiment.

[h] Selection-maturation interaction. The selection criteria can interact with
other variables and be mistaken with the effect of the treatment. E.g.
the Simpson paradox discussed in chapter 8.

In the context of the laboratory experiments discussed in chapters 5, 6, 8 and
9 we have addressed every item of this list. All the measurements occur after
the introduction of the treatments. Maturation and testing are not considered
as possible confounding variables since we are investigating computational
artifacts as subjects. The instruments are based on previous research and data
collections were validated in simulations prior to the experiments. Statistical
regression, this effect was minimized with repeated measures in benchmarking
(chapter 9) and the experimental evaluations (chapters 5 and 6), and with
larger samples in the multi-armed bandit simulations (chapter 8). The selection
of the respondents does not apply to the laboratory experiments from chapter 5
and 6 as they are single respondent repeated measures, for the simulations and
the benchmarks the respondents (algorithms) were selected based on previous
research, and potential impacts of different seeds were also addressed with
repeated measures. Mortality and selection interaction do not apply to our
experiments as we are dealing with computational artifacts and simulations.

However, while internal validity has been a common priority in research
[99], it is not always possible to provide high level of internal validity in
applied research. Victoria et al. [100] argues that while randomized controlled
experiments and internal validity are essential for evaluating the efficiency of
treatments and interventions, the complex causal chains in large organizations
(and in public health), prevent simple results to be safely extrapolated to other
settings. In these cases, non-causal research and plausibility designs might be
the only alternatives to investigate the potential impact of interventions.

In this thesis, the conducted case studies in chapters 7, 8 and 10. Given the
complex context of the organizations of these case studies and their exploratory
natures, they can be potentially affected by internal validity threats since they
cannot establish causal relationships.

3.5.3 External validity.

External validity refers to what extent the results of the study can be generalized
to other situations outside of the investigated case [77, 99, 101]. In applied
research, external validity and generalization of the results are emphasized and
strengthened [100,101].

This thesis considers the external validity from two aspects. First, results
can achieve higher generalization if artifacts prove to have effectiveness in
less controlled environments in comparison with the proved efficacy (high
internal validity) in controlled environments. An example of this is the software
architecture produced in a laboratory environment in chapter 5 being used in
a less controlled environment in a company context in chapter 6.

Second, external validity can be achieved if artifacts developed or identified
in a particular context (e.g. in one organization) can also be used and identified

28 CHAPTER 3. RESEARCH APPROACH

in additional organizations. In the context of the conducted case studies, we do
not have a representative sample to generalize the findings and the results are
specific to the context of the case study (e.g. the company in that specific point
in time). However, the results are intended to enable to generalize to other
cases that have common characteristics [77]. In chapters 8 and 10, we aim to
increase the external validity of identified challenges, restriction and potential
solutions by increasing the number of case companies and triangulating the
results with existing literature and simulations. However, in chapters 7 and
11, the artifacts produced are specific to the case companies and cannot be
generalized. Nevertheless, we aim at providing maximum context so additional
cases that have common characteristics with the ones we provide can benefit
from some level of generalization.

3.5.4 Conclusion validity

Conclusion validity, or statistical conclusion validity, refers to the particular
reasons, methods, and procedures we use to draw conclusions about a possible
covariation between variables [33, 102]. Statistical validity requires a close
examination of the statistical procedures and assumptions used. In contrast
with construct validity, a correctly statistical conclusion can be drawn on
the wrong construct. In addition, conclusion validity does not assess if the
covariations obtained are causal (internal validity) and can be generalized to
new settings, persons, and treatments (external validity) [33].

In the laboratory experiments from chapters 5, 6, 8 and 9, we have carefully
investigated if the statistical conclusions we have made are in agreement with
the assumptions and procedure taken. The algorithm used in chapter 6, was
developed and empirically validated in [29]. In 8, we address some of the
conclusion validity threats observed by practitioners when adopting MAB
algorithms. In these situations, we conducted simulations to illustrate each
case and the statistical analysis presented follow the required assumptions of
each statistical test. In chapter 9, we present a number of statistical models
to address the problems in the statistical conclusion observed in optimization
algorithms development. These models are applied in benchmarking data
and take into account known assumptions (such as repeated measures and
correlation between benchmark functions). All the statistical procedures are
reproducible in an online appendix.

We do not discuss the statistical conclusion validity of the case studies from
chapter 7, 8, 10 and 11 since they do not perform statistical analysis. However,
the conclusions presented in those chapters are in the context of the thematic
coding analysis method presented earlier. While it is possible to assess the
procedures conducted in thematic analysis, the themes and results obtained are
not a property of the data but they emerge from the links and understanding
we make from them and cannot be separated from the researchers [82,84].

Chapter 4

Contributions of this thesis

This chapter describes how the included and the related publications are
connected and contribute to a broader understanding of experimentation. First,
we provide a general overview of the research projects conducted in this doctoral
study (that are connected to the objectives of this thesis). Second, we provide
a summary of the study, the research method, and the main results of each
included publication. Finally, we provide a summary of the related publications
that are not included in this thesis.

4.1 General overview

This thesis started with projects related to each of the objectives of this thesis,
paper A and paper F. We describe below how each publication connects in
each objective and related themes.

Objective 1 The first objective was initially investigated from the academic
perspective with literature reviews and evaluations in contrived scenarios
(papers A and a). These first results led us to a case study in collaboration
with Sony Mobile in paper b and with Microsoft in paper C. In paper b, we
investigated the use of different algorithms to drive online optimization and
proposed our own χ-armed bandit algorithm (the LG-HOO). The initial results
from our work with Sony Mobile led to a new collaboration with Ericsson
(paper B) and the initial design of study D.

During the data collection of paper C, informal discussions also indicated
that while practitioners often saw multi-armed bandit as a logical step towards
automating experiments, its use was often associated with pitfalls. Based on
the experiences in studies b and C, we designed a multiple case study with
multi-armed bandit experts.

Iterations over the ACE architecture framework (discussed in paper A)
and its specialization towards online optimization in collaboration with Sony
Mobile and Ericsson led to the design of the architecture discussed in paper e.
This architecture contained several optimization algorithms such as Bayesian
optimization, multi-armed bandits, and evolutionary algorithms. While these
algorithms were often designed, evaluated, and reviewed in their own commu-
nities, they lacked a common empirical statistical evaluation process. This

29

30 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

led us to conduct the study presented in paper E. In this paper, we provided
an overview of statistical models that can help researchers evaluate research
questions beyond statistical significance. We take this evaluation a step further
in paper s, where we utilize item response theory to assess the adequacy of the
benchmarks in benchmark experiments.

While most of the statistical models discussed in paper E have an equivalent
Bayesian software package to facilitate the analysis, the Bradley-Terry model
did not. In paper n, we introduce the bpcs package to facilitate the analysis of
paired comparisons. This package contains several extensions to the Bradley-
Terry model and illustrates its use in behavioral sciences. In paper s, we
propose the use of item response theory (IRT) to analyze benchmark data as
well as to assess suitability of the benchmark suites in terms of difficulty and
discrimination.

Objective 2 While the first objective consisted of a conceptual system
not yet available commercially, the second objective represented a clear need
faced by many of the companies in the Software Center, which are mainly in
the embedded systems domain. This led to the design of the multiple case
study and literature review presented in paper F. In this paper, we explore
specific challenges faced by embedded systems companies and discuss potential
solutions.

During study B, we observed that while A/B testing and experimentation
were terms not commonly used at Ericsson, many teams conducted experiments.
This led us to design study h, which was extended to study G. In this study,
we explore the practices and processes used to drive experimentation in a
mission-critical B2B system.

Paper c was a result of a master thesis supervision. In this paper, we
investigate the challenges of designing and running A/B tests in software
organizations with low control of the roadmap and large distance of the users.

At the same time we were conducting study h, we had the opportunity to
collaborate with Netflix in study g. In this study, we investigate the Netflix
Experimentation Platform and its vision to allow flexible design for scientists
of diverse backgrounds. This departs from the traditional way companies run
experiments, where software engineers are trained to conduct and interpret a
small number of fixed designs. While more evidence is needed, an approach
similar to Netflix allows more flexibility for embedded systems companies to
start and scale an experimentation culture.

The results of the study h led to a multiple case study in collaboration with
two automotive companies described in paper j. This paper investigates the
actual challenges faced by automotive domain companies when introducing
A/B testing. Paper p continues to explore experimentation in the automotive
domain. In this paper, we investigate the use of a matching technique to
minimize random imbalance and improve the sensibility of experiments in small
samples.

Figure 4.1 represents the relationship between the included, related publi-
cations and the research questions addressed in this thesis.

4.1. GENERAL OVERVIEW 31

Paper b
SSBSE
2018

Paper B
SysCon

2019
Paper D
IST 2019

Paper A
SEAA
2017

Paper a
PROFES

2017

Paper e
ECSA
2019

Paper E
TEVC
2021

Paper s
2021*

Paper n
BRMIC
2021*

Paper j
SEAA
2020

Paper p
SEAA
2021

Paper F
XP 2018

Paper h
ICSSP
2020

Paper G
JSME
2021*

Automotive domain

Embedded systems

Algorithms for optimization

Statistical models

Automated experimentation
architecture

Web domain

Paper C
PROFES

2018

Paper c
PROFES

2019

Paper g
ICSE-

SEIP 2020

RQ1

RQ2

RQ3

RQ4

RQ5

RQ6 RQ7

Figure 4.1: Relationship between the papers and the research questions. The
included publications are highlighted in green. Papers with a star are currently
under submission. The dashed lines group papers with a related theme. The
arrows indicates the and how the different papers connect to each other.

32 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

4.2 Included publications

4.2.1 Paper A: “Your system gets better every day you
use it: towards automated continuous experimen-
tation”

4.2.1.1 Summary of the study

This study has two main goals. The first goal is to review relevant software ar-
chitectures from the perspective of self-adaptive systems that have some desired
architectural qualities for automating experimentation. These architectural
qualities are external adaptation control, data collection as an integral part of
the architecture, performance reflection, explicit representation of the learning
component, decentralized adaptation, and knowledge exchange. The second
goal is to develop an architecture framework inspired by existing architectures
and based on the desired architectural qualities that can serve as the basis for
automated experimentation systems.

4.2.1.2 Research method

The research method of this publication was conducted in three phases.

The first phase consisted of a literature review. We queried the indexing
libraries Scopus and ScienceDirect and identified 34 relevant publications. Cross-
references indicated an additional 18 papers that described relevant concepts
for experimentation and for automating experiments through adaptation. In
this phase, we also identified the relevant software architecture qualities that
can support automated experiments.

The second phase reviewed the previously identified architecture for the
desired architectural qualities.

The third phase consisted of developing an initial framework to support
automated experiments inspired by the FUSION [103] framework, which sat-
isfied most of the desired software architecture qualities. This framework
is instantiated in a service robot for the human-robot proxemics distance
interaction.

4.2.1.3 Main results

The main result of this paper was the first development of a software architecture
for automating experiments (ACE) in software systems. It is worth noting
that the proposed architecture is high-level and can be instantiated in different
problem domains. For instance, in the service robot example, it was instantiated
in the specific context of the Robot Operating System1. However, in the case
studies discussed in [29] and in Chapter 6, the framework instantiated to
provide an external experimentation layer for other systems. The system can
provide A/B testing, MAB, single-objective multi-dimensional optimization
with space constraints with or without regret minimization.

Figure 4.2 shows the proposed architecture framework.

1http://www.ros.org/

4.2. INCLUDED PUBLICATIONS 33

Figure 4.2: Automated Continuous Experimentation (ACE) architecture frame-
work from Chapter 5.

4.2.2 Paper B: “Automated Optimization of Software
Parameters in a Long Term Evolution Radio Base
Station”

4.2.2.1 Summary of the study

This study is an empirical evaluation of the ACE architecture framework
developed in Chapter 5. In this study, we instantiate the ACE framework in
collaboration with Ericsson to address automated optimization of software
parameters in a Long Term Evolution (LTE) radio base station. A radio base
station has a high number of calibration parameters, that due to the complexity
of the system and the deployed environment can interact with each other.
Additionally, each mobile operator can set their own key performance indicator
(KPI) metrics of interest to be optimized. Finally, optimization procedures
conducted in live networks should consider regret minimization to minimize
the impact on both the mobile operators and the final users.

4.2.2.2 Research method

This study conducts an empirical evaluation in a test bed at Ericsson. The test
bed has a radio base station and multiple user equipment (e.g. cell phones). The
user equipment utilizes pre-registered traffic profiles to interact with the mobile
radio base station. This empirical evaluation optimizes the metric random
access success rate (RASR) with two parameters maximum transmission power

34 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

and cell range.
The ACE framework utilizes existing APIs from the radio base station

and therefore does not modify the existing mobile radio station (and already
validated) software. This is an important aspect that refers to the external
adaptation control aspect of the architecture framework since many of the
optimization algorithms and specifically MAB-based algorithms, are associated
with technical debt [104]. The algorithm used to perform the optimization is
an improved modification of the algorithm proposed in paper b [29], to address
multi-dimensional optimization spaces.

4.2.2.3 Main results

We have shown that the ACE framework can be used in online optimization
procedures in complex software-intensive systems from the empirical evaluation
perspective. Its general approach allows the same experimentation system and
interfaces to be used in collaboration with different industries, A/B and opti-
mization experiments at Sony Mobile [29] and multi-dimensional experiments
at Ericsson [30].

From the specific RASR case, the ACE system was able to find a configura-
tion parameter that is 46.3% better than the default parameters of the radio
base station. This result is illustrated in figure 4.3

Figure 4.3: Optimization of random access success rate RASR based on maxi-
mum transmission power and cell range as discussed in Chapter 6. The central
point in (0.5, 0.5) represents the default value and the red marker represents
the optimized value.

4.2. INCLUDED PUBLICATIONS 35

4.2.3 Paper C: “An activity and metric model for online
controlled experiments”

4.2.3.1 Summary of the study

Although previous research has presented many models for conducting and
introducing experimentation in software organizations, these models do not
provide enough details for organizations to implement a trustworthy experimen-
tation process, scale, and run different types of experimentation. This paper
analyzes the experimentation process used by the Analysis and Experimenta-
tion team at Microsoft, which runs over 20,000 experiments annually. This
paper aims to analyze at a more granular level how to conduct trustworthy
experimentation at scale and what parts of this process can be automated,
semi-supervised, or should be manually conducted.

4.2.3.2 Research method

This paper utilizes an interview-based case study method [77]. The data was
collected from nine semi-structure interviews. The interviewees were selected
by one of the authors that worked on the team. All interviewees had a large
experience in running experiments and developing the experimentation platform.
The data was analyzed with thematic coding [82].

4.2.3.3 Main results

This paper provided three main results. First, we describe an activity model for
conducting experiments. Figure 4.4 illustrates this model, which is described
in more detail in chapter 7. Second, we describe how four types of metrics
evolve, from creation to phase out. Third, we provide an overview of three
qualitative findings that impact how experiments are planned and evolve, such
as the role of customers and competition as a source of hypotheses, how metrics
evolve with the business and how they capture unstated assumptions of the
experiment. These three findings emphasize that a trustworthy experimentation
process not only requires automation of certain parts of the process but also
requires continuous manual intervention so the product evolves aligned with
the business.

4.2.4 Paper D: “Multi-armed bandits in the wild: Pit-
falls and strategies in online experiments”

4.2.4.1 Summary of the study

When discussing with practitioners about automating experiments in software
systems, the topic often revolves around the use of multi-armed bandits, since
an A/B experiment can also be formulated as a MAB problem. However, multi-
armed bandits solve an essentially different problem and are not a substitute
for scientific experimentation. This paper investigates how different companies
have used MAB-based experiments and contextualizes these problems and
solutions with A/B experiments. We discuss the problems associated with
MAB experiments and what strategies are suitable to overcome these problems.

36 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

Metric
selection

Instrumentation system

Selection
Experiment
learnings

Development Execution Analysis

Specify

Feature under change

Experiment
data

collection
Decisions

Implements

Implements

Implements
Logs

Software product

Experimentation phases

Computes

Detailed
hypothesis

Aligns

Randomization
to target group

Ramp-up

Guardrail
boundaries

Pre quality
checks

Post quality
checks

Metrics

Metric
engine

Experiment
data

Potential
Hypotheses

Customer
feedback

Previous
experiments
iterations

Business goals

Inputs and outputs

Activity

Stored data

Feature
coding

Feature
parametrization

Logging
code

Understanding
of the results

Artifacts

Statistical
report and
scorecards

Alerts

Exposed variation

Log user-behavior
Variation

assignment

UsersFeature under changeFeature under changeFeature under change variations

Metrics
 by variation

Prioritization
of hypothesis Prioritize

Experiment
owners and
developers

Statistical analysis

Iterate/
stop

experiment

Validate Validate Monitor Validate

Figure 4.4: The experimentation activity model.

4.2.4.2 Research method

This research utilizes a multiple case study method [77] with eleven experts
across five companies and simulations to triangulate and illustrate some of the
identified problems.

4.2.4.3 Main results

In this paper, we identified three main restrictions and pitfalls, which are
divided into nine reasons. For instance, one of the problems often observed
in MAB-based experiments is the increased type I error which is often due
to näıve implementations, violation of assumptions, and using MAB in es-
sentially exploration problems. These problems can be addressed in different
ways, such as using a traditional design of experiments (A/B testing or full
factorial experiments), adding contextual information to be MAB algorithm,
and implementing rigorous statistical analysis on top of the MAB experiment.
We also provide guidelines for when practitioners should consider MAB-based
experiments or A/B experiments.

4.2.5 Paper E: “Statistical Models for the Analysis of
Optimization Algorithms with Benchmark Func-
tions”

4.2.5.1 Summary of the study

Given the complexity of the software systems and the high number of inter-
actions of the users with the system, the online optimization problem can be
formulated as a black-box optimization problem. Decades of research have
provided a high number of black-box optimization algorithms used in sev-
eral different problems. During the development phase of these algorithms,
researchers and practitioners traditionally test these algorithms against bench-
mark functions [63]. These functions have known topology and properties

4.2. INCLUDED PUBLICATIONS 37

that can be used to evaluate how the new optimization algorithm works and
compare different algorithms.

These algorithms are commonly compared with simple frequentist statistical
tests in empirical evaluations to identify a statistical difference between these
algorithms. However, these statistical tests are often misused, for instance,
they do not take into account the problem structure such as repeated measures
or correlation in the data, decisions are made solely on statistical significance
without effect size considerations, investigations are made for each benchmark
function individually, and the results are not properly reported.

This paper address this problem by proposing a series of Bayesian statistical
models that allows researchers to make an integrated analysis of the benchmark
suites, taking into account correlation in the data and proposing transparent
practices for running and reporting the results.

4.2.5.2 Research method

This paper utilizes empirical evaluations of different algorithms in a benchmark
suite (a collection of benchmark functions) to illustrate the use of the statistical
models.

4.2.5.3 Main results

We provide three main contributions in this paper. First, we motivate the need
for utilizing Bayesian data analysis (BDA) and provide an overview of this topic.
Second, we discuss the practical aspects of BDA to ensure that our models are
valid and the results transparent. Finally, we provide five statistical models
that can be used to answer multiple research questions. These models are used
to evaluate the probability of solving a problem (a binomial model), to evaluate
the relative improvement (a linear regression model), to rank algorithms (a
Bradley-Terry model), to estimate the number of evaluations to converge to
a solution (a Cox’s regression model) and to compare multiple algorithms for
CPU time (robust regression model). All models include random effects term to
model the intra-correlation introduced by repeated measures of the benchmark
functions.

4.2.6 Paper F: “Challenges and Strategies for Under-
taking Continuous Experimentation to Embedded
Systems: Industry and Research Perspectives”

4.2.6.1 Summary of the study

This paper studies the challenges of introducing and adopting experiments as
part of the development process in embedded systems.

4.2.6.2 Research method

This research was conducted in two parts. The first part is a literature
review to analyze the challenges in adopting experimentation from the research
perspective. In this literature review, we identified a total of 42 papers. We
utilized thematic coding to classify the challenges observed in the literature.

38 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

Development process
 change strategies

Data handling
 change strategies

Architectural
change strategies

Expensive testing
scenarios

Real-time and
safety constraints

HiPPO

Lack of Over-the-
air updates

Lack of
experimentation

tools

Managing multiple
stakeholders

Experts doing
repetitive tuning

Metrics validation

Privacy assurance

Lack of sharing
data in business-

to-business

Long release
cycles

Lack of data
insights

EDAX model

Metrics evolution

Stairway to
Heaven model

Agile
methodologies

Ethical guidelines

Experimentation-
as-a-Service

Ecosystem
development

Compliance to
data regulations

Increase in
resources for
data science

Business Challenge

Organizational Challenge

Technical Challenge

Architecture for
OTA and

connectivity

Architecture
decoupling

Data collection
infrastructure

Figure 4.5: Summary of the challenges and the strategies faced by embedded
systems companies adopting continuous experimentation.

The themes were then categorized with the perspectives presented first in [32],
the business, the organizational, and the technical perspectives.

The second part is a multiple case study based on interviews and workshop
sessions with five companies to understand the challenges from the industry
perspective and how they are working to overcome them. The interviews
were analyzed with thematic coding, and the results were compared with the
challenges observed in the literature.

4.2.6.3 Main results

The main result of this paper is the identification of twelve challenges categorized
in the business, organizational and technical perspectives. The solutions and
potential strategies are categorized in terms of development process changes,
data handling changes, and architectural changes.

These challenges and strategies are summarized in figure ,4.5 extracted
from chapter 10.

4.2.7 Paper G: “The HURRIER Process for Experimen-
tation in Business-to-Business Mission-Critical Sys-
tems”

4.2.7.1 Summary of the study

The development of mission-critical B2B systems differ in many aspects from
the development of web-facing applications, including stricter validation proce-
dures, service level agreements, for instance, ownership of the product and data,
control of deployments, to name a few. This study investigates the use of the
broader range of continuous experimentation practices in developing a telecom-
munications mission-critical business-to-business application in collaboration
with Ericsson.

4.3. RELATED PUBLICATIONS 39

4.2.7.2 Research method

This study was based on a qualitative case study design following the guide-
lines proposed by Runesson and Höst [77]. The collected data consists of
semi-structured individual and group interviews with 25 practitioners in six
different locations in four countries and data collected from over 30 documents,
including project documentation, feature development plans, solutions, and
product presentations for both internal employees and external customers. The
interviews lasted approximately one hour, and at least two authors were present
in all interviews. The data analysis method followed the six-phase thematic
coding process described by Braun and Clark [82].

4.2.7.3 Main results

The main contributions of this paper are the identification of four types
of experiments, several experimentation practices, and the development of
the HURRIER Continuous Experimentation process that combines existing
constraints in B2B mission-critical systems with continuous experimentation
practices.

The four identified types of experiments are business-driven experiments,
regression-driven experiments, optimization and tuning experiments, and cus-
tomer support experiments. Business-driven experiments are widely discussed
in research and often associated with A/B testing. These experiments are aimed
at validating and assessing business ideas and quantifying change. Regression-
driven experiments are seen as a quality assurance technique designed to observe
a negative impact. Although optimization and tuning experiments have been
discussed previously in research, it is often mixed with business-driven experi-
ments. We emphasize that in optimization experiments, often there is no new
deployment, but rather just adjusting parameters of the software. Customer
support experiments are a new type of experiment not previously discussed
in research. These experiments aim at identifying the cause of a failure and
negative impact when it is not possible to easily trace back to a particular
change due to the complexity of the system and the deployed environment. All
these types of experiments are discussed with concrete case studies.

In terms of the experimentation practices and techniques, the paper intro-
duces a taxonomy for the different practices, for example, experiment design
and analysis, variation assignment, implementation techniques and release
techniques. In this taxonomy, we contextualized techniques already identified
in research with new techniques and practices identified at Ericsson.

Finally, we introduce the HURRIER process that allows CE to be used to
develop mission-critical B2B applications. The HURRIER process can be seen
in Figure 4.6, extracted from chapter 11.

4.3 Related publications

This thesis includes seven appended publications. During this doctoral research,
we have published other related publications relevant to this thesis but not
appended. This section briefly discusses these publications and how they relate
to the appended publications.

40 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

DevelopmentPre-study

CI
Internal

laboratory
evaluation

Simulation

Customer
laboratory
evaluation

Passive
launch

Restricted
launch

One-customer
gradual rollout

Customer
laboratory
evaluation

Internal Feedback channel

Gradual
rollout

Customer
request

Market

R&D goals

R&D organization

Internal validation

Single customer
 validation

Multiple customer
validation

Ideas

General
availability

Customer Feedback channel

A/B testing,
Crossover exp.

A/B testing,
Quasi-

experiments,
Crossover exp.

A/B testing,
Crossover

experiments

New features Software
corrections

New
configurations

Figure 4.6: The HURRIER process presented in chapter 11

4.3.1 Paper a: “More for less: automated experimenta-
tion in software-intensive systems”

This paper details the architecture framework developed in paper A in terms
of architectural design decisions [105]. In this analysis, we evaluate the design
rules, the design constraints, the consequences, the pros and cons of each
alternative to justify our decision in the architecture framework of paper A.

4.3.2 Paper b: “Optimization Experiments in the Con-
tinuous Space”

In collaboration with Sony Mobile, we instantiated the architecture framework
from paper A, to use in conjunction with a mobile and office installation
applications. The framework was instantiated in a cloud environment and
supported traditional A/B testing experiments and online optimization. One
of the online optimization constraints was to minimize the regret to lower the
negative impact for the user.

In this paper, we developed a modification of an existing χ-bandit algorithm
(HOO) [52] that provided better performance in the industrial context of
Sony Mobile. The new algorithm, the limited growth hierarchical optimistic
optimization (LG-HOO), was used to optimize the parameters of another
backend algorithm that directly impacted the product’s main features. A multi-
dimensional modification of this algorithm was used in paper B to optimize
mobile radio base stations.

4.3. RELATED PUBLICATIONS 41

4.3.3 Paper c: “Continuous experimentation for soft-
ware organizations with low control of roadmap
and a large distance to users: an exploratory case
study”

This paper is based on a Master thesis conducted by the first author. In this
paper, we investigate the specific problem of designing and running A/B tests
in software organizations with low control of the roadmap and large distance
of the users.

Low control of the roadmap refers to companies that develop products for
another company and has to follow requirements and roadmap imposed by the
hiring company. This has a direct impact on how experiments are planned and
conducted. As discussed in paper C, experiment hypotheses often come from
the development organization. In companies with low control of the roadmap,
these hypotheses need to be approved by the hiring company.

Distance to users refers to data availability from the users (such as user
behavior) and user feedback. As the case study discussed in the paper, compa-
nies with large distance to users do not have direct access to user behavior and
feedback. The distance to the users and the low control of the roadmap are
seen as blocking issues for running experiments.

4.3.4 Paper e: “ACE: Easy Deployment of Field Opti-
mization Experiments”

This paper discusses modifications of the ACE architecture framework proposed
in A to facilitate the adoption of optimization experiments in different stages
of development, such as simulations, test beds, and live experiments. This
architecture introduces domain-agnostic interfaces to allow for optimization
procedures with minimal invasiveness and optimization expertise.

The system implements several optimization algorithms, including MAB-
based, χ-bandits, and Bayesian optimization. These algorithms can be accessed
using a simple API interface. Four steps are required to run an optimization
experiment. First, a developer implements the optimization interfaces in the
system under experiment (SuE). This step consists of parametrizing the part
that is going to be optimized. The second step consists of configuring the
experiment, specifying which algorithm, the constraint metrics and the objective
metrics, and further restrictions on the search space. The third and fourth step
consists of the actual optimization loop where the SuE requests new trial values
to the ACE system and logs the trial results by updating the optimization
model.

We discuss this architecture and simulation case study, testbed optimization
with Ericsson and in a live experiment with Sony Mobile.

4.3.5 Paper g: “Engineering for a Science-Centric Ex-
perimentation Platform”

In this paper, we discuss the Netflix Experimentation Platform and the need for
a flexible experimentation platform to allow scientists from diverse backgrounds
to plan and conduct experiments.

42 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

Many software organizations aim to utilize and train software engineers to
conduct experiments in the functionality they develop. While this strategy
allows companies to increase the number of experiments, it has the drawback
of limiting what type of design and analysis the development team is allowed
to do. Netflix has taken a different approach for its experimentation platform.
Instead of relying on a small number of designs conducted by software engineers,
Netflix focuses on allowing scientists from diverse backgrounds to plan and
conduct experiments with teams they are embedded into. This has greatly
increased the pace of innovation and experimentation in Netflix and allowed
for deeper strategy discussions and richer analyses.

The platform supports this flexibility by simplifying the experimentation
process for new types of analysis by adopting a non distributed architecture
and scientific languages such as R and Python. Scientists can create their
designs and analysis in those languages and contribute to the experimentation
platform which scales these reproducible Jupyter Notebooks as new analysis
flows.

4.3.6 Paper h: “Experimentation for Business-to-Business
Mission-Critical Systems: A Case Study”

Paper G is an extension of paper h and contains several additional contributions.
In paper G, (1) we provide a classification of the different types of experiments,
practices, and techniques used in B2B mission-critical systems; (2) we provide
a revised version of the HURRIER process to include relevant information to
complement the different types of experimentation; (3) We provide, in addition
to the original case study, we added three new case studies for the other types
of experimentation; (4) We include new relevant discussion for the new research
questions.

4.3.7 Paper j: “Automotive A/B Testing: Challenges
and Lessons Learned from Practice”

This paper investigates the use of A/B testing in the automotive domain. Unlike
previous research, which focuses on hypothesized or toy scenarios, this paper
investigates the challenges of adopting A/B testing in real experimentation
with two large-scale automotive companies. This paper utilizes a case-study
method [77] with two companies. The data collection utilizes three main sources.
The first consists of 12 semi-structured interviews with 14 employees. The
second consists of notes from weekly meetings of a working group in an A/B
testing iteration. The third source of data consisted of material produced in a
workshop with the development team of the feature being experimented with.
The main results of this paper are the identification of the challenges faced
in practice, such as the high number of vehicle variants, restricted number of
test vehicles, or lack of support for data-driven development in the AUTOSAR
architecture.

4.3. RELATED PUBLICATIONS 43

4.3.8 Paper n: “Bayesian Paired-Comparison with the
bpcs Package”

In paper E, we have utilized a Bayesian version of the Bradley-Terry model
to rank the different algorithms. However, there were no software packages or
research that implemented these models at the time of the writing. This paper
introduces an R package for the analysis of paired comparison data, the bpcs
package. This package implements the Bayesian Bradley-Terry model and many
of its extensions, such as for order-effect, ties (Davidson model), random effects,
generalized models, and subject-specific predictors. The Bayesian inference is
performed using the Stan probabilistic programming language and the Stan No
U-Turn sampler. The examples provided in the paper are focused on behavior
research. Nevertheless, the vignettes on the package also show a replication of
one of the results of paper E and the use of these models for sports research.

4.3.9 Paper p: “Size matters? Or not: A/B testing
with limited sample in automotive embedded soft-
ware”

This paper explores a minimization technique to address the random imbalance
of A/B testing experimental groups with small samples in the automotive
domain. We utilize the Balance Match Weighted method [106] to create
experimental balanced groups in a fleet with 28 vehicles for an experiment with
vehicle energy management.

The Balance Match Weighted generated more balanced groups compared
to random sampling. The results of using this method were validated with an
A/A test. These results indicate that minimization techniques can be used in
the context of A/B testing in embedded systems if there are prior information
about the experimental subjects (pre-experiment data) and domain-specific
knowledge about the potential influence of different covariates.

4.3.10 Paper s: “On the assessment of benchmark suites
for algorithm comparison”

In this paper, we analyze the suitability of the benchmark functions for the
analysis of algorithms. While in paper E we proposed different statistical
models, here we propose the use of item response theory (IRT) to evaluate not
only the algorithms but the suitability of the benchmark functions in terms of
difficulty and discrimination. We show that common suites used for algorithm
comparison have poor discrimination factors and are either too difficult or too
easy. We conclude the paper highlighting potential uses of IRT for improving
the design of benchmark suites and analysis of benchmarking data.

44 CHAPTER 4. CONTRIBUTIONS OF THIS THESIS

Chapter 5

Paper A

Your system gets better every day you use it: towards
automated continuous experimentation

Mattos, D. I., Bosch, J., Olsson, H. H.

43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2017, pp.256-265.

45

Abstract

Innovation and optimization in software systems can occur from pre-development
to post-deployment stages. Companies are increasingly reporting the use of
experiments with customers in their systems in the post-deployment stage.
Experiments with customers and users are can lead to a significant learning
and return-on-investment. Experiments are used for both validation of manual
hypothesis testing and feature optimization, linked to business goals. Auto-
mated experimentation refers to having the system controlling and running the
experiments, opposed to having the R&D organization in control. Currently,
there are no systematic approaches that combine manual hypothesis validation
and optimization in automated experiments. This paper presents concepts
related to automated experimentation, as controlled experiments, machine
learning and software architectures for adaptation. However, this paper focuses
on how architectural aspects that can contribute to support automated experi-
mentation. A case study using an autonomous system is used to demonstrate
the developed initial architecture framework. The contributions of this paper
are threefold. First, it identifies software architecture qualities to support auto-
mated experimentation. Second, it develops an initial architecture framework
that supports automated experiments and validates the framework with an
autonomous mobile robot. Third, it identifies key research challenges that need
to be addressed to support further development of automated experimentation.

46 CHAPTER 5. PAPER A

5.1 Introduction

Autonomous systems already play a big part in several areas, from financial
markets, industrial robots, airplane navigation systems to the development of
autonomous vehicles. These systems are deployed in uncertain environments
and contexts with an ever-increasing demand to work more autonomously. As
these systems become more and more complex, it is not clear how the developed
features could be contributing to the system and whether they are delivering
the expected value [26].

Previous studies show that in the development of systems, traditionally, the
prioritization of a feature is usually driven by earlier experiences and beliefs
of the people involved in the selection process [11]. The development of the
new features should be, ideally, data-driven and done systematically [107].
The development of a full feature from conception to user deployment can
result in inefficiency and opportunity cost if it does not have a confirmed value
for the customer. Early customer feedback is important to determine and
validate the feature value [3]. If a gap between the expected and the actual
value of a feature is identified, the feature under development can be refined or
abandoned. Additionally, companies continuously collect data from deployed
software [14, 15]. Although not widely used in industry, post-deployment data
can be used for both continuous optimization and improvements and to drive
innovation in features of the existing products [15]. Testing and experimenting
with customers and users are used as problem-solving processes and are critical
to organizational innovation [12].

Frequently, complex systems and user behavior in development of software-
intensive systems lead to opinion-based decisions captured in traditional require-
ments [2]. This mismatch between user behavior and opinion-based require-
ments is leading industry to change from requirements-based to experiment-
based development [12].

Systematic experiments provide a level of understanding about what really
works and leaving opinion-based decisions behind [108]. Web-facing companies
report the use of experiments with customers and that these experiments can
lead to a significant learning and return-on-investment [2]. Several compa-
nies report the use of A/B experiments for confirming feature value through
hypothesis testing and for feature optimization [2, 32] (in short A/B experi-
ment consists of comparing a variant A, the control, against a variant B, the
treatment). In [12] online experiments are identified as a technique to drive
innovation during development and post-deployment of a system.

However, traditional manual controlled experiments can be an expensive
way to optimize a system. Validation runs online and can last for several
months [2], the metrics used by different teams can lead to conflicting business
goals, and it can be hard to reason on the system when dealing with hundreds
of different observable variables [36]. In this scenario machine learning and
artificial intelligence techniques can aid the research and development team to
run optimization procedures to existing features more efficiently.

In customization and recommender systems there is an increase use of
machine learning (ML) and data-driven approaches. Techniques such as deep
learning, reinforcement learning (RL), deep reinforcement learning, multi-armed
bandits are getting large attention as companies (Google, IBM, Microsoft, Spo-

5.1. INTRODUCTION 47

tify, Facebook among others) successfully report the use of those techniques in
their systems. Machine learning communities continuously report solutions to
a vast range of difficult problems. However, ML also raises several software
engineering problems, such as testing, system validation, supporting infrastruc-
ture and increase of technical debt in the system [104]. Many ML algorithms
have mathematical proofs but with the ever-changing landscape that those
algorithms interact, system validation becomes a hard problem. Controlled
experiments are used to evaluate both the ML value and system behavior [109].

As companies start to build autonomous systems with an increasing level of
autonomy, experiments are seen as scientific way to learn and adapt the system
behavior. The uncertainty raised by the environment, the interaction with
humans and other agents all impact in the system behavior in unknown ways. It
is unfeasible to grow the size of the R&D team with the increasing demand for
experiments . This calls for the use of automated experiments, where the R&D
team can build part of the functionality and guardrails where the system can
experiment and learn from this process continuously and autonomously [26].

As companies are moving towards experiment-based development, they
face several challenges such as: experiments in live field are time and cost
expensive, experiments from different teams can lead to conflicting goals, and
the lack of a systematic approach to run experiments in different domains
leads to several experiment platforms. [2, 18, 26,36]. To address some of these
challenges the communities studying experiments in software can be viewed
as moving towards automated experiments. Important research deals with
automating data collection and data analysis [36], facilitating the deployment of
new experiments in web systems [19], dealing with overlapping experiments [18],
leveraging experiments with log data [110] and automated experiments from a
algorithm perspective [25].

Automating tasks and allowing systems to perform adaptation online play
a role part in the development of autonomous systems. Autonomous and
adaptive systems are able to automatically adjust their behavior at runtime
in response to changes in the operating environment [111]. Over the past
fifteen years, different domains such as the self-adaptive systems community
studied and developed several software engineering approaches and techniques
for adaptation. While the ML is mostly concerned with algorithms and the
theoretical basis of learning, these communities study the software engineering
challenges.

Running continuously automated experiments in the already deployed
systems, with both the aim of improving the system behavior and confirming
the delivered value, requires novel software architectures and engineering
approches [26]. Techniques from these different perspectives can serve as a basis
for bridging from manual hypothesis experimentation and experimentation for
optimization to automated experiments.

Although we recognize the important role ML and other artificial intelligence
techniques have in the development of automated experiments, this work
focuses on architectural aspects to support different techniques in automated
experiments for both validation as well as optimization of features. Continuous
optimization through automated experiments leads to systems that get better
every day we use them.

The contribution of this paper is threefold. First, it identifies a set of software

48 CHAPTER 5. PAPER A

architecture qualities to support automated experimentation and analyzes
several architectures from these qualities perspectives. Second, a framework to
support automated experiments is developed based on the presented analysis.
This framework presents a novel way towards automated experimentation,
where manual hypothesis experimentation and fully automated experiments
in optimization can be combined. This framework is validated in the context
of an autonomous system in a human-robot interaction problem. Third, it
identifies the key research challenges that need to be addressed to support the
development of automated experiments.

The rest of the paper is organized as follows. Section 5.2 provides a
background on some of the related areas, controlled experiments, machine
learning applications for experiments and software architecture for adaptation
of systems. Section 5.3 describes the research method. Section 5.4 provides
a list of desired architecture qualities to support automated experimentation.
Section 5.5 analyzes several software architectures in light of the discussed
qualities. Section 5.6 shows an initial architecture framework that satisfies the
discussed qualities for automated experimentation. Section 5.7 provides an
implemented version of the architecture framework in an autonomous mobile
robot on the proxemics distance problem. Section 5.8 concludes and discusses
future research challenges and future works.

5.2 Background

This section reviews some concepts on controlled experiments, reinforcement
learning in experiments and software architectures for adaptation. These
concepts are complementary to each other and form the basis of this work.

5.2.1 Controlled experiments

In controlled experiments, researchers manipulate independent variables in an
experiment and observe the effect on the behavior by measuring the dependent
variable.

In software development, experiments with customers can lead to a signifi-
cant learning and return-on-investment [2]. The web provides an opportunity
to test and evaluate development ideas using controlled experiments. Kohavi [2]
provides an overview on A/B experiments controlled, techniques, study cases
in a web environment and common pitfalls. Controlled experiments provide a
reliable experimental setup for understanding the system, however it can be an
expensive method to evaluate new ideas.

When the sample cannot be considered to be independent (the case of
some experiments social networks), networked A/B testing techniques [20] are
used. When running several experiments at the same time, overlapping of
experiments and confounding factors can influence the results. In [18], some
strategies such as dividing the experiments in layers are discussed.

5.2.2 Reinforcement Learning in experiments

Reinforcement learning can be seen as a technique for solving sequential decision
making problems [112] and largely developed by Sutton and Barto [113]. The

5.3. RESEARCH METHOD 49

method is based on agent that repeatedly interacts with the environment and is
receiving feedback from it. The perception of the each state allows the system
to continuously improve its state into a more optimal selection of actions.
It is modeled as a Markov decision process. Reinforcement learning focuses
on online improvement and presents the trade-off between exploration and
exploitation. The exploration/exploitation problem consist of finding a balance
on exploring different solutions to achieve an optimal solution and exploiting
the best solution.

The explore/exploit trade-off is well studied with the multi-armed bandit
problem. This problem consist of deciding which arm of a K-slot machine
would maximize the total reward in a limited series of trials. Several algorithms
for this problem were proposed and evaluated [114]. Experiments with a
finite number of treatments can be formulated as bandit problems and A/B
testing is mathematically equivalent to the ε-first strategy with equal division
between the arms (ε-first strategy explore all arms choices before it starts
to exploit). Complex strategies can take into account context information
(contextual multi-armed bandits). Contextual bandits are wideley used in
personalized/recommender systems [115], ad placement [110] and in search
engines applications [116].

However, bandit problems differ from controlled experiments in the concep-
tual level. Controlled experiments focus on hypothesis testing and obtaining
an understanding of the system with a statistical confidence level. Bandit prob-
lems focus on optimization and do not balance the experiments to accurately
estimate the inferior treatment effects [117] .

5.2.3 Software architectures for adaptation

Adaptation refers to the ability of the system to automatically adjust their own
behavior in response to changes in the operating environment [118]. Adaptation
is seen as a key enabler for the development of autonomous systems and
autonomic computing.

In 2003 Kephart, introduced the MAPE-K model with the IBM Autonomic
Computing Initiative [119]. The MAPE-K model is a feedback loop and it
stands for Monitoring, Analyzing, Planning and Executing over a Knowledge
base. The MAPE-K loop forms the basis of self-adaptive systems feedback
loops and has become the reference model in self-adaptation. Self-adaptive
systems can be seem as an umbrella term to cover different areas involved in
adaptation and are studied from different perspectives: software architecture,
requirements engineering, middleware, component-based development, control
systems theory among others [120]. These different perspectives solve their
specific domain problems with different architecture configurations. However,
most self-adaptive systems approaches can be mapped into one or more MAPE-
K loop parts [120].

5.3 Research Method

The research method in this paper was conducted in three phases.
Phase I: In the first phase, we reviewed literature to identify relevant software

architectures for experimentation and adaptation and how these architectures

50 CHAPTER 5. PAPER A

solve domain-specific problems.

For the literature search, we looked for software architectures in the different
domains and applications related to experimentation:

(TITLE-ABS-KEY("software architecture") OR

TITLE-ABS-KEY("software framework")) AND

(TITLE-ABS-KEY("experimentation") OR

TITLE-ABS-KEY("A/B tests") OR

TITLE-ABS-KEY("split tests") OR

TITLE-ABS-KEY("self-adaptive systems") OR

TITLE-ABS-KEY("controlled experiments")).

This query was used in the indexing libraries SCOPUS and Science Direct,
that cover the large research libraries. As a result of the literature search, we
identified 410 papers with relevance to this search.

From these papers, we identified 178 based on reading the abstract and
identifying the relevance in relation to our research topic. From this we
selected 34 papers that describe relevant concepts and software architectures
for experimentation, adaptation and controlled experiments. In addition to
the literature search based on the identified key search terms, through cross-
reference we identified a set of 18 additional papers with relevance for our
research.

The analysis of the selected works provided us two outcomes: (1) the
identification of relevant architectures for experimentation, adaptation and
controlled experiments and (2) identification of software architecture qualities
that can support automated experimentation. The qualities are described in
detail in Section 5.4.

Phase II: Based on the outcomes of phase I, we scoped the second phase to
understand how each identified architecture implements the software qualities.
In this phase, we revisited the identified architectures to identify how they
implement or solve a problem related to each of the qualities. Our analysis,
described in Section 5.5, indicated that none of the architectures could be used
as is with the automated experimentation problem but they can be used to
derive a new framework that could support automated experimentation.

Phase III: Based on the analysis performed in phase II, phase III focused
on developing an initial framework that could support automated experiments.
An initial version of this framework was instantiated in a proxemics distance
problem in human-robot interaction. This human-robot interaction problem
is currently being studied using manual experiments and therefore is a good
candidate to try the developed automated experimentation framework.

5.4 Architecture qualities

This section discusses the identified architectural qualities that support the
idea of automated experimentation.

The identified qualities are outcomes of phase I of the research method,
described in Section 5.3. In our research, we identified six qualities that would
constitute our approach towards automated experimentation. However, this
list of qualities is not static. Further research on the area might extend this list
to include different qualities. Additionally, the identified qualities are seen as

5.4. ARCHITECTURE QUALITIES 51

desired qualities rather than required qualities. Excluding one or more of the
qualities might be needed to implement a domain specific setup for automated
experiments. Therefore, this list is ordered in terms of importance.

5.4.1 External adaptation control

Adaptation can be divided in two types of adaptation control: internal and
external [121]. Internal adaptation refers to interlace application logic with
adaptation logic. External adaptation refers to the use of an adaptation
manager that coordinates adaptation with the use of sensors and effectors
in the managed system (application logic). The use of an external manager
increases maintainability of the system. However, it introduces an overhead to
the system, penalizing performance.

Traditional controlled experiments are analyzed offline. All the data is
extracted, analyzed to support a decision. Depending on the decision the
system is manually modified to incorporate this decision. Systems running
multi-armed bandits and other ML algorithms are usually incorporated in the
feature application code. The external adaptation control was identified as
an important quality for automated experiments, because it allows separating
the application logic from the experiment logic. This helps both automated
experiments in controlled settings and in optimization settings, by facilitating to
add automated experiments to existing features and removing it from features
that already reached the static system loop [26].

5.4.2 Data collection as an integral part of the architec-
ture

Software-intensive systems can gather large amounts of data in real-time, from
the context, from the internal system as well as from users of the systems.
Collecting data for online and offline analysis by both the system and the R&D
should be an integral part of the architecture. An emphasis is given in this
step as the development of software should be data-driven [11].

As most adaptive systems are based on the MAPE-K reference framework,
data collection is usually seen as part of the monitor phase on the MAPE-K
loop. The managed system exposes several observable internal states through
the sensors touch points [122]. Data is collected continuously and filtered and
later analyzed by the Analyze component to detect changes and decide whether
adaptation is needed or not.

Machine learning systems are easy to develop but hard to maintain [104]
due to hidden technical debt. One of the causes is the high diversity data and
unstable data dependencies that rises by the extensive use of glue code. Strate-
gies to create common API’s allow a more reusable infrastructure supporting
integral data collection and the external adaptation.

5.4.3 Performance reflection

As part of the learning process, the system should have performance reflection
as an important part of the architecture. Performance reflection consists
of evaluating the current behavior according to an expected value function.

52 CHAPTER 5. PAPER A

The experimental methods also use the performance reflection to validate the
observed behavior.

In the conceptual solution presented in [26], evidence-based engineering
refers to validate the deployed feature based on experiments and the value it
delivers. Also, it was identified three levels of evidence-driven development
feedback loop: the R&D loop, the dynamic system loop and the static system
loop. Performance reflection occurs in the dynamic system loop in which the
system can compare its delivered value with the initially expected value.

If the system does not keep track of its adaptation performance it is not
possible to have an evidence that the experimentation and the learning process
is increasing value to the system.

5.4.4 Explicit representation of the learning component

Most of the current approaches in self-adaptive systems recognize the impor-
tance of learning, but few of them support an online learning process [120].
Most architectures use predefined and reactive adaptation plans.

The field of ML provides several algorithms and techniques tailored to
domain problems. Experimenting features in different domains requires modi-
fication of the learning algorithm. An explicit representation of the learning
component facilitates introducing and maintaining (mitigating entanglement
effects) learning algorithms in the optimization process. We believe that an
explicit representation of the learning component is necessary because it rein-
forces the learning characteristic of the systems and facilitate the reuse of the
learning component and learning algorithms in other features.

5.4.5 Decentralized adaptation

Centralized control refers to using a single adaptation manager to control the
adaptation. Decentralization refers to each adaptation where each sub-system
has a full adaptation manager. The use of decentralized adaptation control
improves the performance of the system, splitting responsibility between sub-
systems. Hybrid approaches might use different patterns, such as the IBM
hierarchical structures to allow adaptation [122].

Different systems running automated experiments will require different
levels of decentralization. Centralized systems can grow quickly in complexity
handling several features under experimentation. Traditional A/B experiments
relly on centralized coordination. However, as the infrastructure grows decen-
tralized patterns start to emerge. Tang et al. [18] describe an hybrid approach,
dividing the system in layers with different levels of overlapping crossing multi-
ple domains. We believe that automated experiments will require decentralized
solutions to support the increasing number of concurrent experiments.

5.4.6 Knowledge exchange

Knowledge exchange can help systems to share learned and experimented
solutions [123]. Collaborative learning is an increasing topic of interest in ML
and in experimentation. Systems instantiated or users experimenting might
not be completely independent or randomized. Algorithms for solving this sort

5.5. ARCHITECTURE ANALYSIS 53

Table 5.1: Analyzed architectures

Approach Architecture

Architecture-based
Rainbow framework [125],
3-layered approach [126],

Archstudio [127]

Reflection-based
DynamicTAO [128]

CARISMA [129]

Control-based Architectures

Model Predictive Control,
MIAC, MRCA,
Gain scheduling,

Cascaded control [130]

Service oriented

SASSY [131]
MetaSelf [132]
MOSES [133]
MUSIC [134]

Agent-based
CRL [123],
Unity [135],

MOCAS [136]

Learning systems
FUSION [103],

Controller-Observer [137]

Requirement Engineering methods
LoREM [138]
Zanshin [139]

of problem are studied within networked A/B tests [36] and counterfactual
reasoning [110]. As the feature being experimented might also be evaluated by
the development team in terms of the value it gives, the sharing component
should also allow communication with the development team. Knowledge
exchange can be seen in the work by [124] and in the area of collaborative
feedback and Collaborative Reinforcement Learning [123].

5.5 Architecture analysis

Due to page limits constraint, this section discusses briefly the analyzed ar-
chitectures and how they can contribute to the development of automated
experiments. We analyzed the existing architectures for adaptation and ex-
perimentation in relation to the identified qualities as stated in the research
method.

Architectures from different domains were selected in order to minimize the
bias in selecting only a few. However, this list does not aim to be complete in
respect of all existing architectures for adaptive systems. A description of the
different approaches can be found in [120]. Table 5.1 provides an overview of
architectures analyzed in this work.

The architectures were analyzed, classified and ordered according to the
six qualities listed in section 5.4. Figure 5.1 shows the obtained classification

54 CHAPTER 5. PAPER A

Fusion

Ctrl. Theory

Archstudio

MOSES

Rainbow

MOCAS

LoREM

MetaSelf

Unity

CARISMA

SASSY

MUSIC

3-Layered

Zanshin

DynamicTAO

Ctrl.-Observ.

Collab. RL

Exte
rnal

ad
ap

tat
ion Data

 co
lle

cti
on

Perf
orm

an
ce

 re
flec

tio
n

Exp
lic

it

 le
arn

ing

Dec
en

tra
liz

ed

ad
ap

tat
ion

Knowled
ge

 ex
ch

an
ge

Figure 5.1: Summary of the classification of the architectures with respect to the
architecture qualities. In green, are the qualities satisfied by the architecture.
The architectures were ordered according to the relative importance of the
quality.

of the analyzed architectures according to the listed qualities. Each of the six
qualities is connected to the architectures that fulfill these qualities.

The summary table provides an overview of how the different architectures
relate to the desired qualities. However, it is possible to see that most of the
approaches deal with only a few of the identified qualities. The architecture
that satisfies most of the qualities is the FUSION framework [103] and the
developed architecture framework in Section 5.7 is inspired by this framework.

The FUSION framework can be seem as a variation of the MAPE-K loop
for architecture optimization. It uses a learning approach to drive adaptation
of features. It is focused in optimization in the architectural level and it
is independent of the learning algorithm. The FUSION framework uses a
centralized external approach. The adaptation manager is divided into two
cycles, the adaptation and the learning cycle. The learning process is based on
measurements of the system. After the collection, the learning cycle identifies
any emerging pattern and refine the induced model in a knowledge base. Then,
the knowledge base is used in the adaptation decision. Objective functions
are used as metrics for the learning process and for the decision making. This
framework brings together many of the identified qualities, except for the
decentralized adaptation and the knowledge exchange. However, it focuses
on optimizing from learning from existing features in the knowledge base in

5.6. ARCHITECTURE FRAMEWORK 55

Figure 5.2: Automated Continuous Experimentation architecture framework

the architecture level. Automated experimentation is focused on learning and
optimizing business goals to drive post-deployment innovation.

5.6 Architecture framework

In this section, we describe an initial architecture framework that satisfies the
identified qualities to support automated experimentation.

5.6.1 The architecture framework

The presented architecture framework is represented in Figure 5.2. This
architecture is the result of the design decisions over several iteration processes
and inspired by the analyzed architectures described in Section 5.5.

The intention of this architecture framework is to provide for an existing
system the capability of doing automated experiments decentralized in feature
level, rather than providing an architecture for the whole system. Manual
hypothesis testing is integrated as the hypothesis are still formulated by the
R&D team.

The presented architecture modules are described next:
Monitor. This module is responsible for the data collection. The data

collected come from the probes available in the system and in the SuE (system
under experimentation), therefore both local and global behavior. This module
is directly related to the data collection in the discussed qualities. Access
to all the necessary data for experimenting requires proper instrumentation

56 CHAPTER 5. PAPER A

of the code. This module does not represent only a stream of raw data into
the automated experimentation architecture framework. It represents data
processed that add information to the system.

Effector. This module is responsible for interfacing with the managed
system. Besides the monitor, it is the only point of contact with the rest of
the SuE. This module requires that the managed system exposes interfaces for
interaction with the system. This concept of not intermixing the experimen-
tation code and the managed system code is directly related to the external
adaptation quality. The same observations made to the monitor module are
valid for the effector.

Experiment coordinator. This module is responsible for running the
experiment and coordinating with the version manager. This module controls
only the specific SuE, other experiments have their own experiment coordinator
modules. The experiment coordinator can control experiments such as A/A
(control variant A against the same variant for sanity checks), A/B/n (controlled
experiment with more than one treatment), explore/exploitation and crossover
experiments. This module keeps track on when to experiment, the number
of experiments that should be run, which solution is more significant. This
module receives inputs from the conflict-list manager if it is allowed to run
an experiment or not. It also receives inputs from the experiment watchdog
module, if the system is deteriorating any global metrics, if it went out of
boundaries or if it still needs to perform more experiments.

Version Manager. This module is responsible for managing and gener-
ating different versions to experiment. This can be acting in parameters or
replacing whole sub- component models. The version generator keeps a list of
the versions used and accepts versions inputs from the Knowledge Exchange
module and the Version Generator. This allows the system to experiment both
automatically generated versions, as well as manual versions crafted by the
R&D team. Although this module is not directly connected to a one of the
design decision listed, this module is linked to both the functional and quality
requirements

Version Generator. This module can accommodate different artificial
intelligence algorithms that we might want to test. The generation algorithm
is not specified, but it could include machine learning algorithms, such as
reinforcement learning algorithms, genetic algorithms, parameter scheduling or
randomized versions. This module is directly connected to the learning quality.

Experiment Watchdog. This module checks the conditions that the
system can run the experiments, such as when the system should continue
experimenting and when it should stop. If the system goes out the predefined
boundaries or if there is deterioration in global metrics this module can stop
the experiment and return the system to the ”safe” version. Having a stop
condition for global metrics prevents the system improving a local metric, but
degrading a global metric. If any of the stop conditions is reached this module
signals to the experiment coordinator to stop the experimentation process or
to roll back to a safe version.

Conflict-list manager. This module keeps track in run- time of compo-
nents that are being experimented with and which factors it affects. This is
an important component in a decentralized experiment environment. Several
other systems of the robot can be experimenting. This manager keeps track of

5.7. AUTOMATED EXPERIMENTS IN A HUMAN-ROBOT INTERACTION PROBLEM 57

those systems in order to avoid confounding variables in the experiment. This
is directly related to the decentralized adaptation quality. In a generic imple-
mentation, the conflict manager advertises its current state (experimenting or
not) and listen to other conflict manager’s states.

Metric Analysis. This module is responsible for keeping track of the
managed system behavior and the value function. This module serves as a
trigger to drive the adaptation through optimization or through keeping track
of the validation process. In this module, we insert the value function and we
run our statistical analysis. This module is directly related to the performance
reflection quality.

Knowledge and Information Exchange. This module communicates
with the optimization and experiment validation module and with the external
world. This module is responsible for sharing discovered solutions in the
experimentation process and also for sharing and learning the validated solutions
from the experiment through a central server infrastructure. This also represents
a way in which the R&D can interact with the system, either helping in the
analysis step or proposing different versions not generating by the version
manager, for example, testing different algorithms. This module is directly
related to the Knowledge Exchange quality.

5.7 Automated experiments in a human-robot
interaction problem

In this section, we present an experimental implementation and evaluation of
the automated continuous experimentation architecture framework. In this
experimental scenario, we first validate the correctness of the architecture
behavior. Second, our architecture for automated experimentation indicates
a more cost-effective solution for running experiments compared to manual
experimentation.

5.7.1 Proxemics distance in Human-Robot Interaction

Human interaction is based on several unwritten and subjective rules. One
example is respecting other people’s personal space. In human-human relations,
several social factors play an important role in this interaction. Not conforming
to these rules may cause miscommunication and discomfort. To have a good
human-robot interaction, the robots must follow similar rules [140]. The large
body of work in Human-Robot Interaction (HRI) identified several factors that
come into play in proxemics distance, such as gender, age, personal preferences,
technology involvement, crowdedness, the direction of approach, form factor
and size [140].

Different works recognize some base distances and how they are influenced
depending on a change of factor. However, this is still an open problem. The
development of new robots and the deployment of these robots in very different
contexts (e.g. different countries) require new manual experiments to validate
and optimize the proxemics distance.

The presented automated continuous experimentation framework can be
used to allow the robot to try different distances and learn an optimal distance

58 CHAPTER 5. PAPER A

on the context that it is inserted. This would allow robots to adapt its proxemics
distance and validate it without the need of designing costly experiments for
each different context.

The developed architecture framework is instantiated in the open source
mobile research platform Turtlebot 21. This platform is similar in size and
form factor with several commercial mobile companion robots.

The robot runs the Robot Operating System (ROS)2 middleware. ROS is
a widely used framework for writing robot software. It is a collection of tools,
libraries and conventions that aim to allow creating complex and robust robot
behavior across different robotic platforms.

The instantiated architecture consists of six ROS nodes that can be mapped
to the architecture framework modules. Each node was implemented as a
separate process, communicating through a mix of publish-subscribe and
client-server methods as defined by ROS. Figure 5.3 shows the instantiated
framework. In this initial step of the research we are focusing on implementing
the framework in one system initially, therefore the knowledge exchange quality
was the only one not contemplated in this experimental validation. Full
implementation of the automated experimentation architecture can be seen in
https://github.com/davidissamattos/david ws.

Feedback monitor: this node can be mapped directly to the monitor
module. It is responsible for capturing the human feedback. In this case,
we receive input from both verbal feedback (e.g. “Too far”) and non-verbal
feedback (e.g. if it is too close the person steps back).

Metric Analysis: this node receives as input the value function of the
system and analyzes input data. The value function we are using is the user
satisfaction. We expect our user to be satisfied at least 70% of the approaches
in the long run (after a minimum number of experiments).

Experiment Watchdog: this node verifies the current state of the system
and the boundaries of our problem. For this system, we defined some boundaries
such as, do not get closer than 20 cm from the human, do not experiment if
the battery is low and if the experiment is performing poorly (e.g. less than
30% of the cases) we rollback to another version. This module works even if
the version manager generates values outside the constraints of the experiment
(by implementation/runtime errors).

Experiment coordinator: this node is responsible for keeping track of
which experiment is going on, optimization, validation or running in static loop
mode.

Version manager: the version manager node receives input from the
experiment coordinator regarding which experiment is running. It the feature
is running in safe-mode it uses a safe predefined distance. If the learning
process has converged the experiment coordinator requests a static learned
version. The version manager generates these versions either by static input or
by calling a learning module to generate it (e.g. calling the machine learning
module).

Machine learning: the version manager requests new versions to the
machine learning module. This module uses the K-means clustering algorithm

1http://www.turtlebot.com/
2http://www.ros.org/

5.7. AUTOMATED EXPERIMENTS IN A HUMAN-ROBOT INTERACTION PROBLEM 59

Figure 5.3: Instatiated version of the Automated Continuous Experimentation
architectural framework in the case of a human-robot proxemics distance
problem.

with the k-means++ initialization algorithm implemented in the scikit-learn 3

Python library. This learning algorithm is a particular solution of the k-armed
bandit optimization problem.

Effector: this node is responsible for interacting with the human approach
feature and modify in runtime its internal value for approaching. In the
ROS context, this means changing parameters in the parameter server. The

3http://scikit-learn.org/

60 CHAPTER 5. PAPER A

implemented architecture framework is completely external to the system. The
system runs normally without the framework and even with if the instantiated
framework crashes.

5.7.2 Experimental results

In this subsection, we describe the experimental conditions which we tested in
this system.

The robot was placed in an office environment. The participant was
instructed to give verbal (speak), non-verbal feedback (stepping forward or
backward), or both, to the robot if they think the robot is too far or too close
(feedback value -1), and not to give any feedback if they think the robot is at a
comfortable distance (feedback value 1). The robot always moves to a different
location before approaching again. The participant did not have any previous
experience with autonomous robots or knowledge of the internal system of the
robot. The participant also didn’t know that the robot was learning from the
given responses.

Situations, as when the system goes out of the defined boundaries, were
tested manually during the experiment (by explicitly sending the system to a
new state) without the knowledge of the participant. All cases were handled
by the stop experiment module without any problems.

Fig. 5.4 shows three graphs representing the learning process of the system
experimenting with different uniform random approaching distances. The
first graphic shows the system exploiting the solution space trying different
distances. The second graphic shows the system learning and refining the lower
and upper distance boundaries using the clustering algorithm. The third graphic
shows the system learning a static distance after several robot approaches.
The static learned distance is the centroid of the cluster located between the
boundaries. This graphic shows an online optimization through experiments
on the proxemics distance. Changes in the user behavior are reflected in the
learning process. Although this experiment shows only one experiment in
an office environment, this could be extended to incorporate different factors
that influences the robot behavior, such as incorporating the type of room in
the experiment, or identifying different use scenarios. This would allow the
robot to continuously experiment and learn new distances in different contexts,
therefore increasing the value it delivers. This experiment suggests a more
effective way of experimenting compared to manual experimentation. Each
experiment requires time to run and set up and is valid in restrictive conditions.
Although this experimenting method does not guarantee optimally, manually
experimenting a matrix of solutions can be expensive in both terms of set-up
cost and time.

5.8 Conclusion

Experiments in the field are used in a problem-solving process to drive both
innovation and optimization of post-deployed systems. Companies are moving
towards to experiment-based development, where experiments support the
decision-making process. Several challenges, such as resources, the experiment
architecture and novel engineering approaches arise when running experiments

5.8. CONCLUSION 61

F
ig

u
re

5
.4

:
T

h
re

e
g
ra

p
h
ic

s
re

p
re

se
n
ti

n
g

th
e

le
a
rn

in
g

o
f

th
e

sy
st

em
.

T
h
e

fi
rs

t
g
ra

p
h
ic

sh
ow

s
th

e
ro

b
o
t

ex
p
lo

ri
n
g

th
e

fe
ed

b
a
ck

-d
is

ta
n
ce

sp
a
ce

.
T

h
e

se
co

n
d

sh
ow

s
th

e
ro

b
o
t

le
a
rn

in
g

a
n

in
te

rv
a
l

a
n
d

re
fi
n
in

g
it

.
T

h
e

th
ir

d
sh

ow
s

th
e

sy
st

em
a
ft

er
a
ch

ie
v
in

g
a

va
li
d
a
te

d
st

a
ti

c
va

lu
e

fo
r

th
e

d
is

ta
n

ce
.

T
h

is
d

is
ta

n
ce

is
re

p
re

se
n
te

d
b
y

th
e

ce
n
tr

o
id

in
th

e
o
ra

n
g
e

se
ct

io
n

.

62 CHAPTER 5. PAPER A

in a large scale. In this paper, we study automated experimentation to address
these challenges.

This paper takes the software architecture perspective to understand and
develop an initial architecture framework that supports both hypothesis valida-
tion and for optimization through experiments. Different architecture qualities
are identified and it is proposed an initial architecture framework to support
automated experiments.

The architecture framework is validated using an autonomous mobile robot
establishing the optimal human-robot proxemics distance. The robot imple-
ments an optimization solution based on the explore/exploitation problem
running automated experiments. The experimental validation not only assesses
the correctness of the framework behavior but also suggests that this is a
cost-effective way to run experiments.

5.8.1 Research Challenges

Automated experiment systems still have a long way to go before they are
matured. Different domains develop solutions and algorithms that contin-
uously push systems in the conceptual solution proposed in [26]. However,
these different domains solve their experiment-specific problem without an
unified view over the experimentation process itself. This work brings together
different facets of automated experimentation and proposes a framework to
support automated continuous experimentation. The framework was validated
experimentally in the context of an autonomous system and is currently under
validation in the mobile domain and in web-systems. One research challenge
is to evaluate this and other architecture frameworks in different contexts.
This will bring into perspective the challenges from the different domains that
might reflect in both the desired architecture qualities and in the architecture
framework.

A second research challenge is to combine manual experimentation with
automated experimentation in R&D teams as part of the development process
for the product. As much as the culture for experimentation changes the
organization perspective [36], automated experimentation can change how the
systems are developed.

A third research challenge in the process of fully automate experiments
is the ability to formulate hypothesis automatically from the data. Manual
experimentation requires significant effort for the hypothesis formulation from
analyzed data. The proposed framework automates how to run and evaluate
experiments, but it still does not support hypothesis generation. Creating
hypothesis automatically from recorded data can leverage the amount of experi-
ments the system can run and generate deeper insights on how the system works
in the uncertain environment. This would allow the experiment innovation
perspective to be an integral part of the system.

Concluding, although there are several challenges ahead, we are moving to
a future where systems get better every day we use them through automated
experimentation.

5.8. CONCLUSION 63

Acknowledgments

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

64 CHAPTER 5. PAPER A

Chapter 6

Paper B

Automated Optimization of Software Parameters in a Long
Term Evolution Radio Base Station

Mattos, D. I., Bosch, J., Olsson, H. H., Dakkak, A., Bergh, K.

Annual IEEE Systems Conference (SysCon), 2019, pp. 1-8

65

Abstract

Radio network optimization is concerned with the configuration of radio base
station parameters in order to achieve the desired level of service quality
in addition to many other differentiating technical factors. Mobile network
operators have different physical locations, levels of traffic profiles, number of
connected devices, and the desired quality of service. All of these conditions
make the problem of optimizing the parameters of a radio base station specific
to the operator’s business goals. The high number of calibration parameters and
the complex interaction between them make the system behave as a black-box
model for any practical purpose. The computation of relevant operator metrics
is often stochastic, and it can take several minutes to compute the effect of
changing a single, making it impractical to optimize systems with approaches
that require a large number of iterations. Operators want to optimize their
already deployed system in online scenarios while minimizing the exposure of
the system to a negative set of parameters during the optimization procedure.

This paper presents a novel approach to the optimization of a Long Term
Evolution (LTE) radio base station in a large search space with an expensive
stochastic objective and a limited regret bounds scenario. We show the feasibil-
ity of this approach by implementing it in an industrial testing bed radio base
station connected to real User Equipment (UE) in collaboration with Ericsson.
Two optimization processes in this experimental setup are executed to show
the feasibility of the approach in real-world scenarios.

66 CHAPTER 6. PAPER B

6.1 Introduction

Delivering software that adds value to customers is an important aspect for the
success of every company. Software calibration parameters can have a direct
impact on how customers use the system and the direct value features deliver to
customers [48,141]. As software systems grow in size and complexity they often
have an increased number of available software calibration parameters [142].
As an example, the number of calibration parameters that can be optimized in
radio base station (RBS) software and in the mobile network is in the range of
thousands of parameters and it is proportional to the number of cells in the
network.

The interaction between a subset of these parameters and the response
of the system towards the customers’ needs is often too complex to model
and hence the system behaves like a black-box model. The responses of the
customers and users are stochastic regarding changes of parameters and often
the software system needs several minutes to compute a response to a new set
of parameters. At the same time, the customers expect the software system
to perform as well as it did when it was acquired initially; in other terms the
system should minimize the regret associated with the exploration of parameter
space [143].

At the same time as the optimization of the parameter space can deliver
value to the customers, the design of such an optimization system needs to
assure that the optimization software integrates and is able to optimize the
system prior to customer deployment and during operation.

One of the critical challenges facing mobile network operators is how to
optimize the parameters of a deployed radio base station to deliver better
services to customers, by providing quality of experience (QoE) for a range of
different applications, such as voice over LTE, uplink signal, video traffic, web
browsing and online gaming. Therefore, the optimization procedure for the
mobile network should consider how well the business goals of the operators
are achieved.

Together with other parameters such as physical location and environment,
levels of traffic, and number of connected devices, the optimization of a mobile
network should address the individual optimization of each RBS. This type of
optimization procedure cannot be conducted realistically in simulations or in
laboratory settings.

The current state of practice of optimization network parameters consists
of manually tuning the network based on pre-determined patterns and the
expected changes from mathematical models. Zhang [144] describes several
different procedures for optimizing an LTE network. However, as mentioned
above, the current available tools focus on a small number of parameters and
require a lot of manual effort from experts. For example, Awada et al. [145]
describe the Taguchi method that requires creating grids of orthogonal arrays
that need to be manually created and executed before serving as input for the
next iteration.

Research on network optimization is evolving and introducing new methods
and approaches to facilitating the optimization of a network after deployment
and managing changes in the network, such as the expansion of the network
with new RBS and the future integration of 5G technologies. However, the

6.2. BACKGROUND 67

state-of-the-art research in optimization is based on specific radio parameters
that are pre-optimized in simulations [145–150]. These approaches cannot
accommodate customized business metrics of the operators and are not suitable
for using in live RBS.

The contribution of this paper is three-fold. First, it describes the online
optimization of an RBS as the optimization of an expensive stochastic objective
and limited regret bounds. To the knowledge of the authors, this is the first
paper to propose an approach for mobile network optimization given this set of
restrictions. Second, this paper implements the proposed approach in a testing
bed configuration with a deployed radio base station connected to real user
equipment (UE). Two empirical experiments are shown, demonstrating the
feasibility of the approach. Third, the paper provides guidelines of how the
presented approach can be incorporated and be used in both a testing bed and
in customer deployment real live networks.

The rest of this paper is organized as follows. Section II presents an overview
of an LTE radio base station, LTE optimization, parameters and metrics of
interest and an overview of the online optimization problem. Section III
describes the experimental setup, the optimization system and the integration
of this system with a radio base station in a testing bed configuration. Section
IV presents the empirical results of the two optimization procedures, discusses
how the optimization system can be integrated in a deployed radio base station,
before considering the limitations of this approach. Section V presents and
discusses related work in radio base station optimization. Finally, Section VI
concludes the paper.

6.2 Background

6.2.1 Overview of a Radio Base Station

A cellular mobile network consists of a core network and a radio access network.
The radio access network is responsible for connecting the UE (e.g. a mobile
telephone) to the core network, which is connected with the internet through a
gateway. The radio access network is composed of a collection of radio base
stations (RBS).

An RBS is an installation that provides the uplink and downlink commu-
nication with the UE. Each RBS divides its coverage region space into cells.
The separation region between each cell in the same RBS or between cells of
different RBS is called the handoff zone. The collection of cells defines the
finite area of coverage of the radio access network. The RBS implements the
different radio standards in order to connect to UE, such as 2G (GSM), 3G
(WCDMA), 4G (LTE). Although the RBS can be studied and viewed from
multiple perspectives, this work focuses on the software aspect. In this work,
we describe an approach to the optimization of the calibration parameters of a
single 4G/LTE RBS.

6.2.2 LTE Optimization Overview

The optimization of a mobile network is a necessary process for ensuring that
key performance indicators (KPIs) established by the operator are satisfied or

68 CHAPTER 6. PAPER B

improved. The optimization of an LTE mobile network consists of two stages:
the first is the pre-launch optimization of the LTE procedure and the second is
the continuous optimization of the network after deployment [144].

The pre-launch optimization changes are mainly physical, such as the
antenna tilt and azimuths, but can also include some software parameters [144].
In the pre-launch, the operator does from coarse-tuning operator independent
optimization to fine-tuning optimization based on counters and KPIs tailored
to the operator needs. Post-launch optimization procedures also include fine
tuning to accommodate the expansion of the network with both existing
technologies as well as incorporating and optimizing the network for new ones
such as 5G.

6.2.3 Radio Base Station Parameters and Metrics

Although mobile network operators can define their customized KPIs and
metrics tailored to their business objectives, this subsection presents a small
subset of counter-based RBS metrics that can be used in the optimization
process, and presents the parameters that can be optimized.

6.2.3.1 Metrics

Random-Access Success Rate (RASR) When a UE tries to connect
with an RBS it needs to get synchronized in the uplink. This is done by having
the UE send a random-access channel preamble message (Msg1) to the RBS.
The RBS responds with a random-access response message (Msg2) [151]. The
random-access success rate refers to the rate of successful connections compared
to the number of connection attempts. The random access has an impact on
the average setup call time and can have a larger impact in networks with a
high number of devices, such as internet-of-things and machine-to-machine
communication. Some parameters that can influence the RASR are preamble
initial received target power, maximum random-access transmission power and
power increment steps.

6.2.3.2 Parameters

The parameters investigated in this work are related to power control. Proper
power configuration reduces the interference between cells, the power consump-
tion of UE in the uplink, and uplink throughput, among others.

Maximum Transmission Power This parameter controls the maximum
transmission power. To modify this parameter, the cell that is being transmitted
should be stopped, preventing transmission while changing the parameter,
therefore affecting the traffic. This represents a case where the optimization is
expensive not only in terms of time to collect data but also how it can affect
the users’ traffic in the network.

Cell Range The cell range parameter defines how far the cell coverage
will extend. This is an important setting that defines the boundaries between
different cells and the geographical coverage extend of an RBS. The transmission

6.2. BACKGROUND 69

does not need to be halted for the change of this parameter. However, the
optimization of this parameter is also expensive as it directly affects traffic in
the hand-off procedures.

6.2.4 The Online Optimization Problem

The online optimization of software parameters problem is concerned with
selecting the best set of software parameters that maximize an objective while
it is running. Compared to the offline scenario, where optimization is carried
out on a model of the system, online optimization poses several restrictions:

The system must have interfaces that allow the change of software parame-
ters without stopping the execution of the system. Alternatively, the system
should have predetermined time windows where it can stop its execution and
is allowed to change the parameters.

The metrics and the objective of an online system take time to be calculated
and modifications of the parameters cannot be evaluated instantly. This can
introduce delayed feedback if the parameters are changed in a high frequency.

The optimization algorithm should balance the exploration-exploitation of
the parameter space, with limited regret bounds on the exploration. As the
system serves real users every change that serves suboptimal parameters to the
users and degrades the objective metrics has associated regret [143].

The objective function is often not easy to model in terms of parameter
functions. It represents complex interactions with users and can capture
complex and abstract business goals [43]. Its measurement can be stochastic
with a high unknown variance.

The first and second restrictions impose practical limitations not observed
in offline optimization methods and in the relatively simple models discussed
in most research [145,147]. The second restriction makes the optimization of
a system an optimization problem with an expensive objective function, as
the system cannot run multiple parallel versions and instantly evaluate the
optimization objective. This restricts the type of algorithms that can be used
in the optimization process, as it is unfeasible to run several thousands of
iterations for convergence if the objective takes several minutes to be updated.

The third and fourth restrictions limit the test to algorithms that are able
to converge under the stochasticity of the objective function and that balance
the exploration-exploitation trade-off of the parameter space [52, 53, 143]. This
scenario corresponds to an optimization problem in a large search space with
an expensive stochastic objective and limited regret bounds.

The problem can be mathematically expressed as finding the global maxi-
mum of an unknown objective function with stochastic response f(X) in the
compact subset space χ ∈ Rd, where d is the number of parameters being
optimized [53].

f(X) = L(X) + ε(X) (6.1)

L(X) is the unknown true value of the metric we are optimizing for, that
that only observable through the stochastic function f(X) and ε(X) is a
stochastic variable.

X∗ = arg min max
X∈χ

f(X) (6.2)

70 CHAPTER 6. PAPER B

Based on the observations output y ∈ R, where:

E[y|f(X)] = f(X) (6.3)

Cumulative regret refers to the sum of all simple regret observed during the
optimization procedure, where the simple regret corresponds to the difference in
response between the unknown theoretical maximum and the actual observation.
The cumulative regret for this problem is represented by:

R = n · f(X∗)−
n∑
t=1

yi (6.4)

It is assumed that f(X) can be computed for all values of X ∈ χ in a
limited amount of time, but not necessarily computed instantly. The variable
n represents the number of observations of y, where n is a small number of
observations (compared to the problem constraints and the space χ).

The algorithm is responsible for finding the optimal set of parameters within
n observations while minimizing the expected cumulative regret. This ensures
a balance of the exploration-exploitation trade-off.

Research on expensive optimization [53] suggests classes of algorithms
derived from Bayesian optimization and hierarchical tree search. Bayesian
optimization methods have the disadvantage that they require setting up hyper-
parameters and selecting an appropriated acquisition function for the specific
problem. However, Bayesian methods still perform better than hierarchical
methods when prior knowledge of the problem exists and the optimization
function helps to determine good acquisition functions, kernels and hyperpa-
rameters.

For large complex systems with limited or no prior knowledge, the chosen
approach is the usage of hierarchical optimistic optimization algorithms that
can handle stochastic values with regret bound guarantees such as the authors’
Limited-Growth Hierarchical Optimistic Optimization (LG-HOO) algorithm
[29], a modified version of the Hierarchical Optimistic Optimization (HOO) [52].

These hierarchical algorithms are proposed and extensively discussed in [152].
They have mathematical guarantees on the cumulative regret R and depends
only on the observations output y. They are designed to balance the trade-off
between exploring the solution space and exploiting the best-known solution
by building a space-partitioning binary tree by splitting leaves that have a
higher upper confidence bound. The root of the tree is usually the current
parameter and the exploration of the space starts from this root. The leaves
that have a higher confidence bound are expanded and the binary tree grows
in the direction of the highest confidence bound. The algorithm balances the
exploration-exploitation by selecting parameters that belong to the highest
confidence bound branch.

In higher dimensional space, the algorithm expands the leaves by randomly
selecting a dimension to split. In the worst-case scenario, where the parameters
do not have any influence on the measured objective, the tree grows uniformly
in all directions. Even in worst-case scenarios, the algorithm response time
provides fast enough results for the usage in expensive scenarios, with response
time in the range of milliseconds.

6.3. EXPERIMENTAL SETUP 71

6.3 Experimental setup

This research was conducted in collaboration Ericsson. Ericsson is a Swedish
multinational network and telecommunications company. The company pro-
vides services in software and infrastructure in information and communications
technology, including mobile network infrastructure.

6.3.1 The ACE system

The optimization system called ACE (Automated Continuous Experimentation)
was developed in prior work by the authors at Chalmers University of Technology
and aims to provide a common application interface for companies and research
projects running online and offline optimization procedures via experiments
[65, 66]. The systems that are being optimized are called systems under
experiment (SuE) and the optimization system will be referred to only as ACE.
The ACE system was used in different black-box optimization such as in a
mobile application together with Sony Mobile [29] and in a mobile robot [65,66].

ACE consists of multiple services: an optimization backend, a visualization
and configuration frontend, non-relational databases and a webserver to handle
communication with interfacing systems. The ACE optimization backend
implements several algorithms for black-box optimization, including A/B/n
experiments [2], multi-armed bandit and contextual bandit algorithms (such as
UCB1, UCB2, Softmax, Epsilon-Greedy and LinUCB) [143], χ-armed bandits
for optimistic optimization (DOO, HOO and the LG-HOO) [65,143,152], and
Bayesian Optimization [53]. Based on the restrictions presented in Section II,
we utilized the LG-HOO algorithm for the experiments.

ACE is designed to handle and scale multiple simultaneous optimization
jobs, allowing multiple simultaneous systems under experiments and user
connections, maintaining and tracking data storage and the evolution of the
optimization models to allow tracing, and debugging the optimization process
at any point. ACE can be instantiated either in cloud environments or local
deployment through Docker containers (https://www.docker.com/) and can
communicate with the SuE through HTTP requests with JSON payloads. This
ensures that ACE and the SuE can evolve and be deployed separately. One of
the reasons for this design decision is that incorporating optimization code in
existing and legacy systems can significantly increase the cost of the system
by increasing the cost of maintaining new optimization software for every new
product, introducing new costs with re-verification, re-testing, re-validation and
re-certification of existing systems. Therefore, ACE only modifies parameters
within a predetermined and validated range.

6.3.2 Testing bed setup

Testing bed optimization of software parameters is a common method in
the development of control systems in industry. Often the tuning of these
parameters becomes a trial-and-error process that is both tedious and time-
consuming, but still requires expert knowledge [153].

This method helps to bridge the gap between the optimal parameters of
the simulation model and those of the final product. We utilize an RBS testing

72 CHAPTER 6. PAPER B

ACE
backend

ACE
API CLIACE2RBS

Translator

Learned parameters

current parameter
metrics, KPIs

Configure
experiment

Visualization

ACE frontend RBS

…

Rack with real
mobile phones

Traffic

Request KPIs
Modify parameters

Figure 6.1: Schematic representation of the testing bed experimental setup.
The ACE frontend systems communicates with the ACE backend to allow
remote configuration of the optimization procedure and visualization of the
experiment results. The ACE backend is deployed in a separate computer or
cloud infrastructure utilizing Docker containers and exposing tcp ports in an
internal network to the equivalent of operator system that controls the RBS.
In the operator computer the ACE2RBS translator communicates between
the ACE system and the command line interface software that controls the
RBS. The CLI system and the communication between the CLI and the RBS
are the same as the deployed in live RBS. The utilization of the commercial
interfaces used by the operators allow the system to be integrated in production
environment without modifications in the deployed software of the RBS.

bed setup as both a validation process of our optimization approach, and as an
automatic way to fine tune some general parameters before deployment.

The RBS used in the optimization procedure is part of the Ericsson mobile
LTE network test bed. The RBS is connected to a rack of multiple mobile
phones. Although these mobile phones are not driven by real users the test bed
generates relevant traffic scenarios for these mobile phones that can stimulate
and test the RBS in realistic scenarios. Although the traffic is generated in
a predicted way at every test run, it can be considered stochastic inside each
run, as it would be with traffic generated by users.

The RBS has different interfaces where the operator can modify and cus-
tomize the behavior of the RBS. One of the interfaces that operators use is a
command line interpreter software (CLI) that allows operators to easily access
statistics and KPIs and modify parameters of multiple managed objects.

The interface between the ACE and the RBS is done through translator
software called ACE2RBS, which converts ACE responses into CLI commands.
The ACE2RBS is also responsible for polling the KPIs of interest together with
the set of parameters that generated the KPIs. Fig. 6.1 shows a schematic of
the experimental testing bed setup.

The metrics generated by the RBS can be collected at any time but are

6.4. RESULTS 73

more stable in fifteen minutes cycles. The metrics are stochastic regarding the
parameters as the connected mobile equipment perform different tasks and
follow different traffic routines. Due to the costs of carrying out this expensive
optimization scenario under uncertainties n = 100 ·m samples, where m is the
number of parameters being optimized, were chosen per optimization procedure

The ACE2RBS translator software can request the metrics from the RBS
and can modify the parameters described in Section II.C.

6.4 Results

This section describes the two different experimental runs in the testing bed
setup, how the system can be integrated in a deployed RBS and the limitations
of this approach. The first experimental run consists of an optimization
procedure for one parameter while the second case shows the optimization
procedure for two parameters simultaneously.

6.4.1 Experimental runs

The results presented in this section were normalized to the range [0, 1] and
therefore corresponds to a different unit system in to hide the real values used
inside Ericsson test beds.

Optimization of the Random-Access Success Rate (RASR) based on Maxi-
mum Transmission Power

In this experiment, the χ space corresponds to the maximum transmission
power in the range of 0 to 1 units of power, and the objective functions are
measurements of the RASR. The default value of the test bed RBS is 0.5. The
aim is to maximize the RASR by observing how the transmission power affects
it within the predetermined range.

The result presented in Fig. 6.2 indicates that the tree of the LG-HOO
algorithm is growing uniformly in the space. A total of measurements of
95 samples were taken, and as by the design of the hierarchical optimistic
optimization algorithms, the same parameters set could be sampled multiple
times. It can be concluded that the transmission power in the range of 0
and 1 units of power has a small influence in the RASR variance in the used
testing bed setup. However, a maximum transmission power of 0.8125 had a
higher RASR. The normalized effect size of this maximum transmission power
compared to the default settings (maximum transmission power of 0.5) is 24.2%,
i.e. the optimization procedure increased the RASR metric by 24.2% in this
optimization scenario.

Note that the obtained result is not generalizable for other cases, as it is a
tuning procedure specific to the experimental conditions of the deployed RBS
and testing procedure.

6.4.2 Optimization of multiple parameters

This experiment consists of changing two factors in the χ space, the maximum
transmission power and the cell range. The default value for the testing bed
RBS is 0.5 for the maximum transmission power and 0.5 for the cell range.

74 CHAPTER 6. PAPER B

Figure 6.2: This figure shows the tree of the maximum transmission power with
the Random Access Success Rate metric. The line plot shows the normalized
RASR mean value for each node.

6.4. RESULTS 75

This experiment measures the effect of the RASR and aims to maximize it
changing these parameters.

The results of this experiment are showed in the three pictures of Fig. 6.3. A
total of measurements of 200 samples were taken. The first graphic shows how
the tree grew in function of the RASR measurements looking only the maximum
transmission power, but the measurements consider both factors. This graphic
shows that the tree is growing in a similar manner as the first experiment.
The second graphic shows the tree for the cell range. The tree grows towards
higher cell range. However, the best value for the whole optimization procedure
is not in the same places as if it was considering independent optimization
procedures. This result shows that both parameters have interaction effects in
the RASR for this experimental scenario. The vertical lines represent the best
parameter set considering the whole optimization procedure. The third graphic
shows how the space was sampled in the optimization procedure, the size of the
circles represent the mean effect of the parameter set and red circle represents
the best parameter set obtained parameter obtained from the optimization
procedure. The normalized effect size of the best parameter set (maximum
transmission power = 0.3750 and cell range = 0.5625) compared to the default
settings (maximum transmission power of 0.5 and cell range = 0.5) is 46.31%,
i.e. the optimization procedure increased the RASR metric by 46.31% in this
optimization scenario.

It is worth noting that this was the best set of parameters that were obtained
in the limited and constrained sample size. However, other sets of parameters
have a mean RASR close to the best set. If the experiment was allowed to run
for a longer period and increased the sample size the best set of parameters
could change as more confidence on the upper bounds are built.

6.4.3 Integration in a deployed RBS

The presented testing bed approach can be used as demonstrated in the integra-
tion with a deployed RBS, for a simple online optimization procedure. However,
a few considerations might be required for a more robust implementation.

The optimization procedure depends on the operators’ objectives and
business goals. For a correct optimization procedure, the metrics should
be validated and aligned with the business goals; otherwise the optimization
procedure might lead to a suboptimal business while having optimal parameters
for a different construct.

The translator software utilizes one of the interfaces available to the opera-
tors; the CLI software. The decision to utilize this interface with the RBS was
made in order to have lower implementation effort for this research project.
For the deployment of a more stable and robust solution other RBS interfaces
might be more appropriate.

6.4.4 Limitations

The proposed approach represents a small subset of the possible optimization
cases in an RBS and presents a few limitations.

First, we considered an RBS as an isolated system that we want to optimize.
The deployment of this system in an access network will require an optimization

76 CHAPTER 6. PAPER B

Figure 6.3: Results of the second experiment, where the Random Access Success
Rate is observed by changing the cell range and the maximum transmission
power. The first graphic shows how the tree grew in function of the RASR
measurements looking only the maximum transmission power. The second
graphic shows the tree for the cell range. The third graphic shows how the space
was sampled in the optimization procedure, the size of the circles represent
the mean effect of the parameter set and the red circle represents the best
parameter set obtained parameter obtained from the optimization procedure.
The fact that the best set does not correspond to the highest node in each
tree indicates the presence of interaction effects between the cell range and
the maximum transmission power in the Random Access Success Rate for this
experimental setup.

6.5. RELATED WORK 77

of metrics of the whole access network. Even with the individual optimization
of every RBS, due to interaction effects in the network, network metrics can
still not be performing optimally. One way to allow individual optimization
of multiple RBS with a common objective is to use contextual expensive
optimization, where each RBS is represented through contextual information
[154].

Second, testing analysis and optimization of an access network might prove
an expensive process for most operators. In this situation, alternative methods
such as simulations and logged traffic data analysis datasets, and alternative
algorithms that do not consider regret, might have a competitive advantage over
the presented method, if the time constraints of the simulations and analyses
are feasible, and the simulation precision is realistic enough.

Third, the existing and the proposed approaches do not incorporate in-
formation regarding the operators’ traffic profile and requirements. For most
operators any degradation of traffic during regular operation can lead to sig-
nificant negative impact in the whole network. This restriction reduces the
operational window that an experiment can run. In such situations, the experi-
ment needs to be divided in different steps. During periods of reduced traffic
or maintenance, it is performed an exploration step for exploring new sets of
parameters and for building confidence over them. During regular traffic it is
performed the exploitation of the sets of parameters that have confidence to
perform better than the current.

6.5 Related work

Awada et al. [145] propose an approach to optimize LTE-A (Long Term
Evolution-Advance) radio network parameters using the Taguchi method. The
Taguchi method is a robust design method, that has been used in different
fields to promote improvements in product development. The advantages of
the Taguchi method are its scientifically disciplined method used to explore
the search space and the fact that procedure is hyperparameter free. The
number of experiments without replication depends on the number of factors
(parameters) and the number of levels (discretization of the parameter) per
factor. However, the Taguchi method has several disadvantages [155]. First,
the presence of a stochastic response requires multiple replications for each
iteration, resulting in an inefficient method. The method does not place upper
bounds on the regret and working well only with a small number of parameters,
as the number of experiments without replication increases exponentially with
the number of factors. Third, interactions are confounded in the Taguchi’s
methods, making it hard to utilize in higher order experiments [155]. Although
the paper optimizes jointly multiple cells, the optimization procedure is done
independently (one parameter at a time) and the proposed approach is only
discussed and used with simulation models.

Dastoor et al. [147] compare different algorithms for the problem of pa-
rameter optimization in LTE-A networks. They compare four algorithms with
a simulated model for mobile communication. The compared algorithms are
Genetic Algorithms, Particle Swarm Optimization, Simulated Annealing and
the Taguchi method. With the exception of the Taguchi method, which was

78 CHAPTER 6. PAPER B

discussed above, the other algorithms require a high number of iterations
together with the population size, making these methods impractical to use
in expensive optimization scenarios such as the deployed and testing bed sce-
narios. Additionally, some of these algorithms also require good tuning of
hyperparameters for good optimization and convergence.

Huang et al. [156] propose a framework called DINO (data-driven network
optimization), to optimize a large group of RBS. The proposed method is a
combination of an offline artificial neural network prediction model, an online
clustering, and a network optimization method to distribute the load. Although
the problem solved with the DINO framework is different from the problem
addressed in our work, the DINO framework suggests that alternative methods
to ours can be used if enough quality data traffic records are available to train
the neural network. Our approach does not require previous data to start
the tuning process, or an optimization model of the system, but relies on a
reinforcement learning process in a black-box model.

Döttling and Viering [146] propose the concept of self-optimizing networks.
The presented concept is similar to the continuous application of the method
presented in our work in deployed systems. However, their approach suggests
that the self-optimization feature should be part of the RBS software instead
of the external approach we used with the ACE system. In terms of algorithms,
the work suggests classes of algorithms such as genetic-algorithms and fuzzy
systems that could be used but does not provide further justification for the
selection of a particular class of optimization algorithm.

Gerostathopoulos et al. [49, 50] discuss the problem of field and self- op-
timization using tunable parameters in a semi-formal notation. They model
the system under experimentation SuE as a black-box system. However, they
utilize a gaussian process followed by a factorial ANOVA is used to analyze
and compare the optimized results. The system is evaluated in a simulated
traffic routing system and in just in time compiler in a Java virtual machine.
For the reasons previously discussed we adopted hierarchical methods instead
of the Bayesian optimization procedure.

6.6 Conclusion

This work describes a novel approach to the optimization of software parameters
of an RBS. The paper shows how to optimize an RBS online, with regret
minimization and a low number of iterations in the presence of uncertainties
due to the stochastic response of KPI metrics. This approach allows operators
to optimize their custom metrics and KPIs that are aligned with their business
goals without the need to model the complex interaction between the parameters
and KPIs and to restrict their optimization efforts to only a small subset of
optimization scenarios. An automated optimization system can be integrated
as part of the deployment functionality and let the system performs as a self-
optimizing network in the pre-determined scenarios of interests for the mobile
operators.

In this research project, we utilized the ACE system, a system that runs
black-box optimization methods for expensive stochastic objectives, integrated
with an RBS in a testing bed scenario. The RBS is connected to a rack with

6.6. CONCLUSION 79

several real UEs generating traffic according to test case patterns. Three
different optimization experimental runs are presented and discussed.

The proposed approach can be launched and used to optimize an RBS with
small manual effort and without the expenses of a mobile network optimization
expert. This approach could significantly reduce the effort needed to optimize a
mobile network when expanding the network and introducing new technologies
such as 5G, where optimization expert knowledge and guidelines will be limited.

In future work, we plan to expand the proposed approach to an online RBS
with user traffic and to investigate new procedures to balance the exploration-
exploitation tradeoff that aligns with operators’ requirements such as re-
balancing the exploration-exploitation tradeoff to fit the operators’ traffic
profile.

Acknowledgments

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation and by the Software Center. The authors would
also like to express their gratitude for all the support provided by Ericsson.

80 CHAPTER 6. PAPER B

Chapter 7

Paper C

An activity and metric model for online controlled exper-
iments

Mattos, D. I., Dmitriev, P., Fabijan, A. Bosch, J., Olsson, H. H.

International Conference on Product-Focused Software Process Im-
provement, 2018, pp.182-198.

81

Abstract

Accurate prioritization of efforts in product and services development is critical
to the success of every company. Online controlled experiments, also known as
A/B tests, enable software companies to establish causal relationships between
changes in their systems and the movements in the metrics. By experimenting,
product development can be directed towards identifying and delivering value.
Previous research stresses the need for data-driven development and experimen-
tation. However, the level of granularity in which existing models explain the
experimentation process is neither sufficient, in terms of details, nor scalable,
in terms of how to increase number and run different types of experiments, in
an online setting. Based on a case study of multiple products running online
controlled experiments at Microsoft, we provide an experimentation framework
composed of two detailed experimentation models focused on two main aspects;
the experimentation activities and the experimentation metrics. This work
intends to provide guidelines to companies and practitioners on how to set and
organize experimentation activities for running trustworthy online controlled
experiments.

82 CHAPTER 7. PAPER C

7.1 Introduction

Prioritizing the development of software features and services that deliver value
to customers is critical for the success of every company. One way to accurately
discover what customers value is to evaluate the assumptions of the company
by means of experiments. These experiments, commonly called A/B tests,
provide a framework for companies to establish causal relationships between
modifications on their systems and changes in metrics. Running experiments
allows companies to continuously up-date their assumptions on their user
behavior and preferences, along with many other benefits [72].

Several publications and reports from companies such as Microsoft, Face-
book, Google, and LinkedIn, among many others [13,18–20], report the com-
petitive advantage that online controlled experiments, such as A/B testing,
deliver [72]. Data-driven organizations make use of relevant collected data to
drive decisions and directions for the organization, and experiments are one
of the key techniques used by these organizations. However, the support and
evolution of experimentation practices is far from simple, and several pitfalls
can invalidate experiments and lead to incorrect conclusions [157].

Different models proposed in the literature [5, 7, 48] provide a general struc-
ture for data-driven development and experiment processes. Although these
models can be used as a starting point for companies to move to an iterative
experiment-driven development process, previous research [2,21,43,157–160]
also describes pitfalls, techniques to provide scaling of the experimentation
process and techniques to ensure trustworthiness in the experimentation process
that are not captured in or represented by the higher level of abstraction pro-
vided in these models. Because these models do not capture this level of detail,
instantiating these models directly from a higher level of abstraction can lead to
the limitations in the scalability and trustworthiness of the experimentation’s
activities already identified by previous research. Additionally, it can lead to
multiple experimentation initiatives inside an organization and lack of rigor in
the process, resulting in non-comparable tests and untrustworthy results.

To address this gap, this research provides a framework that captures specific
experimentation details and necessary steps for running trustworthy online
controlled experiments. The framework divides the experimentation process
into two main inter-connected models: the set of activities that organizations
should support to run trust-worthy experiments, and the role of metrics and
how they align experiments with long-term business goals. The proposed
framework is based on an inductive case study in collaboration with the
Analysis and Experimentation team at Microsoft. The contribution of this
paper is twofold. First, we present the new findings from the case study. These
findings represent important characteristics of the experimentation process
that were not captured in previous models and reinforces the need of a new
experimentation process model. Second, we present a framework composed of
two models for an experimentation process that covers the two main aspects:
(1) the experimentation activities and (2) the experimentation metrics. The
framework provides a detailed process which aims to help companies scale their
experimentation organization with a trustworthy experimentation process.

The rest of the paper is organized as follows. Section 2 provides a background
in controlled experiments and related work. Section 3 describes the research

7.2. BACKGROUND AND RELATED WORK 83

process of this case study. Section 4 presents new findings from the case study
that reinforce the need for a new experimentation process model. Section
5 presents the two main aspects of the developed experimentation process
framework. Section 6 concludes this paper.

7.2 Background and related work

Although there are many different techniques for learning about customer
preferences and using them to evaluate ideas (e.g. interviews, focus groups, ob-
servational studies, prototypes and mock-ups) [6], online controlled experimen-
tation is gaining significant momentum in software companies [4]. Controlled
experiments are a group of techniques where users are randomly assigned to
two or more variants of a product: the control (e.g. the current system) and
the treatments (the system with change X). The change could be the addition
of a new feature or the modification of existing functionality. The system is
instrumented and key metrics of the user’s behavior are computed. After a
pre-determined period of time, the metrics are analyzed. If the only consistent
difference between the experiment variants is the change X and external factors
are spread out evenly between the two variants, the differences in the metrics
are due to the change X. Based on this statistical analysis, companies can make
data-driven decisions. Kohavi et al. [2] provide a detailed guide on running
controlled experiments on the web.

Gupta et al. [161] describe the software architecture of the Microsoft ExP
Platform, the design decisions made while designing the platform, and its
main components. This platform and its components capture essential steps
and activities that enable trustworthy experiments on a large scale. Kevic
et al. [45] analyzed the results of over 20,000 experiments at Bing, providing
an empirical characterization of the experimentation process in a product-
running experiment at scale. This characterization shows that the average
experimentation process takes forty-two days and includes multiple iterations
to minimize the likelihood of hurting users or the business due to issues with
the change that is being tested.

However, not all companies and products have the capacity to run ex-
periments at the same scale as Microsoft Bing. Experimentation in software
companies typically evolves from a few independent experiments towards a
mature stage where several teams run many trustworthy experiments at the
same time. Fabijan et al. [32] provide guidance on how to evolve into a data-
driven company, exploring the technical, organizational and business evolution.
The evolution of experiments in products is divided into four levels of maturity
(crawl, walk, run, fly) across three dimensions (the technical, organizational
and business). Additionally, the study presents steps and experimentation
activities which are commonly used during the evolution of experimentation.
One of the key challenges in controlled experiments is how to decide which
metrics should be used in the Overall Evaluation Criteria (OEC). The OEC is
the experiment objective, which should ideally capture the long-term interests
of the company. Determining a good OEC is hard as it captures abstract
concepts that are difficult to validate and compare with other metrics [162]]. If
the OEC metric captures long-term goals or represent value, true movements

84 CHAPTER 7. PAPER C

of the metric represent the aggregated value that a variant is bringing to the
system.

Deng and Shi [44] provide an extensive discussion on metrics for online
experiments, classifying the types of metrics, the qualities and characteristics
of good metrics, and how to evaluate and select metrics. Dmitriev and Wu
[162] discuss a metric evaluation framework at Bing using an offline historical
experiment dataset called experiment corpus. The experiment corpus helps to
evaluate new metric sensitivity and alignment with user value. This framework
helps to select suitable OEC metrics for experiments.

Previous research has provided different models and frameworks that capture
and provide guidance on how to develop experiment-driven software. The QCD
model (Quantitative/qualitative Customer-driven Development) [48] is an
inductive model based on a generalization of approaches used by companies to
guide their collection of customer feedback throughout the development process.
Experimentation explores the notion of continuous validation of customer value,
in contrast to the traditional up-front specification of requirements. The QCD
explores this notion by treating requirements as hypotheses that need customer
validation at the beginning of the development process. New hypotheses are
based on business strategies, customer feedback, innovation strategies and
previous hypothesis cycles. Qualitative feedback (surveys, interviews, focus
groups and mock-ups), together with quantitative data (feature us-age, customer
behavior and support data), allows the evaluation of hypotheses. Hypotheses
that are not confirmed through any of the selected customer feedback techniques
are abandoned while validated hypotheses can be refined into a more detailed
hypothesis or can be implemented and deployed. This model provides a general
framework for evaluating hypotheses with customer feedback. This model can
incorporate online experiments at a higher level of abstraction. However, it
does not provide detailed clear steps and activities for instantiating an online
experiment in software systems.

Olsson and Bosch [5] present the HYPEX (Hypothesis Experiment Data-
Driven Development) model as an alternative development process for com-
panies to com-press the customer feedback loop. This model advocates for
an iterative and incremental development approach, rather than spending
engineering effort on larger quantities of functionalities without customer vali-
dation. The HYPEX model is composed of six steps: (1) the generation of a
feature backlog from customer needs or business goals. (2) Feature selection
and specification (what is the intended behavior, what is the gap it addresses,
and multiple implementation alternatives). (3) The implementation and in-
strumentation of a minimum viable feature (MVF). (4) Analyzing whether
the measured behavior of the MVF addresses the gap or not. (5) Generation
of hypotheses that explain the feature behavior and why the gap was/wasn’t
addressed. If the gap was addressed new features are selected as in the second
step. (6) If the gap was not addressed, alternative implementations can be
made (step 3) or a decision to abandon the feature can be made. The HYPEX
model is a general model for data-driven development and running product
experiments, but it does not provide specific steps for running online controlled
experiments.

Fagerholm et al. [7] present the RIGHT (Rapid Iterative value creation
Gained through High-frequency Testing) model for continuous experimentation.

7.3. RESEARCH METHOD 85

The goal of this model is to provide a systematic framework for developing
experiment-based software. This is achieved by establishing a series of building
blocks that act as pre-conditions for running experiments. These blocks are
divided into two main parts: the RIGHT process model and the RIGHT
infrastructure architecture model. The RIGHT process model follows the Lean
Startup methodology cycle [46]: build, measure, learn. The goal of this cycle is
to achieve the vision of the company (which is connected to the business model).
This is operationalized through hypotheses generated due to uncertainties in
how to execute the vision through the business model and strategy. The set
of generated hypotheses is prioritized with the learning of previous iterations.
The selected hypothesis is implemented through an instrumented mini-mum
viable feature or product (MVF). The collected data from the MVF is analyzed
and used to update the assumptions of the business strategy and abandon the
tested hypothesis or the data is used to further iterate with the hypothesis
by changing or optimizing it. The RIGHT infrastructure architecture model
sketches the infrastructure needed to run experiments and specifies the roles
and tasks, the technical infrastructure, and the information artefacts consumed
and generated during the experimentation process. The RIGHT model was
created in a startup environment by two companies starting to run their first
online experiments, and it takes the approach of abstracting the underlying
details of a continuous experimentation system, in order to be generalizable to a
range of different experiments that can be conducted in a startup environment.

The discussed models can be used as a starting point for companies to
systematically move to an iterative experiment-driven development process,
providing a higher level of abstraction of the experimentation process and
describing general activities. However, previous research [2, 21, 43, 157–160]
describes pitfalls, techniques to provide scaling of the experimentation process
and techniques to ensure trustworthiness in the experimentation process that
are not captured and represented by the higher level of abstraction provided in
the discussed models. Instantiating these models directly from a higher level
of abstraction can lead to the limitations in the scalability and trustworthiness
of the experimentation’s activities already identified by previous research.

7.3 Research Method

To help companies develop and support their experimentation process and
infrastructure models we conducted an inductive case study [77] in collaboration
with the Analysis and Experimentation team at Microsoft.

7.3.1 Data collection

The collected empirical data consists of interview notes, white-board drawings,
quotes and shared supporting data from nine semi-structured inter-views with
an average and median length of thirty-two minutes each. At the time of the
data collection, the second author was working with the Analysis and Exper-
imentation team and was the main contact person for the other researchers
during the data collection and analysis phases. All the interviews were con-
ducted in the premises of the company by the first author, who was accompanied
by the second author when possible. The interviewees were selected by the

86 CHAPTER 7. PAPER C

second author and represent a diverse selection of software engineers and data
scientists working both within the experimentation platform and as users of
the platform in different product groups.

The interviews were based on a questionnaire containing eight open-ended
questions, starting with a short introduction and explanation of the research.
The participants were asked to describe their experimentation process and how
it is conducted in each product they work with. Next, the participants were
asked to compare their own experimentation process and infrastructure with
the existing models in the literature and point out similarities and differences.
Next, they were asked about what experimentation activities they performed,
the time spent on these activities, their relative impact on the experiment
reliability, and the other main activities performed by other people in an
experiment lifecycle (from hypothesis generation to decision). We organized the
interviews by products and by an approximation of the number of experiments
the interviewees ran each year. This allowed us to differentiate experiences
from products that run experiments on a large scale from products that start
and run experiments on a small scale.

7.3.2 Data analysis

Thematic coding was used to analyze the grouped data [80]. Recurring codes,
drawings of the experimentation process and references to different parts of the
platform architecture and activities helped to formalize the new findings and
derive the proposed experimentation framework. For example: descriptions of
different tests and analysis to ensure the experiment was properly configured
were grouped in the “Pre-quality checks” while the different techniques used to
evolve a metric were divided between “Online evaluation” and “Offline valida-
tion”. We grouped the different experimentation activities in the development,
execution and analysis categories. Based on the thematic coding and the re-
ported activities, we compared them with the existing experimentation models
to identify the differences from existing models and propose the activity and
metric model. Our analysis is based only on data reported by more than one
interviewee, and when available in the development of the models we triangulate
the data with other research reports by the Analysis and Experimentation
team at Microsoft, available at the web link: https://exp-platform.com/.

7.3.3 Validity considerations

To improve the construct validity of the study, and prior to the data collection
stage, the semi-structured interview guide was applied to a group of two
developers from a Brazilian company with experience in A/B testing, known
to the first author, and two Ph.D. students in software engineering. This
helped to identify potential problems, such as ambiguity in the questions and
the explanations. Regarding the external validity process, although our work
was conducted with only one case company, our empirical data was collected
from experiences of several different products which are running trustworthy
experiments at scale as well as only a few experiments per year. This helped
to identify and compare trust-worthy experimentation processes at different
stages of maturity. Therefore, we believe that our results can be generalized

7.4. FINDINGS 87

for companies that want to scale their experimentation organization with a
trustworthy experimentation process.

7.4 Findings

In this section, we describe new findings obtained from the empirical data
that are not presented in previous research. Together with the description
of the experimentation process collected during the interviews, these findings
reinforced our motivation to develop the experimentation process framework
presented in the next section.

7.4.1 Customer feedback is an important source of ex-
perimentation ideas.

The first finding from the empirical data is that experimentation ideas, which
are later synthesized into experimentation hypotheses, are often inspired by
customer feedback, instead of high-level business goals. In this research, we
differentiate experiment ideas from experiment hypotheses. Experiment ideas
are the first source of potential changes that can be made to systems, and they
represent the potential value of a modification. However, often experiment ideas
do not represent real value and therefore need to be tested in experiments [163].
Experiment hypotheses synthesize ideas into concrete experimentation scenarios,
addressing what the change is, and how it can be implemented and evaluated.
Ideas are synthesized into an experiment hypothesis by experiment owners. An
experiment hypothesis, after deployment, can measure the real value of the
synthesized idea. Developers and product owners often collect experiment ideas
using different qualitative feedback collection techniques. Experiment ideas
are refined, developed, prioritized and synthesized based on the experiment
owners (developers, product owners and data scientists) being convinced of the
positive impact for the user and for the key metrics. Another source of customer
feedback ideas are differentiator features and user feedback in competitors’
open channels. Although experiment ideas can come from business strategies,
often they influence the prioritization process of experiments by influencing
the metrics.

“It is very rare that an experiment comes from the business. Most experiments
come from a group of engaged developers willing to code new ideas and run
the experiments . . . The ideas for the new features and their experiments
are almost always inspired by customers and competition” — Principal Data
Scientist

Existing models such as the HYPEX and the RIGHT model propose that
the business goals impose outcomes for experiments, but do not explicitly
represent how hypotheses are identified and prioritized. The QCD model
proposes business strategies, innovation initiatives, customer feedback and
previous experiments as the source of new ideas. However, it does not consider
differences between experiment ideas and experiment hypotheses and how they
can be further developed in a concrete experiment hypothesis. This insight
reinforces the direct and indirect customer feedback as the drivers of new
experiment ideas. However, experiment ideas still need to be prioritized and
synthetized into experiment hypothesis by experiment owners and engineers.

88 CHAPTER 7. PAPER C

7.4.2 Metrics guide experiments towards long-term goals
and help prioritize hypotheses.

The second finding refers to the role of metrics in learning and in hypothesis
prioritization. Experiments are launched with the goal of validating a change
in the system or learning more about user behavior. Both the validation of a
change and the out-comes of an experiment are closely related to the validity of
the metric, whether it measures its concept correctly, and whether it reflects the
business strategy of the company. If a metric is misaligned with the business
strategy of the company, changes and knowledge gained from experiments will
also be misaligned with the strategy. However, correctly chosen metrics create
incentive for teams to take actions which are aligned with the long-term goals
of the company [162]. Good metrics will help them prioritize experiments that
can have a positive impact on the long-term goals.

“If our decisions to ship are based on these metrics, these metrics have a big
impact on the development and evolution of the product. They guide the teams
to develop and focus their work to improve these metrics” — Principal Data
Scientist

The existing experimentation models do not describe or emphasize how
metrics impact hypothesis prioritization and long-term company goals. When
metrics are considered only part of the instrumentation system, they do not
reflect the bidirectional influence on the business strategy of the company.

7.4.3 Metrics evolve and capture the experiment assump-
tions.

As discussed in the second finding, metrics can guide the long term-goals of the
company and help prioritize the hypotheses. Additionally, metrics also capture
uncertainty and experiment assumptions. As metrics often represent abstract
and subjective concepts [162] such as satisfaction and engagement, they contain
assumptions about what constitutes these concepts. These assumptions should
be tested and validated during the experimentation process and should be
constantly iterated in order to maintain alignment with the business strategy.
This constant update and validation of the assumptions based on the results
of an experiment leads to a metric evolution process. Metrics can start as
low level signals, and then evolve to capture more complex concepts that are
more closely aligned with the business strategy. Additionally, the evolution
of metrics also reflects the evolution of the business strategy and the product
focus over time. As the company changes its strategies, metrics should be
updated to align with these changes.

Existing models describe the presence of uncertainty and assumptions in the
business strategy and in the role of the business analyst, as they are responsible
for hypothesis prioritization. However, these models do not describe or discuss
how the metrics evolution and the business strategy influence each other and
impact the product.

7.5. THE EXPERIMENTATION PROCESS FRAMEWORK 89

Aligns
(Insights B,C)

Guide Exp. goals
(Insight B)

Prioritize
(Insight B)

Learnings and
decisions

Update
(Insight C)

Update
assumptions

User
feedback Synthesized

(Insight A)

Metrics

Business
strategy

Experiment
Experiment
hypotheses

Figure 7.1: The relationship between the two main aspects (in bold), their
relation with the business strategy, and how the findings connect them.

7.5 The experimentation process framework

In the previous section, we discussed the findings and compared them to previous
research. Previous research did not capture all the identified characteristics from
the findings nor present specific experimentation details, or the necessary steps
to take when running trustworthy online controlled experiments. This led to the
motivation and the need to develop a new framework that incorporates these
findings. The framework is based on the collected empirical data, including
descriptions and drawings of the process, comparison with other processes
and the characteristics identified in the new findings and in the different
components represented in the Microsoft ExP Platform described in [161].
During the data collection, the researchers asked the interviewees to describe
their experimentation process and compare it with existing models. This
discussion, together with findings from previous research, led to the development
of this framework, which consists of the two main aspects of the experimentation
process: (1) the experimentation activities, and (2) the experimentation metrics.

These aspects are related to the business long-term strategies as represented
in Fig.7.1. This diagram represents how the two main aspects of experimen-
tation used in this work relate to each other and to the business, and how
they connect to the findings discussed in the previous section. Next, we detail
these two aspects in two separate models, the experimentation activity model,
and the metric model. These models were developed based on the collected
empirical data and previous research.

7.5.1 The experimentation activity model

The experimentation activity model describes the different activities which
comprise a single experiment iteration, from the experiment ideas, to the ex-
periment analysis necessary for the running of trustworthy online experiments.

90 CHAPTER 7. PAPER C

The arrows correspond to sequential connected activities. For example, when
the experiment is launched pre-quality checks are run followed by ramp-up
procedures before the experiment data is collected from a larger user base. Fur-
thermore, our model divides the experimentation process into three sequential
phases: the experiment development phase, the experiment execution phase,
and the experiment analysis phase.

We illustrate the experimentation activity model in Fig. 7.2 and describe
the three phases in greater detail.

7.5.1.1 Experiment development phase.

This phase refers to the specification and development activities of the exper-
iment necessary to implement the variation change. This phase takes place
before users are exposed to any variations. Finding A discusses how experi-
ment hypotheses are generated and synthesized in the experimentation process.
Experiment ideas are usually derived from four sources: (1) customer feedback
(Finding A), (2) further iteration from previous experiments iterations [45], (3)
need to understand and model the user behavior, and (4) less often through
higher-level business goals (dashed line). The hypotheses are prioritized based
on the experiment owners’ prior analysis of how the hypotheses can impact the
OEC. This analysis can be based on historical data from the feature, insights
from other market segments (e.g. a feature that shows success in the US market
might be prioritized for launch in another market or globally), or on experience
gained from similar previous experiments or other products.

Following prioritization of the hypothesis a detailed hypothesis is elaborated.
This includes specification of the experiment type (A/B, A/B/n, MVT etc.),
how many variants are going to be present, cohorts or market segmentation,
experiment duration and metrics to be used. Additionally, it covers the
feature/change specification, including the area of functionality, actual and
expected behavior, and implementation alternatives and considerations.

In addition, the detailed hypothesis specifies the target metrics that are
expected to have impact and movements. The specification of the experiment
metrics is closely related to the metrics used to prioritize the experiment itself.
This includes lower-level signals that measure user-specific behaviors, guardrail
metrics that indicate whether an experiment is within the allowed experiment
conditions, and the leading metrics [72] that guide the experiment analysis. The
metric selection is related to logging capabilities. The logging code represents
the instrumentation of the system that interacts with the experimentation
system. The logging code collects lower-level user behavior signals that can
be used to compose complex metrics in the experimentation system. It is
worth noting that the logging code should comply with the same standards
(e.g. deployment, testing, code review, and integration pipeline) as any other
product code.

Depending on the type of detailed specification of the hypothesis, the change
in the system at the product level can happen in two ways, or a combination
of the two. The first is through coding of the modification. This method is
common when the experiment specification requires coding of a new feature or
extensive modification of existing ones. The experiment set-up is a comparison
of the current system with the change (treatment) and the system without

7.5. THE EXPERIMENTATION PROCESS FRAMEWORK 91

M
et

ric

se
le

ct
io

n

In
st

ru
m

en
ta

tio
n

sy
st

em

Se
le

ct
io

n
Ex

pe
rim

en
t

le
ar

ni
ng

s

De
ve

lo
pm

en
t

Ex
ec

ut
io

n
An

al
ys

is

Sp
ec

ify

Fe
at

ur
e

un
de

r c
ha

ng
e

Ex
pe

rim
en

t
da

ta

co
lle

ct
io

n
De

ci
si

on
s

Im
pl

em
en

ts

Im
pl

em
en

ts

Im
pl

em
en

ts
Lo

gs

So
ftw

ar
e

pr
od

uc
t

Ex
pe

rim
en

ta
tio

n
ph

as
es

C
om

pu
te

s

D
et

ai
le

d
hy

po
th

es
is

Al
ig

ns

Ra
nd

om
iza

tio
n

to
 ta

rg
et

 g
ro

up

Ra
m

p-
up

G
ua

rd
ra

il
bo

un
da

rie
s

Pr
e

qu
al

ity

ch
ec

ks
Po

st
 q

ua
lit

y
ch

ec
ks

M
et

ric
s

M
et

ric

en
gi

ne

Ex
pe

rim
en

t
da

ta

Po
te

nt
ia

l
H

yp
ot

he
se

s

C
us

to
m

er

fe
ed

ba
ck

Pr
ev

io
us

ex

pe
rim

en
ts

ite
ra

tio
ns

Bu
si

ne
ss

 g
oa

ls

In
pu

ts
 a

nd
 o

ut
pu

ts

Ac
tiv

ity

St
or

ed
 d

at
a

Fe
at

ur
e

co
di

ng
Fe

at
ur

e
pa

ra
m

et
riz

at
io

n
Lo

gg
in

g
co

de

U
nd

er
st

an
di

ng

of
 th

e
re

su
lts

Ar
tif

ac
ts

St
at

is
tic

al

re
po

rt
an

d
sc

or
ec

ar
ds

Al
er

ts

Ex
po

se
d

va
ria

tio
n

Lo
g

us
er

-b
eh

av
io

r
Va

ria
tio

n
as

si
gn

m
en

t

U
se

rs
Fe

at
ur

e
un

de
r c

ha
ng

e
Fe

at
ur

e
un

de
r c

ha
ng

e
Fe

at
ur

e
un

de
r c

ha
ng

e
va

ria
tio

ns

M
et

ric
s

 b
y

va
ria

tio
n

Pr
io

rit
iza

tio
n

of
 h

yp
ot

he
si

s
Pr

io
rit

ize
Ex

pe
rim

en
t

ow
ne

rs
 a

nd

de
ve

lo
pe

rs

St
at

is
tic

al
 a

na
ly

si
s

Ite
ra

te
/

st
op

ex

pe
rim

en
t

Va
lid

at
e

Va
lid

at
e

M
on

ito
r

Va
lid

at
e

F
ig

u
re

7.
2:

T
h

e
ex

p
er

im
en

ta
ti

o
n

a
ct

iv
it

y
m

o
d

el
.

92 CHAPTER 7. PAPER C

the change (control). The second way in which the change can be done is by
parametrizing an existing functionality and running experiments to modify
these parameters. In this case the functionality already exists but appears
to have sub-optimal performance. The parameters of this functionality are
configured during the experiment execution and are assigned to users. Although
this might require a larger overhead in supporting and setting up a configuration
manager, it reduces the effort and time spent on each experiment.

7.5.1.2 Experiment execution phase.

After the experiment is properly designed, the metrics selected, the change
coded and instrumented, the experiment moves to the experiment execution
phase. Here, users are randomized and are assigned to the experiment variations
of the feature under change. The user behavior is logged, and the initial metrics
are computed per variation using the metric engine and initial statistical
analysis are computed using the statistical analysis tool. The metric engine is
responsible for collecting and transforming raw data into experiment metrics.
These metrics are consumed by the statistical analysis tool in order to run
quality checks, check for guardrail-metrics and generate scorecards. The metrics,
as discussed in the metric model, align the experiment goals with the business
strategy and serve as input in the prioritization of experiment hypotheses.

The assignment of the users to the different variations can happened in two
general ways (other methods used for websites are described in [2]). The first
is to use a feature toggling system. In this case, the change in the system is
parametrized using a variable, and the users are assigned to feature variations
that the parameter activates (treatment group) or deactivates (control group).
The second method is through traffic routing, where multiple instances of the
system are run in parallel and the assignment system redirects the user to one
of the multiple instances. The randomization refers to how users are assigned
to a specific variation of the experiment during the execution phase. The
randomization usually targets a specific group of users at the beginning and
then generalizes to a larger audience. This target is specified in the detailed
hypothesis. Although randomization might look intuitive, there are several
techniques available to ensure that the randomization is not biased towards any
variation [2, 164]. Then the instrumentation system captures the user behavior
and logs the experiment data for use in statistical analysis.

The first step in the execution phase is to have confidence that the experi-
ment will yield trustworthy results.

“A lot of effort goes into making sure the experiment passes the (pre-)quality
checks. This is an essential step that gives us confidence in the experiment, so
that we will not go to the next steps only to discover we did something wrong
at the be-ginning” — Principal Data Scientist

Before running experiments and exposing users to different variations, pre-
quality tests are run to check for common pitfalls. Examples of pre-quality
tests are: A/A or null tests, sample ratio mismatching, randomization checks,
and offline testing. The A/A test assigns the users to the same variant A (the
system without the change) with the aim of testing the experimentation system
and assessing variability in the collected data [2]. The sample ratio mismatch
(SRM) [43] is considered a critical diagnosis tool for online experiments. The

7.5. THE EXPERIMENTATION PROCESS FRAMEWORK 93

SRM checks the percentage allocation of the users. This allows the experiment
owners to detect bias (that would invalidate the experiment results) towards
any variation as well as check performance considerations. Randomization
checks are tests which identify whether the randomization procedure is biased
or has any patterns and checks the consistency of the randomization between
sessions (to ensure that recurring users see the same variations). Offline testing
uses historical data to assess the impact of the changes in the system and
estimate confidence intervals [110].

After the pre-quality checks the activities that take place in the experiment
execution phase are: the ramp-up, guardrail boundaries and experiment data
collection. Ramp-up is a procedure where the treatment variations are initially
launched to a small percentage of users. This is useful because critical errors can
be detected early while exposing only a small number of users to the treatment
variations. Large effect sizes in key metrics are mostly related to experiment
errors [73], therefore fewer users’ needs will be exposed to the change while
identifying such errors. As the experiment runs without severe degradation,
the percentage of users exposed to the treatment can be continuously increased
until each variation has equal allocation, so that the experiment power is
maximized [2]. A ramp-up procedure should be implemented together with an
automated alerting capability with different significant levels and configurable
actions. By checking guardrail metrics and experiment boundaries, such as key
metrics that the experiment should not alter or deteriorate, the alerting system
will alert experiment owners if something unusual is happening. In extreme
cases, it will shut down an experiment with a significant negative impact if no
action was taken. This allows organizations to invest in innovative and bold
changes while reducing the risk of exposing users to bad ideas and errors [2].

After the main experiment execution, post-quality tests can be run to ensure
that the experiment is valid and the data is reliable. Common post-quality
checks are (1) checking for experiment invariant metrics, (2) learning effects,
(3) A/A tests, (4) inter-action effects with other overlapping experiments,
and (5) novelty effects [32]. Experiment invariant metrics are metrics that
are not expected to change within the scope of the experiment. If there is
a statistically significant movement in those metrics during the experiment
execution, either the assumptions about the impact of the experiment are wrong
or the implementation of the experiment is wrong. In both cases, it is worth
exploring the reasons for these unexpected results. Other quality checks that are
beyond the scope of this paper can be seen in [13,32,43]. The statistical analysis
tool supports the whole experiment execution, computing guardrail tests and
quality checks. Following the post-quality checks, the statistical analysis
tool generates re-ports and scorecards for the key metrics of the experiment.
Qualitative data collected from feedback boxes and other consumer feedback
channels (if available) can be used together with the quantitative analysis to
help explain the result.

7.5.1.3 Experiment analysis phase.

The analysis phase follows both the data collection and the conclusion of the
experiment execution. The analysis phase consists of developing an understand-
ing of the statistical output of the experimentation system in the context of

94 CHAPTER 7. PAPER C

Phase-out

Creation Evolution Maturity Phase out

Online
evaluation Maintenance

▪ Lower-level
signals

▪ Feature
specific

Local/Diagnosis

Online
evaluation

Offline
validation

Periodic
evolution

▪ Business long-
term goalsOEC

MaintenanceOnline
evaluation

Offline
validation

▪ Business and
experiment
constraints

Guardrail

Online
evaluation Maintenance▪ Quality checks

▪ BugsData-quality

Metric type

Metric Lifecycle

Figure 7.3: The metric model.

assumptions about user behavior.
Understanding of the results is an activity that analyzes the results from

the statistical analysis in order to generate evidence about customer preferences
and behavior and thus facilitate the decision-making process. It is important
to reinforce that as the complexity of the experiment increases and there is
not a standard OEC, key metrics can move in opposite directions, behave
differently in different markets and in different user segments. In such scenarios,
it is important to understand why different markets or user segments behaved
differently. Not only does this generate meaningful knowledge which can be
used to update assumptions about user behavior, but it also facilitates the
process of decision-making and helps the evolution of the metrics and their
alignment with the business strategy. Based on the results of this activity, the
company can make decisions (such as ship or not ship the change) and update
their assumptions and the metrics.

7.5.2 The experiment metric model.

A key component of the experimentation process described above is the metrics.
Metrics guide hypothesis prioritization, the instrumentation required in the
system, and the understanding of the results, and reveal whether the experiment
results can be trusted. The experiment metric model that we discuss in this
section characterizes two aspects of metrics: metric lifecycle and metric type.
These two aspects are related to the findings B and C. These findings reinforce
the central role that metrics play in the experiment design and execution. The
metric lifecycle is divided into four main phases: creation, evolution, maturity
and phase-out. The metric type is based on the four metric types identified in
previous research [43]: OEC metrics, data-quality metrics, guardrail metrics
and local feature and diagnostic metrics. The metric model is represented in
Fig. 7.3.

The arrow in the metric model refers to the different stages in a metric
lifecycle. In the creation phase, a first prototype of a metric is created. In
this step, the metric consists of either aggregated lower-level signals (such as
usage time, clicks, etc.), or modifications of existing metrics (such as linear

7.5. THE EXPERIMENTATION PROCESS FRAMEWORK 95

combination or proportions)

The evolution phase consists of refining the metric and aligning it with
the metric goal. During this process additional metrics can be combined with
the original one to better capture more complex concepts. The refinement
process can also impact the sensitivity of the metric. Offline validation and
online evaluation are two techniques used to assess and support the evolution
of a metric. The offline validation process analyses the metric directionality
and sensitivity. Directionality refers to the direction of positive impact. The
sensitivity of a metric refers to how well a metric is capable of moving due to the
treatment. Techniques for offline validation of metrics can be found in [44,162].
Online evaluation refers to analyzing the metric during an experimental run.
This includes computing the metric with live users. The evaluation can be
done through the comparison of the new metric with other existing metrics
and through degradation experiments. Degradation experiments refer to the
degrading of the user experience to find the directionality and sensitivity
of metrics in the absence of an experiment corpus or analogous metrics for
comparison. Strange movements of metrics during the experiment execution
and quality tests can indicate instrumentation problems.

The maturity phase represents a period where the metric has been evaluated
or validated and does not go through extensive modifications. For some metrics,
the maturity phase represents a phase where they are updated in pre-established
periods with learnings from multiple experiments or updated to accommodate
changes in the business strategy of the company or the product, or only when
issues arise in a maintenance process.

The last phase is the phase-out. In this phase, older metrics can be
replaced with newer metrics, and metrics specific to an experiment or feature
are deactivated after the experiment or feature lifecycle is over. It is worth
noting that each metric might reach the different stages during different time
frames. Metrics designed to be used only in one experiment can go through
the creation to the phase-out process in only one experiment cycle. Metrics
specific to features go through many experiment cycles, until the feature is
only maintained or it is abandoned. OEC metrics that cross several features
and even products can last many experimental cycles and years.

The second aspect of the metric model that we describe refers to the type
of metric. Overall Evaluation Criteria (OEC) metrics guide the experiment
outcomes and are a measure of the experiment’s success. They represent and
capture assumptions about business strategies and long-term company goals.
OEC metrics are used across experiments and their evolution depends on the
inputs from multiple experiments and the alignment with business goals. The
evolution of OEC metrics affects multiple experiments and therefore is only
updated periodically. The update of such metrics goes through offline validation
and online evaluation.

Data-quality metrics are used in quality checks and inconsistency checks,
such as implementation bugs, synchronization errors, and telemetry loss. Some
of these metrics are feature specific, such as checking for data quality in
experiments specific for a feature, while others are used in multiple experiments
during pre-quality checks, such as the Sample Ratio Mismatch and checks for
randomization imbalance during A/A tests. These metrics are evaluated online
and their evolution and update occur when feature-specific modifications require

96 CHAPTER 7. PAPER C

updates or when issues arise. Guardrail metrics are metrics that are not used
as an indicator of success but instead serve as boundaries for the experiment.
Negative movements of guardrail metrics might be an indicator that experiment
conditions were violated, generating alerts. These metrics, although they do not
represent business directions as the OECs do, can represent business constraints
on the OEC movement. These metrics evolve periodically in order to align with
changing business restrictions. When updated, guard-rail metrics go through
offline validation and online evaluation.

Local feature and diagnosis metrics are metrics used in individual functional-
ities of products. They do not impact other experiments and serve as diagnostic
indicators used to understand the movement of OECs and guardrail metrics.
Diagnosis metrics represent lower-level signals and serve as debug metrics for
understanding unexpected movements of OEC and guardrail metrics. Local
feature and diagnosis metrics are usually constrained to the experiment or
feature lifecycle. Due to their short lifecycle these metrics are only evaluated
online. To support the creation, evolution, maturity and phase-out phases
of the different types of metrics, the experimentation team should support
a metric management platform. This type of system prioritizes important
metrics, constrains metrics to specific features and keeps track of inactive
phased-out metrics for comparison and offline validation between older and
newer experiments.

7.6 Conclusion

Online controlled experiments have become the standard practice for evaluat-
ing ideas and prioritizing features in most large web-facing software-intensive
companies [18–20,72]. Although companies can rely on models to start their
experimentation organization and data-driven practices they might struggle
to establish a trustworthy experimentation process as they scale their experi-
mentation organization. Previous research provides models and processes for
starting an experimentation organization based on higher-level descriptions of
the experimentation process. However, these models do not capture all details
and techniques that allow companies to scale and to ensure trustworthiness
in the experimentation process [2, 21, 43, 157–160]. Based on a case study
research with multiple product teams responsible for running online controlled
experiments at Microsoft, we provide an experimentation framework composed
of two detailed experimentation models focused on two main aspects; the
experimentation activities and the experimentation metrics. This model dis-
cusses granular aspects of the experimentation process that can help companies
and practitioners to scale their experimentation activities into a trustworthy
experimentation process.

In future research, we plan to validate this experimentation process in other
companies, to compare how the different activities map onto their experimen-
tation process and analyze other aspects of the experimentation process, such
as how the organization roles change during the evolution of the experiment.

7.6. CONCLUSION 97

Acknowledgments

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP), funded by the Knut and
Alice Wallenberg Foundation. The authors would like to thank Microsoft’s
Analysis and Experimentation team for the opportunity to conduct this study
with them.

98 CHAPTER 7. PAPER C

Chapter 8

Paper D

Multi-armed bandits in the wild: Pitfalls and strategies
in online experiments

Mattos, D. I., Bosch, J., Olsson, H. H.

Information and Software Technology, 2019, v.113, pp.68-81

99

Abstract

Context: Delivering faster value to customers with online experimentation is
an emerging practice in industry. Multi-Armed Bandit (MAB) based experi-
ments have the potential to deliver even faster results with better allocation
of resources over traditional A/B experiments. However, the incorrect use of
MAB-based experiments can lead to incorrect conclusions that can potentially
hurt the company’s business.
Objective: The objective of this study is to understand the pitfalls and
restrictions of using MABs in online experiments, as well as the strategies that
are used to overcome them.
Method: This research uses a multiple case study method with eleven experts
across five software companies and simulations to triangulate the data of some
of the identified limitations.
Results: This study analyzes some limitations faced by companies using MAB
and discusses strategies used to overcome them. The results are summarized into
a practitioners’ guidelines with criteria to select an appropriated experimental
design.
Conclusion: MAB algorithms have the potential to deliver even faster results
with better allocation of resources over traditional A/B experiments. However,
potential mistakes can occur and hinder the potential benefits of such approach.
Together with the provided guidelines, we aim for this paper to be used as
reference material for practitioners during the design of an online experiment.

100 CHAPTER 8. PAPER D

8.1 Introduction

Delivering faster value to customers with online experimentation is an emerging
practice in industry [2,9,11]. Web-facing software companies (such as Microsoft,
Google, Netflix, Booking.com, Yelp, and Amazon, among others) often report
on success cases and the competitive advantage of using post-deployment data
together with online controlled experiments as an integral part of their devel-
opment methodologies [2, 18–20,23,32,115,165]. This competitive advantage
leads companies to start experimenting with almost every change made in their
systems, from developing new functionality to the fine tuning their systems.
This intensive use is leading companies to deploy thousands of experiments
every year [21,32,45]. A famous example of online experiment is the ‘50 shades
of blue’ experiment at Google. In this experiment, Google’s engineers ran an
experiment to determine the best shade of blue for a hyperlink in Google’s
search page. The best shade of blue resulted in an additional 200 million dollars
in revenue [163,166].

To support the diversity and the scale of experiments, software companies
and academic researchers are developing innovative solutions in automating
experiments, scaling the experimentation infrastructure, and in developing new
algorithms and experimental designs [18,23,45,110,143,162]. One emerging
class of algorithms, known as Multi-Armed Bandit (MAB) [113,167], is being
widely explored in the context of online experiments and have the potential
to deliver faster results with better allocation of resources [110] compared to
traditional experiments, such as A/B testing. However, the incorrect use of
MAB-based experiments can lead to misinterpretations and wrong conclusions
that can potentially hurt the company’s business.

To the best of the authors’ knowledge, there is no work that discusses
the limitations of MAB-based experiments. This work attempts to addresses
this gap from the industry perspective using a combination of a multiple case
study with simulations. This study provides analyzes some limitations faced
by companies using MAB and discusses strategies used to overcome them. The
results are summarized into a practitioners’ guidelines with criteria to select
an appropriated experimental design.

The remainder of the paper is organized as follows. Section 8.2 provides a
background review of the MAB problem and algorithms, controlled experiments
and A/B testing and the experimentation processes. Section 8.3 discusses the
research method and threats to validity. Section 8.4 presents and discusses
the restrictions and common associated with MAB implementations for online
experiments. Section 8.5 presents a discussion of the results, use cases where
MAB algorithms are desired and a guideline process to select between traditional
experimentation techniques such as A/B experiments and MABs. Section 8.6
concludes and discusses related research challenges.

8.2 Background

In this section, we consider the different aspects of running online experiments.
We describe a traditional online experiment in the form of an A/B test and
discuss some of the limitations of this method. Next, we present the MAB

8.2. BACKGROUND 101

class of problems and discuss some of the advantages of MAB. In the appendix
we present the MAB algorithms used in the simulations.

8.2.1 A/B experiments

A/B experiments, also known as A/B test, are a group of techniques based
on the design of experiments [16] and hypothesis testing, where users are
randomly assigned to different variants of the product. The control variant
is the current system without any modifications and the treatment variants
are the current system with a modification Xn. The modification Xn can
be modifications in existing functionalities of the system (e.g. a different
set of parameters for each variation), or the system with a new feature or
functionality (e.g. different implementations of new features). All variations
are properly instrumented and send data to the research and development
organization. Metrics to evaluate the system are grouped and computed based
on the variation of the system. The different variations are randomly assigned
to different users, and, after a predetermined period of time, the metrics for each
variation are statistically compared. If the only consistent difference between
the experiments’ variants is the modification Xn, and the randomization
assumptions hold true, the research and development organization can establish
a causal relationship between the modification in the system and the change
in the metrics between the different variations. Kohavi et al. [2] provide
an in-depth discussion of different experimental design techniques used in
software online experiments. Additionally, to support A/B testing in software
systems, different experimentation models and frameworks were developed,
such as the HYPEX [5], RIGHT [7,8] and Framework for Online Controlled
Experiments [27]. These models focus on the software and organizational
process to establish an experiment instead of focusing on the experimental
design and statistical aspects.

Two types of decision errors are discussed in traditional hypothesis testing
and A/B testing. Type I error occurs when we reject the null hypothesis when
it should be accepted (a false positive). Type II error occurs when we accept
the null hypothesis when it should be rejected (a false negative) [168]. Online
experiments control type I error by utilizing strict level of significance in their
tests while control type II error by increasing the sample size [2].

One of the challenges faced by many small- to medium-sized companies is
the high number of users required to run a high confidence levels and high-power
A/B experiments [41]. Collecting such an amount of data can take between
weeks and months [23, 45], even in large companies. The time to run even
a single experiment can negatively impact the decision-making process and
time to deploy a new feature in most software organizations. Another key
challenge is the choice of metrics [43]. An experiment can have multiple metrics
that might move in opposite directions. The analysis of these experiments
is a challenging process, as they can involve multiple stakeholders and they
require a clear view on how these metrics connect to the business goals of the
company [27,43,44].

102 CHAPTER 8. PAPER D

8.2.2 Multi-Armed Bandit

The MAB problem (also known as K-armed bandit) is a problem that aims to
maximize the expected gain when we have a limited set of resources that should
be allocated in unknown, competing variants [113,167]. Its name comes from
the analogy of a gambler facing a row of slot machines (one-armed bandits)
trying to decide which machine to play and in which order, trying to maximize
the received reward [113]. MAB algorithms are classified under the umbrella
of reinforcement learning algorithms examining the exploration-exploitation
trade-off.

The MAB problem can be formalized as [110]:

a = π(δ), Arm a ∈ a1...aK (8.1)

y = r(a, δ′), Reward y ∈ R (8.2)

where a is the arm selected, K is the number of arms, π is the user-defined
policy function to balance the exploration of arms and the exploitation of the
best arm so far, δ is and δ′ are noise variables, y is the measured reward and r
is the unknown reward function for the selected arm. A MAB algorithm is the
user-defined policy π to select the arm.

In online experiments, each arm corresponds to variant of the system. This
can be different implementations of a feature, different parameters or different
changes. The reward y is the (user-)metric, such as clicks or conversions.
The reward metric should have a positive direction (the higher value of y is
considered better than a lower value). Usually, MAB algorithms restrict the
reward metric to the interval y ∈ [0, 1]. Although the concept of reward is
intuitive and have a direct relation to the online experiments counter-part,
several MAB algorithms are formulated and discussed using the concept of
regret and cumulative regret [143]. Regret is the difference of the drawn
arm and the optimal arm while the cumulative regret is the difference of the
cumulative optimal reward, i.e. the total reward got if the optimal arm was
chosen every time, and the actual total reward received. Formally it is defined
as:

CumulativeRegret(t) = r(a∗) · t−
t∑

s=1

µ(as) (8.3)

where µ(a) is the mean reward of the arm a over the time and a∗ is the
optimal arm:

a∗ = max
a∈a1...aK

µ(a) (8.4)

One of the main advantages of MAB algorithms compared to A/B experi-
ments is the minimization of the cumulative regret. This allows the algorithms
to dynamically change the user allocation to the best performing variants.
Another advantage occurs in situations with clearly underperforming variants.
In such cases, the algorithm changes the allocation of users from the bad
variants to the better ones, helping to differentiate good arms from the best
ones quicker [169]. However, MAB algorithms have several assumptions that

8.3. RESEARCH METHOD 103

must be met for a correct inference, such as independence of the arms, reward
distribution, instant reward, reward time invariance, single metric constrain,
among others. As with A/B experiments, the choice of the reward greatly
impacts the result and conclusion of the experiment.

The Appendix describe four common MAB algorithms: the epsilon-first,
epsilon-greedy, UCB1 and the Softmax.

8.3 Research method

In earlier discussion with practitioners, we identified that, although academic
research suggests that MAB algorithms provided several benefits, companies
were not using MAB extensively in practice. Some of these companies suggested
that these algorithms did not provide the expected benefits and that they even
showed several limitations. Based on these observations, we designed this study
to identify what are the restrictions and pitfalls of MAB-based experiments
from the point of view of software companies, and how these limitations can
be addressed when designing an experiment. This is captured by the following
research questions:

RQ1: What are the restrictions and pitfalls associated with MAB algo-
rithms applied to software online experiments?

RQ2: What are the decisions involved in the design of MAB-based online
experiment?

To answer the two research questions, we conducted a multiple case study
and triangulated the data with simulations. The multiple case study allowed
us to explore the rationale behind the experimental design decision process,
such as the decision of choosing a traditional A/B testing over a MAB-based
experiment. The simulations allowed us to verify situations mentioned by the
interviewees in the case study and, when possible, triangulate the data.

8.3.1 Multiple case study

The case study process was conducted following the guidelines presented by
Runeson and Höst [77]. This multiple case study can be divided in three stages:
(1) Definition and planning, (2) Data selection and collection and (3) Data
analysis. Next, we provide an overview of each of the three stages.

8.3.1.1 Definition and planning

Based on the observations from earlier research that despite the benefits
suggested by research, online companies were not using MAB algorithms,
we designed a multiple case study to understand: (1) the restrictions and
pitfalls that companies running online experiments encounter when using MAB
algorithms (RQ1), and (2) how these companies overcome these restrictions
and pitfalls (RQ2).

8.3.1.2 Data selection and collection

The main data-gathering instrument used in this multiple case study was
thematic semi-structured interviews based on an interview guide. Our choice

104 CHAPTER 8. PAPER D

for thematic semi-structured interviews was based on the flexibility of asking
open questions to discuss a broad range of problems inside the same theme [77].
The case study companies and the subjects were selected based on the criteria
that the companies run online experiments on a daily basis or develop solutions
for online experiments, including A/B testing, factorial experiments, and/or
MAB algorithms. All the subjects selected for the case study had experience
of online experiments and knowledge of either developing or running MAB
algorithms in their systems. This selection criteria limits the interviewees to a
restrictive pool of experts available outside academia. This is reflected in the
position occupied by the interviewees, where almost all are senior or principal
data scientists and developers.

This multiple case study was conducted together with five companies
between the period of August 2017 and January 2018. The primary data
sources of this study are transcripts of audio recordings, interview and meeting
notes, emails, and other information shared by the interviewees, such as slides
and technical reports. A total of 11 interviews were conducted. with minimum
duration of 33 minutes, maximum duration of 70 minutes and a mean value of
40 minutes and a median of 38 minutes. The number of interviews was decided
based on the saturation criterion, where no new information or points of view
were gained from new subjects [77].

The interviews consisted of a questionnaire containing four general open-
ended questions aimed at identifying problems using MAB algorithms seen
in practice, identifying the restrictions and pitfalls of these algorithms that
prevented their utilization in practice, identifying good use cases where these
algorithms can be used, and identifying the strategies used by the companies to
overcome these limitations. The interview started with a brief introduction and
description of the goals of this research. Next, we asked the participants about
their familiarity with MABs and A/B testing, and their industrial experience
with them. Next, we asked if they had experienced any limitations or problems
with MAB-based experiments compared to A/B testing. Next, we asked about
strategies used to address these problems and limitation, and what would be
good cases for MAB-based. During the interview we reported limitations faced
by other companies, anonymously, with the goal to verify if similar limitations
were also present. During the data analysis, any information that was not clear
or that needed further explanation was discussed again with the interviewees.

The companies Due to reasons of confidentiality, we have provided only
a short description of the companies and their domain. The interviews were
conducted either in person on the company’s premises, or online via video
conference. Table I provide a list of the interviewers’ position in each company.

Company A is a multinational conglomerate company that manufactures
consumer electronics and provides software solutions for consumers, profession-
als, and business-to-business solutions. Different teams inside this company
are running A/B/n experiments and have conducted the preliminary research
and implementation of MAB algorithms for experimentation in their software
products. In company A, we interviewed four practitioners working with two
different products.

Company B is a multinational technology company that develops, manufac-
tures, and sells software solutions and services ranging from operating systems

8.3. RESEARCH METHOD 105

to web solutions. Several of the company’s products run A/B/n experiments
on a regular basis or at scale, and they have also successfully implemented and
run MAB in some of their products and have evaluated MAB algorithms for
their online experimentation platform. In company B, we interviewed a total of
four practitioners working in the same experimentation team but with different
products.

Company C is a company that develops experimentation solutions for its
customers. The company offers A/B/n, MVT and other experimentation tools
for websites along with frameworks for experimentation in mobile platforms.
The company developed their own statistics engine and offers solutions using
MAB algorithms to customers. The company’s customers include several
multinational companies from different domains, from software companies,
to entertainment and large news agencies. We interviewed two practitioners
involved with the MAB solutions.

Company D is a software company focused on website optimization and
offering experimentation tools and solutions for A/B testing and MABs. One
practitioner was interviewed, the director of data science in the company. How-
ever, since the interview this interviewee has left the company and provides
consultancy in the area of experimentation and MAB algorithms, with expe-
rience in developing A/B experimentation platforms and MABs for several
multinational companies, from software companies to large news agencies.

Company E is a travel fare aggregator and travel engine provider. It
develops booking and travel solutions used by both individuals and the travel
industry. A/B testing methodologies are an integral part of the development
process of the company. The company is introducing and evaluating MAB
algorithms in their online experimentation process. One practitioner was
interviewed. The interviewee is a senior data scientist and is responsible for the
development and evaluation of a MAB tool to be used in internal development.

8.3.1.3 Data analysis

First, the empirical data for each interview was transcribed, where applicable,
and thematic coding was applied [170]. From the coding, we identified the
limitations as well as the potential solutions. Although some of the reported
data was specific to the context of their work, some of the codes could be
grouped into a more general limitation or solution. This grouping procedure
was analyzed and interpreted by all authors.

8.3.2 Simulations

During the data collection of the multiple case study, some of the interviewees
also shared simulation designs and ideas to illustrate some of the concepts.
These simulations were reproduced in this paper with the aim to triangulate
the data shared in the interviews with hypothetical scenarios that could happen
in MAB-based experiments. Each simulation is presented as a hypothetical
scenario and it is presented and discussed in detail in the respective section.

106 CHAPTER 8. PAPER D

8.3.3 Threats to validity

8.3.3.1 Construct validity.

This study was designed with semi-structured interviews, where the open
questions allowed the interviewees to express their opinions and elaborate more
in the problems, they faced with MABs. In all cases, we ensured that we
were using a consistent vocabulary with the technical terms with which the
participants were familiar. In cases where there was a difference in vocabulary
terms, we had other technical synonyms and examples from the available
literature and textbooks in both online controlled experiments and in MAB
areas.

8.3.3.2 External validity.

We identified two issues that can limit the generalization of the identified
results for other companies: (1) the representativeness of the studied case
companies, and (2) the number of practitioners who participated in the inter-
views. We tried to minimize the first issue by selecting companies that both
developed experimentation systems for their own products and companies that
commercialize and help other companies to run experiments. We believe that
this provides a broad view of the different limitations faced by medium- to
large-sized companies in the web domain. However, the results discussed in this
study are general and could be of potential benefit for small-sized companies
and companies that are not in the web domain. Regarding the second issue, we
conducted this multiple case study with highly qualified people in both fields
until we reached saturation [77]. We acknowledge that some other limitations
might not have been identified due to the high experience of the interviewees
or because of their problem domain. To address this, we conducted interviews
with practitioners working on different products and in different companies.

8.3.3.3 Internal validity.

To minimize internal validity threats [77], we took the following precautions:
(1) during interviews we discussed potential limitations identified by other
companies or by traditional online experimentation methods such as A/B
testing. This procedure was applied after the interviewees had the opportunity
to comment on their own experience, without the bias of different companies
or groups. (2) the interviewees were selected based on their expertise and
experience in the area, therefore we excluded inexperienced practitioners with
both techniques (A/B experiments and MABs). The goal was to reduce limita-
tions that were confounded with the lack of experience. However, we recognize
that there might other limitation associated with first time introduction of
MAB-based experiments in a team or company. (3) at the end of all interviews
we summarized the discussed limitations and strategies, giving the opportunity
for the participants to comment on our interpretation. This summary was
important to clarify all the discussed aspects and remove interpretation ambi-
guities. (4) Some of the companies did not permit us to record of the interviews
so the researchers had to rely on their interview notes. Immediately after each
interview, the researchers discussed and complemented their interview notes

8.4. RESULTS 107

with a self-contained summary of the discussion of the results. In the case of
inconsistency, the researchers contacted again the interviewees for clarification.

8.4 Results

This section discusses the results obtained from the collected empirical data
from the interviews and from the simulations.

8.4.1 Decision errors in näıve MAB implementations

8.4.1.1 Pitfall

The first identified pitfall is the näıve implementation of MAB algorithms
in experiments that require the control of type I errors (false positives). We
refer to näıve implementation as those that select the best ranked arm as the
desired decision without considering confidence intervals or controlling for type
I errors. This is often the output of MAB algorithms in research [143]. As
identified by the interviews, this pitfall is usually observed in the first few
MAB-based experiments. A factor that favors the occurrence of this pitfall
is the introduction of MAB algorithms without in-depth knowledge of the
algorithms, without explicit goals for the outputs, or when using third-party
experimentation tools that have näıve implementations.

This was experience by the developers of company A, when using third-party
systems and by the senior data scientist in E in first-time implementations of
MAB algorithms. Company E also identify this pitfall when adapting and using
MAB-based recommendation/content-serving systems in online experiments
applications. According to the senior data scientist in company E, one of
the reasons this pitfall persists is because it is common that academic MAB
research is concerned with other aspects do not mention or implement statistical
analysis on top of MAB algorithms.

“We already made a few decisions based on the result of this third-party tool
when we decided to compare it with another A/B testing tool. The results were
so different that we decided to investigate the reason” — Senior Developer
Company A

8.4.1.2 Simulation

To illustrate this scenario, we simulated a simple decision-making process
based on a traditional A/B experiment and three näıve implementations MAB
algorithms (ε-greedy 10%, Softmax 10% and UCB1). Suppose an online
company decides to use a third-party experimentation service that provides
both A/B and MAB algorithms. The feature that is going to be experimented
with does not influence the metric. However, adopting this feature increases
the time spent by a team maintaining and developing the feature. The service
provides statistical analysis and confidence intervals for the A/B experiments
(based on a χ2 test using a significance level of 95% [2]), as several competitors
also offer. The experimentation service advertises MAB as the next level for
online experiments and considers it a big differentiator as most competitors do
not have it. However, for MAB only a ranking of the best arms is provided
(the näıve approach often available in research and commercial systems). This

108 CHAPTER 8. PAPER D

Figure 8.1: Comparison of the decision error for type I error in A/B experiments
(red) and näıve implementations of MABs. This comparison suggests that in
the absence of a rigorous statistical framework, MABs algorithms are prone to
decision errors when applied in contexts where minimization of error type I is
required.

simulation investigates type I decision errors in three different sample sizes in
a similar situation, where there is no difference between the variants.

The conditions of the simulation are: each algorithm was simulated with a
Monte Carlo (simulated 1000 times) procedure for three different sample sizes.
The first horizon has 2000 unique samples representing a power of less than
60%. The second horizon has 4000 unique samples, representing a power of
80%. The third horizon has 8000 unique samples, representing a power of over
95%. All the sample size calculations are calculated based on the necessary
power to conduct an A/B experiment with a significance level of 5%, initial
conversion baseline of 10%, and absolute effect size of 2% [2]. The confidence
intervals were obtained by utilizing a Bootstrap resampling (with n=1000)
procedure in the simulation results.

A,B ∼ Bernoulli(0.1) (8.5)

Figure 1 shows the percentage of error type I in the Monte-Carlo simulation.
It can be seen in this picture that the A/B experiment process still makes error
type I, but this error is constrained to the pre-defined significance level of 5%.
However, the MAB algorithms often make error type I. If MAB algorithms are
used in such situations, the experiment has a negative impact in the company,
as many features that were incorrectly validated now are maintained and
developed by the company, but without any real impact in the metrics.

8.4.1.3 Strategies

Experiences from companies A, B and E suggest that the experimentation
organization and the experiment owner should first estimate the consequences

8.4. RESULTS 109

of committing each type of error. Next, identify how the outcome of the
experiment will be used in the future development and evolution of the system.

If the estimated cost of a type I error is high, a good strategy is falling back
to the traditional A/B experiment scenario, which already provides consistent
processes and tools. If the estimated cost of a type I error is low and the
aim of the experiment is to minimize regret (opportunity cost of missing the
best solution) or type II errors (false negatives), MAB-based experiments can
aggregate value to the experiment. Type I errors can lead companies to invest
development effort and maintenance in features that do not deliver value to the
system. If the goal of the experiment is to both minimize regret and control for
type I errors, it is necessary to implement a more rigorous statistical analysis
on top of the MAB algorithm. In this scenario, the algorithm is still minimizing
regret during its execution, but the decision-making process also follows the
statistical analyses. The disadvantage of this method is the lack of balance
between the variants reducing the statistical power of the experiment, this
implies in a longer experimentation time.

Some experimentation tools utilize a MAB algorithm as the default (e.g.
in Google Analytics [169]). For those systems, it is necessary to conduct a
careful analysis of the algorithm implementation (if available), the experiment
assumptions and the expected outcome. If possible, the results from MAB
algorithms should be analyzed with their respective confidence intervals as
this can provide a more in-depth comparison between the different arms and
generate additional insights.

8.4.2 Bad variation lockdown

8.4.2.1 Restriction

User experience consistency is one important requirement for some online
experiments [2, 19]. If the user is exposed to a variant, the user should have
continuous access to the same variant during the experiment. Several methods
can be used to keep the experience consistent, such as: (1) using determin-
istic randomization reassignment [2,19]; (2) requesting a variation only once
and caching it in the application (such as in cookies); (3) cross-checking and
comparing the variant during every assignment. Deterministic randomization
reassignment is traditionally computed through pseudo random number gen-
eration and hashing functions (such as SHA1) on the unit of randomization
(e.g. cookies, user ID, instance number). This procedure ensures that every
time the system requests a variant, the assignment system always replies with
the same variant. After the experiment is completed the users can be assigned
to a fixed variant (one of the treatments or the control variant). The caching
and the cross-checking methods have drawbacks compared to the deterministic
randomization reassignment, such as being difficult to scale in both the number
of simultaneous experiments and number of users, lack of support for ramp-up
and automated shut-down [2].

In A/B experiments, the user’s experience consistency depends on the
experiment definition (e.g. choice of the randomization unit) and how the
experiment affects the user experience. Implementations of MAB should also
consider the user experience consistency. However, several MAB algorithms
do not support deterministic randomization reassignment in their current

110 CHAPTER 8. PAPER D

formulation and implementation, as they do not use randomization units in
their assignment process. Therefore, MAB algorithms rely on cross-checking and
caching methods, which introduces complexity, limits the scaling, and restricts
the use of ramp-up and automated shut-down. An additional consideration
should also be analyzed: if a user is assigned to a clearly bad variant (or arm),
will this user be locked to this variant until this experiment is shut down in a
new deployment? This could potentially hurt a small percentage of the users
for a long period, if workarounds in the caching and cross-checking mechanisms
are not implemented. This was identified by the architect in company A and
two principal data scientists in company B.

Company C reports a challenging in keeping user consistency in MAB algo-
rithms in long-term experiments (such as continuous optimization experiments)
with limited and recurring users. Long-term experiments can run for between
months and years and are often associated with content serving experiments.
In this scenario, the experiment has a limited number of users that are exposed
to the same variant multiple times. The users are asymmetrically assigned
towards one variation, which might not be the optimal one, as the optimal
variation is under-sampled. This situation prevents both the minimization
of the regret and limits the statistical power in future statistical analysis,
threatening the validity of the experiment and the confidence in the experiment
results. If implementing an extra reassignment procedure, how often and in
what ways are users reassigned? If the reassignment occurs seldom, the validity
of the experiment and the regret minimization are at stake. If the users are
reassigned very frequently, this could create a user experience inconsistency.
Other alternatives such as only reassigning the users of a lower variant could
influence the exploration rate and the regret minimization, if not carefully
analyzed.

“If user consistency is necessary, we strongly encourage our customers to go
with A/B testing route instead of bandits” — Senior Statistician Company C

8.4.2.2 Strategies

If user consistency is mandatory, a reasonable alternative is to use traditional
A/B experiments, where tools and techniques for keeping this consistency while
maintaining ramp-up and automated shut-down are available with deterministic
randomization reassignment. If using caching or cross-checking methods, it
is necessary to implement an extra layer to the application code in order to
handle ramp-up and automated shut-down cases, increasing the complexity of
the experiment. However, if such a layer is already present, user consistency
can be implemented when using MAB algorithms.

Long-term MABs should not be used for exploration purposes or for under-
standing of the system and the user behavior. In such cases, having control of
type I errors and predetermined power are of greater importance than regret
minimization. If the goal of the experimentation procedure is to understand
both the system and the users, the A/B experimentation procedure can provide
better insights without the reassignment and variant lock restriction. If the
aim of the experiment is to conduct a long-term optimization procedure, a
short-term A/B experiment can be executed first. This experiment aims to
understand the functionality/feature under experiment and how the unit of

8.4. RESULTS 111

diversion performs. What is the randomization unit? How often do recurring
randomization units request a new variant? To what extent should user ex-
perience be consistent for this experiment? Do users perceive a significant
experience change between variants? Those questions can be answered with an
A/B experiment prior to the long-term MAB optimization. Content-serving
MAB applications (such as serving ads and news) often do not impact the user
experience negatively but optimizing layouts and other user interface elements
might pose problems that need to be carefully analyzed.

8.4.3 Decision errors due to violations of assumptions

8.4.3.1 Pitfalls

A common pitfall is to assume that the MAB-based experiments have the same
assumptions as A/B experiments. For example, some MAB algorithms assume
that the reward observations are identically and independently distributed. If
these assumptions do not hold in a MAB-based experiment the experiment
conclusion might be biased and the regret is not minimized as presented in
theory. A common violation is when there are changes in the distribution over
time, as discussed by company D. For example, the distribution of clicks in a
website could change if it is weekdays or weekends. In weekdays, the system
has more business activity, while in weekends it has more home activity.:

X(t) ∼

{
Bernoulli(p1), if t = weekdays

Bernoulli(p2), if t = weekends
(8.6)

Similarly, in ecommerce, the click distribution changes depending on the
day of the month and period of the year. With those temporal changes,
the MAB algorithm can learn and allocate exploitation to a suboptimal arm.
Therefore, questions such as “should I launch my experiment in a Tuesday
or on a Saturday” [171] and seasonality effects [157] arise. In this case, a
MAB-based experiment will take a longer time compared to A/B experiments
to compensate for these effects.

Another violation case occurs with novelty effects, as they also change the
distribution in time [13,19]. The novelty effect of a new feature might increase a
metric (such as usage) in the beginning and then have a drop of usage over time.
After a long period, the metric of the treatments might have a statistically
significant lower metric compared to the control variant.

Other violation assumptions, pointed out by the empirical data are:

[a] the correlation between different arms. Algorithms such as UCB1 are
not appropriated to understand and exploit correlations in the arms.
Using algorithms that make independence assumptions with correlated
arms might lead to an overestimation of the best arms as well as a weak
exploitation of the solution space [172].

[b] the presence of lagging metrics or delayed reward feedback (compared
to the experiment horizon) [173]. Some commonly tracked metrics have
dependency on time, e.g. 3 days’ or 15+ days’ user retention. Using MAB
algorithms that assume instant feedback with non-negligible delay metrics
(compared to the experiment horizon), can lead to incorrect conclusions.

112 CHAPTER 8. PAPER D

According to a principal data scientist in company B, as metrics align
more to the business and represent more abstract concepts they start to
lag, increasing the delay in the reward. With these metrics, MAB-based
experiments are less attractive.

[c] the re-scaling and normalization of metrics. Some MAB algorithms, e.g.
UCB1, require the reward to be constrained between 0 and 1. Existing
metrics need to be re-scaled and normalized to fit into this constraint.
However, the re-scaling and normalization transformations need to be
carefully analyzed, implemented, and validated. Common pitfalls in this
process that can change are: 1) Transformation on the fly, all new data
or group of data points change the transformation rule, e.g. subtracting
current expected value or dividing the result by the current standard
deviation. As the experiment progresses, the metric changes and cannot
be compared. 2) Utilizing historical data that are no longer valid, e.g. a
transformation procedure that relies on data that are not representative
anymore. 3) Carrying transformations from previous experiments and
metrics to new ones, e.g. using 3 days’ user retention transformation for a
15+ days’ user retention metric might result in an incorrect measurement.
The rescaling was discussed by one the developers in company A.

8.4.3.2 Simulation

The following simulation explores an experiment with the novelty effect is
explored in the following simulation. The goal of this simulation is to show
that even with traditional statistical analysis on top of the algorithms, MAB
can still inflate error type I. Suppose a company is launching a new voice
in the voice assistant tool for their mobile application. Prior to launch the
company post videos of the feature and make advertisements creating some
user expectation. Consider that the variant A is the current voice and B is the
new voice. The company is measuring whether the user uses the feature during
the day.

For this simulation, we consider the following distribution for the usage of
the voice assistant tool. The reward 1 represents that the user has used the
tool and 0 represents that the user has not used the voice assistant tool during
the day. t is a discrete positive variable that represents the day after launch
(t=0 means the launching day, t=10 represents the feature usage after 10 days).
For the variant B, we consider that it starts with a higher usage due to the
novelty effect, but it slowly declines until it reaches a constant usage level of
3% lower than the baseline variant A. The distribution of the response for each
variation can be represented as:

A ∼ Bernoulli(0.1) (8.7)

B(t) ∼

{
Bernoulli(0.12− 0.005t), for t < 10

Bernoulli(0.07), for t ≥ 10
(8.8)

The simulation runs for a total of 20 days. Each day has the same number of
users. Therefore, the variant B performs poorly more than half the experiment
time. This simulation concerns with the number of times we make an incorrect

8.4. RESULTS 113

Figure 8.2: Comparison of the decision error for type I error for A/B experiments
and MAB algorithms in the presence of a a simulated novelty effect. In the
picture above, there were no A/B experiments’ decision errors. It is possible
to see that these algorithms can still lead to decision errors, in particular in
underpowered experiments. Similarly, if the variants start performing differently
overtime, MAB algorithms can bias towards earlier variations.

decision in selecting alternative B (making a type I error). To compensate
for the decision errors’ effects of näıve MAB decision-making (as discussed in
section A), this simulation implements the same statistical analysis and decision
criteria for all algorithms (A/B and the MAB algorithms). The decision is
based on a final collected data and the process detailed in [2] using a significance
level of 95% (or α = 5%).

The conditions of the simulation are: each algorithm was simulated with
a Monte Carlo (simulated a 1000 times) procedure with for three different
sample sizes. The first horizon has 2000 unique samples, representing a power
of less than 60%. The second horizon has 4000 unique samples, representing
a power of 80%. The third horizon has 8000 unique samples, representing a
power of over 95%. All the sample size calculations are calculated based on
the necessary power to conduct an A/B experiment with significance level of
5%, initial conversion baseline of 10% and absolute effect size of 2% [2]. The
confidence intervals were obtained by utilizing a Bootstrap resampling (with
n=1000) procedure in the simulation results.

Figure 8.2 shows that shows that in the presence of non-identically and
independently distributed users and arms MAB algorithms can inflate error
type I (α = 5%), and this is proportional to the power of the experiment. In
underpowered experiments, MAB algorithms with the same decision-making
process of A/B experiments are not able to control for type I errors and have
a significantly higher incidence of incorrect decisions due to biasing earlier
variations.

114 CHAPTER 8. PAPER D

8.4.3.3 Strategies

Different strategies can be used to overcome violation assumptions. As high-
lighted by one of the interviewees, they require careful analysis and modeling
of the problem.

“You need to be careful when deciding to go for bandits, if you know that some
of these assumptions were violated you need to do a proper statistical modelling
of the problem and validating it before deploying your algorithm” — Director
of Data Science, Company D

The first strategy is to choose a re-weighting scheme for the MAB. Most
algorithms use a constant average scheme that places equal importance to all
samples. Different schemes, such as moving averages or exponential averages
can be used to shift the reward importance with time [172].

A second strategy is to use contextual bandit algorithms. These algorithms
consider domain-specific knowledge to provide and personalize the exploration
space. However, these strategies add complexity to the algorithm in both
implementation and the number of hyper-parameters to tune. Moreover,
these extensions require specific domain knowledge of the system and the user
behavior with time. Such knowledge might not be available at the time of
the experiment or might require a pre-A/B experiment to test some of the
assumptions.

“Research commonly takes the bandit reward and context for granted, but the
process of selecting a good context and reward is iterative and slow. In practice,
it is very difficult to compare two bandits and how they perform against each
other if you are using different contexts” — Senior data scientist, Company E

Different solutions for the MAB with delayed reward problem. However, this
is still a computationally difficult problem [163]. One solution is to run long-
term MAB algorithms in order to minimize the effects of the delays. However,
this requires modification in the metrics and new contextual information.
Traditional A/B experimentation provides a more robust framework to evaluate
experiments when there are uncertainties in the assumptions.

8.4.4 Lack of Sample Ratio Mismatch quality check in
MAB algorithms

8.4.4.1 Restriction

Sample Ratio Mismatch (SRM) is considered to be one of the critical diagnosis
tests for A/B experiments [163]. This test allows checking if the percentage
allocation of users for each variant is within an expected confidence interval
and validate the randomization system. Suppose that a company is running
an A/B experiment where 50% of the users are allocated to each variation.
Variation A is assigned to 99,000 users and variation B is assigned to 101,000.
Comparing this user distribution with the designed proportions of 50% indicates
that the current user distributions is very unlikely to be in the 50% designed
proportions (p < 0.01 with a χ2 test). Early detection of SRM helps to prevent
randomization bias towards any variation and allows the experimentation
organization to check performance and instrumentation issues. Sample Ratio

8.4. RESULTS 115

Mismatch is commonly conducted in the pre-experiment A/A test phase [2]
and during the experiment execution as a guardrail metric [43].

It is not possible to run SRM checks in MAB-based experiments, as the
regret minimization depends on the asymmetric sampling, favoring one of the
variations. Therefore, it is hard to identify randomization and instrumentation
bias in the system during the experiment execution. The lack of data quality
checks can hinder problems in the experimentation solution and lead to a lack
of trust in the data. As highlighted by one of the interviewees:

“We don’t deny the advantages of MABs for recommendation systems, but if
we can’t run quality checks, we don’t trust our data and then we don’t have a
business case for using it” — Principal Data Scientist, Company B

Without proper validation, MAB-based experiments can be minimizing the
regret towards a biased variation. This restriction was mainly identified with
Company B. However, companies A, C and E also confirm the difficulty in
implementing MAB quality checks and validating and guaranteeing that the
MAB implementation is not being biased due to external factors such as the
instrumentation and randomization system.

8.4.4.2 Strategy

A strategy employed by company A is to evaluate the MAB experimentation
system (instrumentation, metrics, randomization techniques, etc.) using tradi-
tional A/A experiments, and even A/B/n experiments in a reduced arm space.
A/A experiments allow the experiment organization to not only test run sample
ration mismatch, but also other quality checks to validate the instrumentation
and randomization system before moving towards a MAB. However, the MAB
algorithm implementation is not validated. A/B/n experiments in a reduced
arm space allow the organization to determine the best arm and then proceed
to checking MAB in this limited arm space. If the MAB confirms the results
of the A/B/n experiment, the experimentation organization can proceed with
more confidence to a MAB algorithm in the full arm space. The disadvantages
of this strategy are the extra time and resources taken to validate a MAB
experiment prior to its launch. The algorithms implementation can be validated
against multiple theoretical test and use cases, as done by Company C.

8.4.5 Increased complexity in ramp-up procedures in MAB
algorithms

8.4.5.1 Restriction

Ramp-up is a risk-minimization technique [2], where the treatment variations
are only launched to a small percentage of the population. If the experiment
does not present any severe degradation, the percentage of users that are
exposed to the treatment is increased until the variations have equal allocation
to maximize the power of the experiment [2]. If the experimentation system
detects large movements (that are typically related to experiment errors [73]),
it can stop the experiment execution minimizing the impact on users. For
example, in an A/B experiment, a ramp-up procedure can start assigning 10%
of the users for the treatment while 90% continue in the control group. As

116 CHAPTER 8. PAPER D

confidence is gained in the experiment, the organization slowly increases the
allocation to the treatments. LinkedIn reports using in four manual ramp-ups,
with average duration of 6 days for each iteration [23].

Most MAB algorithms will allocate a very small slot to bad variations and
therefore minimizing the exposure to bad variations. Therefore, it is often
thought that MAB can replace ramp-up procedures. However, they will also
allocate a large slot to metrics that have a large positive movement. Large
positive movements in metrics are rare [73] and can indicate instrumentation
problems. Extra steps should be taken to avoid bias if MAB is combined with
ramp-up. If variant consistency is kept, the algorithm can be biased between
steps and converge to a suboptimal variant, similarly to the novelty effect in
section 8.4.3. This restriction was identified by company B, but also discussed
with companies C and D.

8.4.5.2 Strategy

The later reassigns the users to a new variant at every step of the ramp-up.
While this solution minimizes the bias in the final step, it will take longer for
the algorithm to converge to a solution, the regret minimization is lost in each
step and it might create user experience problems.

We present three approaches suggested by companies C and D to deal with
ramp-up in MAB. The first alternative is the use of algorithms that permit
adjusting the exploration step (ε-greedy variations) with user consistency. This
solution can be combined with ramp-up procedures, where, the experiment
starts with a high level of exploitation, and at every ramp-up step, the explo-
ration rate is also reduced. This approach has the disadvantage of reducing the
regret minimization. A second approach is to provide a hard allocation bound-
ary for all treatment variations. This approach should be carefully designed in
such a way that it does not degrade the exploration and the decision process
as the percentage of users allocated to the experiment increases. The third
approach is creating a hard reset for each ramp-up step. This will reset the
variant assignment between ramp-up steps and allow the system to re-explore.
While this solution minimizes the bias in the final step, it will take longer for
the algorithm to converge to a solution, the regret minimization is lost in each
step and it might create user experience problems.

One principal data scientist in company B suggests avoiding the first ramp-
up in MAB-based experiments and instead run pre-quality checks with and an
A/B experiment with ramp-up. If the no problems occur, then the MAB can
be launched.

8.4.6 Increasing regret in experiments due to Simpson’s
Paradox in MAB algorithms

8.4.6.1 Pitfall

The Simpson’s Paradox [110,174] (SP) refers to the observation that “a statis-
tical relationship observed in a population – i.e. a collection of subgroups or
individuals – could be reversed within all of the subgroups that make up that
population” [174] . Kievit et al. [174] provide several examples of Simpson’s
Paradox observed in experimental in the areas of social science, medicine and

8.4. RESULTS 117

biology. SP is also discussed in the context of online experiments [43, 110,158].
The following example adapted from Crook et al. [158] illustrates SP in the
context of online experiments.

Suppose an experiment on a website text is implemented in more than one
country (UK and Sweden). The experiment consists of reducing a long sentence
instruction to a short direct instruction. This experiment is launched in the
two countries using the same sample size. The power calculation indicates that
the UK would run with 10% of users assigned to the treatment and in Sweden
it requires 50% in the treatment group. It is possible that the treatment variant
performs better in both countries but when both countries are combined the
control variant performs better. However, note that the SP can occur just in
one or all countries (subgroups). Kievit et al. [174] provide a guide on how to
identify SP and discuss ways to minimize the occurrence of SP. However, there
is no single mathematical property that SP instances have in common.

In presented example, a confounding variable (the country) makes the
randomization process not randomly distributed, in UK it samples a smaller
percentage of the user group. In the (unknown) presence of the SP together,
MAB algorithms reinforce the selection of the suboptimal variant, increasing
the regret of the algorithms. Although SP is also a problem in other online
experiments such as A/B experiments, the identification of the sampling bias
conditions [43,158] is aggravated by the non-randomly distributed form that
MAB allocate the users to the variations.

This pitfall was identified by Company B, although they report that they
haven’t made an in-depth analysis, as MAB is not the core part of their
experimentation strategies. Company A discussed the presence of SP as a
problem seen in their A/B experiments.

As their MAB applications are aimed in known situations after A/B ex-
periments, SP can be identified in stage prior to the implementation of MAB.
However, they argue that the presence of SP would invalidate the goal of
minimizing regret in MAB applications.

8.4.6.2 Simulation

Next, we present a simulation illustrating the usage of MAB in the presence of
SP. This simulation is based on the hypothetical SP case presented by Lihoung
Li in [175]. Suppose we are recommending two news articles sports, movies to
users male, female. The confounding factor (due to an algorithm bias) is that
male users receive more sport news articles (75%) than female users (25%), and
female users receive more movies news articles (75%) than male users (25%).

Table 8.1 below shows the click-through rate for each subgroup and the
general group. From the table we can see that the sports perform better than
movies for both male and female, but movies perform better if the results are
aggregated. The SP case is compared to the case (called no-SP) where the
selection between male and female are not confounded with the group sports
or movies. In this case the sports group will have an overall CTR of 0.6, and
the movies group will have an overall CTR of 0.5. Both the cases with and
without SP are simulated using the algorithms UCB1 and Epsilon-Greedy 10%.
Figure 8.3 shows the cumulative regret with a horizon of 10,000.

This simulation shows that the presence of an unknown SP in MAB can lead

118 CHAPTER 8. PAPER D

CTR per group Male Female Overall

Sports 0.4 0.8 (0.4x0.75+0.8x0.25) = 0.5
Movies 0.3 0.7 (0.3x0.25+0.7x0.75) = 0.6

Table 8.1: SP case for the simulation

Figure 8.3: Comparison of the cumulative regret in MAB algorithms in the
presence of SP and without SP. In the picture lines red and blue indicates
the cases where SP is present and lines purple and brown indicates the cases
without SP.

to a significant increase in the regret and therefore minimizing the advantage
of this kind of algorithm in this situation. The cumulative regret grows linear
with the horizon, but at different rates depending on the presence of SP. This
suggests that introducing multi-armed bandits in long-term experiments in
the presence of SP can lead to unexpected outcomes in terms of the predicted
regret bounds.

8.4.6.3 Strategy

The identification of SP is not a trivial task, as there are several types of SP and
there are no shared property between them [174]. The foremost recommendation
by Kievit et al. [174], is not to assume that relationships at the group level also
hold for subgroups or individuals over time. This analysis requires incorporating
in research designs data collection to facilitate the comparison of patterns
across the different group levels. Crook et al. [158] illustrate some situations

8.4. RESULTS 119

where SP were identified in online controlled experiments and give a caution
against of combining metrics over type, especially when the proportions of
the control and treatments vary, or when the subpopulations are sampled at
different rates. Traditional experiment designs offer a better framework for
identifying SP compared to MAB, as it is possible to run A/A test and sample
ratio mismatch tests for each segment group. Alternatively, running A/B
experiments and segmenting the data collection prior to the MAB experiment
can help practitioners to identify cases where there is a suspicion of SP.

If there the organization is aware of an existing SP, common strategies are
eliminating the confounding variable (if it is a sampling error bug), choice of
different statistical tests, eliminating the data that generates the SP (i.e. when
SP appears in ramp-up situations). If the SP is intrinsic to the problem, the
confounding variable is identified and minimization of regret is still desired
the experiment organization can introduce an exogenous contextual variable
(representing the confounding variable) in a contextual bandit algorithm [115].

8.4.7 Adaptive allocation based on a single metric

8.4.7.1 Restrictions

The decision-making process of online experiments involves the analysis and
trade-off of several metrics, from both feature-level to product-level metrics.
Well-developed experimentation organizations use multiple metrics in their
decision process: a composed success metric, the Overall Evaluation Crite-
ria [32], guardrail and data quality metrics. During the decision process of
an experiment several stakeholders are involved in order to understand the
implications the different metrics for the business and the software system.
Small changes in the system are unlikely to make changes in an OEC metric,
so companies often utilize other lower-level metrics to make a business decision
regarding the modification.

In a MAB-based experiment, a solution is exploited from the beginning
of the experiment based on the success metric (the reward). This prevents
the usage of other supporting metrics for an in-depth analysis. This can bias
the algorithms towards an arm in a way that is not totally comprehensible
and that can potentially some business goal. Additionally, incorporating
additional metrics and a traditional statistical analysis on top of the MAB
can be compromised because of the lack of power in some arms. Finally, some
system level metrics can have a lower sensitivity and the delay in the reward
can lead to assumptions problems, as discussed in the subsection 8.4.3.

Suppose a company was evaluating multiple new layouts for the home screen
of a news website using a MAB approach. Each new variation layout could
be a combination of different grids varying the number of rows and columns.
If only a composed metric such as overall customer satisfaction is being used,
the decision of the best arm could exclude the analysis of other important
metrics. For example, the new variant customer satisfaction might favor free
users instead of subscribers. Some negative impacts might not be seen during
the experiment duration, but it was identified in previous experiments by
company and was set as guardrails metrics. As an example, the new variant
might significantly increase loading time for mobile users. Initially users might
attribute this to their connection, but if this persists for a time longer than

120 CHAPTER 8. PAPER D

the experiment duration and competitors are providing faster loading time,
mobile users can move to new services. Although these restrictions apply also
to traditional experiments (if the additional metrics are not being measure or
used in the decision process), MAB incorporate the decision to exploit an arm
during the execution time. Therefore, potential bad variations might be overly
exploited while hurting metrics that could be used in traditional analysis. This
restriction was identified by all companies. Company C and D recommend
avoiding MAB if their customers have multiple metrics.

“. . . if more than one metric is present, and our customers can’t combine and
generate a single metric for the bandit, we recommend them to avoid this
feature at all” — Product Manager Company C

The difficulty of incorporating other metrics in the exploitation decision is
one of the reasons that prevents Company B of applying MAB in more general
experiments, as highlighted by one of the interviews:

“Despite the hype with bandits, in our workflow they can only be used in
very narrow cases where we know very well what we want to optimize.” —
Principal Data Scientist Company B

8.4.7.2 Strategy

The first strategy is the use of MAB extensions for multi-objective optimization
with Pareto relations. However, such solutions add technical complexity and
multiple failure modes to an experiment. Also, providing a validated Pareto
curve to a MAB algorithm requires a deep understanding of the system and
the users that not all companies have. This solution is discussed mainly in
academic setting [176] and none of the companies reported using this solution.

A second strategy is to use the current Overall Evaluation Criteria that
is being used in A/B experiments. However, this metric must have sufficient
sensitivity and be a leading indicator [72], so it does not fall in the case of the
delayed reward pitfall described in section C. Company C recommends this
approach to their clients in specific experiments. However, they suggest to
run a MAB-based experiment in a smaller fraction of the user base and use
the winning arm in an A/B experiment against the current variation to check
against all other metrics

A third approach suggested by Company D, is to add the additional in-
formation from other metrics to a contextual bandit algorithm as exogenous
variables. However, this solution has the same drawbacks discussed in section
C. The first is to have a good understanding of the problem as this solution is
not exploratory. The second is that the external context also needs validation,
so it does create bias towards a particular context.

8.5 Discussion

Feature experiments, powered by MABs, can provide a competitive edge for
organizations, but only when skillfully applied. Several potential pitfalls can
hinder the benefits of using MABs. For example, popular experimental mod-
els, such as the HYPEX [5] or the RIGHT [7], may not be well-aligned with
MAB-based experiments. In particular, these models often assume that the

8.5. DISCUSSION 121

experimental process should minimize type I errors (false positives) instead
of minimizing regret (opportunity cost of missing the best solution). Further,
when sufficient users can be obtained, traditional experimental models control
for both type I and II errors (false negatives), whereas MAB-based experiments
have less statistical power. Experimental tactics designed for traditional A/B
experiments (ramp-up or user consistency), if directly applied in MAB experi-
ments, can result in a more complex design and higher practical significance
requirements, which may ultimately reduce the value of MAB. Further, mis-
aligned experimental goals can lead to suboptimal experiments. For example, if
the goal is to explore user behavior in different feature variations, then A/B/n
or full factorial experiment may be more appropriate.

The introduction of MAB-based experiments into production environments
yields more considerations. Experimental systems require complex modifications
such as user consistency and reassignment, new assignment and randomization
procedures among others. Like, the introduction of any other machine learning
algorithm, MAB algorithms can increase technical debt, maintenance costs,
and introduce uncertainty in its reliability [104]. Due to scalability issues [104],
often in direct feedback loop problems (where the algorithm influences the
selection of its own future training data), it is common practice to use standard
supervised algorithms instead of bandit algorithms.

Finally, cultural and training barriers can make the adoption of MAB-
based experiments more difficult. Stakeholders may find less transparency in
the results of MAB-based experiments or may not properly understand its
associated limitations.

“One challenges I have seen in bandits is: how do we communicate the results
to other people? If we want to adopt it, we need to train our organization to
understand not only MABs but also machine learning in general” — Senior
data scientist Company E

In contrast, A/B experiments are better understood by managers, develop-
ers, and product owners. To overcome these barriers, some companies, such as
B, provides training in feature experimentation for the employees once a month,
in addition to tailored training for product teams. In the future, specialized
training can be given to product teams who could benefit from MAB, as well
as generalized training if MAB becomes more widespread.

A summary of restrictions, pitfalls, and strategies associated with MAB
algorithms can be seen in Table 8.2.

8.5.1 Use cases for multi-armed bandits

Despite these limitations, MAB algorithms still can provide several benefits in
appropriated situations; especially, when regret minimization is an essential
property.

8.5.1.1 Content-serving systems

Content-serving systems are designed to select and display content to users,
such as newspaper headlines, ads, or songs [177]. The goals of this type of
system is to provide to the users the most relevant content from a pool of
possibilities. For this type of system, failing to recommend relevant content

122 CHAPTER 8. PAPER D

Pitfalls and
Restrictions

Reasons Strategies

Increase in
type I error

Näıve imple-
mentations
of MABs

• Adding a statistical framework on top of
the MAB implementation

• Usage of the MAB in applications where
the cost of making a type I error is low

• A/B experiments
Assumption
violations

• Contextual bandits, re-weighting scheme,
delayed reward bandits, long-term op-
timization. These strategies require a
prior understanding of the problem and
the user behavior.

• A/B experiments
Using MABs
in explo-
ration prob-
lems

• Design of experiments: A/B/n, full fac-
torial, or fractional factorial experiments

Detecting
experimenta-
tion
problems

Lack of
sample ratio
mismatch in
MABs

• Prior A/A experiment
• A/B/n experiment in a reduced arm

space

Increased
regret in
MAB with
Simpson
Paradox

• Prior A/A and A/B/n experiments
• If identified, contextual bandits can be

used

Complexity
in ramp-up
procedures

• MAB algorithms with adjustable explo-
ration rates

• Hard allocation boundaries
• Hard reset of the algorithm for each

ramp-up iteration

Increased
design
complexity

Adaptive
allocation
based in a
single metric

• Composed Pareto relations between met-
rics

• Increase sensitiveness in the Overall Eval-
uation Criteria (OEC)

User consis-
tency

• Prior A/B/n experiments
• Variation reassignment procedures

Communicating
experiment
results

• Capacitating the organization in machine
learning and MABs

• Providing a similar presentation layer as
A/B experiment results

Table 8.2: Summary of the restrictions and pitfalls

8.5. DISCUSSION 123

that could lead to a conversion or click is costlier (type II error). Furthermore,
the content-serving system should be able to operate autonomously without
expensive manual intervention. For both these reasons, an A/B algorithm
would be inappropriate. In contrast, a moving window MAB would be well
suited: exploiting the arm with the highest return, while exploring arms that
can have higher potential reward in when the content pool is updated.

8.5.1.2 Short-term campaigns

Short campaigns refer to a limited time presentation of a variant and after the
campaign ends, the system returns to the original variant. Examples of short-
term campaigns are emailing campaigns [178] and a Christmas advertisement
campaign. The advertisement has fixed time window to be displayed (between
Black Friday and Christmas). Again, failing to display the best ad that leads
to a higher conversion is costlier (type II error). In such situations, A/B
experiments fail to exploit enough in the limited period of time. This case is
well suited for MAB-based experiment, where the it is desired maximize the
cumulative reward of the short-term campaign.

8.5.1.3 Targeting experiments

Sometimes, organizations already have prior knowledge about preferences
across user segments. Using this knowledge, organizations can run targeted
experiments. Traditional A/B/n and factorial experiment designs do not
support these situations because of their uniform variant assignment process.
However, contextual multi-armed bandits have the ability to incorporate this
prior-knowledge into the experiment design. For example, Yahoo News has
integrated contextual bandits [115,179] in a content-serving system to provide
personalized content for identified segment groups. Targeting experiments are
also part of online ad placement engines [110].

8.5.1.4 Other cases

When the discussed limitations are analyzed and addressed, MAB can be used in
online experiments to achieve a faster decision regarding the best arm when the
effect size and the difference in mean-reward is considered high. The algorithms
used in this situation are based on variation of ε-greedy algorithms, to ensure
that the other arms will still have been explored enough for a proper comparison.
A known implementation for this case is present in Google Analytics [167, 169].

Another use of MAB is in controlling false discovery rate in sequential A/B
experiments [24, 180]. In this case, a sequence of A/B tests are replaced by
a sequence of best-arm MAB instances. This allows the complexity to stay
relatively low, with high power experiments and low false-discovery rate.

8.5.2 Guidelines

The selection of the appropriated experimental design can avoid most of
the pitfalls. In order to aid future practitioners in designing future feature
experiments, we have summarized our results into guidelines shown in Table 8.3,
which can be used when planning a new experiment. The guidelines contain five

124 CHAPTER 8. PAPER D

questions which can help in making a decision of the appropriate experimental
design, including specialized MAB algorithms as well as traditional A/B/n or
factorial experimental designs.

8.6 Conclusion

Delivering faster value to customers with online experiments is an emerging
practice in industry. MAB algorithms have the potential to deliver even faster
results with better allocation of resources over traditional A/B experiments.
This work describes common models, paradigms, and algorithms for MAB-
based feature experiments currently used industry. Based on a study with 11
experts across 5 companies, we identified potential mistakes that can occur
when designing a feature experiment and several strategies for avoiding them.
We synthesize these results into practitioner guidelines, which provide criteria
for selecting and using particular types of MAB algorithms or in some cases,
when more conservative approaches are desired, using the traditional A/B/n
algorithms.In future work, we plan to explore recommender systems that can
provide interactive feedback for online feature experiments. Further, we will
explore ways to seamlessly include MAB and A/B experiments, thus allowing
consensus between algorithms or fallbacks in the event of a failure or limitation
is encountered.

8.7 Appendix

8.7.1 Multi-Armed Bandit algorithms used in the simu-
lations

The presented algorithms were chosen because different implementations and
more complex algorithms are based on strategies similar to those present in
these algorithms. An extensive review of different MABs and extensions is
provided in the surveys by Burtini et al. [143] and Kuleshov and Precup [181].

8.7.1.1 Explore-First algorithm with parameter N

The simplest algorithm for the MAB problem is the explore-first strategy with
parameter N . This strategy consists of uniformly exploring all the arms equally
for a finite horizon of NK play, where each arm is played N times, and K is
the number of arms. After NK plays, the arm with the highest average reward
is selected. Ties between arms are broken arbitrarily.

[a] Exploration: In this step, all arms are selected with a uniform probability
during the first NK rounds.

a = U(ai), Arm a ∈ {a1...aK}

[b] In this step, the arm with the highest average reward is selected:

a∗ = max
a∈{a1...aK}

µ(a)

8.7. APPENDIX 125

Question Decision

1. What is the goal
of the experiment?

• Learning: A/B/n, full factorial and fractional
experiments

• Innovation: A/B experiments
• Optimization: A/B/n experiments, sequential

A/B experiments and MABs

2. What is the cost
of making type I
and type II errors?

• If both types of error are costly: high power
traditional A/B/n and full factorial experiments

• If only type I error is high: traditional A/B/n,
full factorial experiments

• If only type II error is high: MABs

3. How well known
are the problem and
the assumptions?

• If not well-known traditional A/B/n and full
factorial experiments

• If the system needs validation: A/B/n experi-
ments with pre-quality tests

• If well-known analysis if it matches the assump-
tions of different MABs

– If the context is well understood and
validated: contextual bandits

4. Is there a single
decision metric?

• If there is only one metric
– And this metric is sufficiently sensitive,

MABs can be used
– Delayed metrics and less sensitive met-

rics: A/B/n experiments
• If there are multiple metrics that cannot be

grouped in single OEC: A/B/n experiments

5. How long will the
experiment run?

• Short-term experiments
– If there are external deadlines regardless

of sample size: MABs
– Otherwise: traditional A/B/n and full

factorial experiments
• Long-term experiments

– If it is to collect sufficient sample size:
A/B experiments

– If there is no user-consistency require-
ment: MABs

– If it is to adaptively change the variation
with time: contextual bandits and non-
stationary bandits

Table 8.3: Guidelines to select and experimentation techniques

126 CHAPTER 8. PAPER D

[c] Exploitation: In this step, all the remaining rounds are played with the
best arm a∗.

This strategy is often compared to A/B/n testing. However, in A/B/n the
selection of the best arm follows a statistical procedure with a fixed significance
level. The strategy of selecting the highest reward without computing the
significance level or minimizing type I errors is, in this text, called the näıve
MAB arm selection. The ε-greedy algorithm

This algorithm exploits the best arm (the arm with the highest mean
reward) with probability 1−ε and selects, with probability ε, an arm at random
(including the current arm with the highest mean reward), uniformly and
independently of the arm-value estimates [162]. This solution is equivalent to
the one-state Markov decision process problem [143].

In terms of the exploration and exploitation trade-off, this algorithm explores
ε · t while exploits (1− ε)t of the time. This strategy can be represented as:

a =

{
maxa∈{a1...aK} µ(a), with probability 1− ε
U(a), Arm a ∈ {a1...aK}, with probability ε

(8.9)

The case where ε = 1 reduces the ε-greedy algorithm to the ε-first strategy.

8.7.2 The Softmax algorithm

In a similar manner to the ε-greedy algorithm, the Softmax algorithm also
exploits the best arm but explores by ranking and weighting the other arms
according to their value estimates. The Softmax algorithm used in this work
uses the Boltzmann function to give each arm its probability [172]. The Softmax
algorithm has the ability to assign a small probability to the worst arms [113].
Each arm has a probability of being selected depending on the arm mean
reward according to:

P (ai) =
expµ(ai)/τ∑K
i=1 expµ(ai)/τ

(8.10)

The Softmax algorithm uses a parameter τ called temperature. High

temperatures cause the arms to be nearly equi-probable, while τ
0−→ makes the

arm selection to become the same as the greedy algorithm. Both the Softmax
and the ε-greedy algorithms have one parameter for tuning. However, setting
τ requires a deeper understanding of the likelihood of each arm value [113].

8.7.3 The UCB1 algorithm

The Upper Confidence Bound (UCB), or worst-case regret bound, algorithm is
a different algorithm implementation that not only explores how much reward
each arm receives, but also the confidence in each arm. The algorithm balances
the exploration/exploitation tradeoff by selecting the arm that has the highest
empirical reward estimate. The aim of this algorithm is to minimize regret in
making an arm decision [143]. The user-defined policy can be written as:

a(t) = arg max
i=1...K

(µ̂i +
√

2 ln t/ni) (8.11)

8.7. APPENDIX 127

where a(t) represents the arm selected at the time t. This user-defined
policy does not use randomization in the arm selection, but it rather depends
on the randomization of the reward. Additionally, the UCB1 does not have
free parameters, making it easier to deploy without prior tuning. However, one
of its assumptions is that the reward value should lie between 0 and 1 [172].

8.7.4 Further extensions

The MAB and the exploration/exploitation dilemma are widely studied and
have several extensions and improvements. The first extension to be considered
is the case of contextual bandits. When prior information of how the reward
works (e.g. if it follows a known pattern or if it behaves differently from
groups of users) is available, an exogenous context variable (x) representing
this information can be included in the problem formulation:

a = π(x, δ), Arm a ∈ {a1...aK} (8.12)

y = r(x, a, δ′), Reward y ∈ R (8.13)

A second extension is the use of multiple rewards. As formulated, the MAB
problems utilize a one-dimension reward. In the case of optimizing for multiple
parameters, also known as the multi-objective MAB, one approach is to utilize
Pareto relationships to drive the optimization process [176].

Other extensions utilize Bayesian learning, Thompson sampling, stochastic
and non-stationary bandits, and also MABs where the number of arms is
considerably larger than the exploration space, or belong to a continuous
space [143]. However, several of those extensions are research implementations,
described only through simulations and datasets, and have not yet reached
industrial use.

Acknowledgments

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation. The authors also thank the companies and the
interviewees involved in this study for the opportunity to conduct this study
with them. Finally, the authors gratefully acknowledge anonymous reviewers,
whose comments significantly improved this paper.

128 CHAPTER 8. PAPER D

Chapter 9

Paper E

Statistical Models for the Analysis of Optimization Algo-
rithms with Benchmark Functions

Mattos, D. I., Bosch, J., Olsson, H. H.

In IEEE Transactions on Evolutionary Computation, 2020.

129

Abstract

Frequentist statistical methods, such as hypothesis testing, are standard prac-
tices in studies that provide benchmark comparisons. Unfortunately, these
methods have often been misused, e.g., without testing for their statistical test
assumptions or without controlling for family-wise errors in multiple group
comparisons, among several other problems. Bayesian Data Analysis (BDA)
addresses many of the previously mentioned shortcomings but its use is not
widely spread in the analysis of empirical data in the evolutionary computing
community. This paper provides three main contributions. First, we motivate
the need for utilizing Bayesian data analysis and provide an overview of this
topic. Second, we discuss the practical aspects of BDA to ensure that our
models are valid and the results are transparent. Finally, we provide five
statistical models that can be used to answer multiple research questions. The
online appendix provides a step-by-step guide on how to perform the analysis
of the models discussed in this paper, including the code for the statistical
models, the data transformations, and the discussed tables and figures.

130 CHAPTER 9. PAPER E

9.1 Introduction

With the increasing number of optimization algorithms being developed, bench-
marks are used not only to show that the new algorithms work but also to
compare algorithms against each other [61,62,182,183].

Over the years, algorithms for black-box optimization have been demon-
strated to work and have been compared with each other using simple descrip-
tive statistics (such as mean, standard deviation, and median), boxplots and
performance profiles [184]. Recently, frequentist statistical methods such as
null hypothesis testing have become standard practice in papers that provide
benchmark comparisons [185–187].

Unfortunately, frequentist methods for null hypothesis testing have often
been misused by scientists and practitioners looking for a dichotomy tool to
assess a particular problem, without an evaluation of the size of the observed
effect or a discussion with complementary analysis [86]. By utilizing statistical
tests as black-box tools, many pitfalls and misuses have been observed in
different fields of science. We list some of the observed pitfalls. (1) Lack of
separation between the effect size and sample size in the p-value [87]; (2) Lack
of information regarding the null hypothesis [87–89]; (3) Misinterpretation of
the actual meaning of the p-value (including by instructors in statistics) [89–91];
(4) Misinterpretation of the meaning of confidence intervals [92,93]; (5) Lack of
transparency in the reporting of the statistical procedures (such as providing the
value of test statistics, the actual value of the p-value, confidence intervals) [92];
(5) Common problems related to the misuse of the statistical tests such as not
verifying the statistical test assumptions, not controlling for correlated samples
or not controlling for family-wise errors in multiple group comparisons [94].

Bayesian Data Analysis (BDA) [95] has gained attention as a potential
replacement for frequentist statistics by providing an easier to interpret data
analysis framework and by addressing many of the previously mentioned short-
comings. Despite the popularity of Bayesian-based optimization algorithms,
BDA has not been widely used for the analysis of benchmark data in Evo-
lutionary Computing. With this paper, we argue for the adoption of BDA
in evolutionary computing, in particular in the analysis of benchmark data.
Specifically, we provide an overview of this topic discussing practical aspects
of BDA to ensure that our models are valid and the results are transparent
to avoid misuse and pitfalls. Focusing on the interpretation and answering
specific research questions, we provide five statistical models together with
a reproducible appendix that contains a step-by-step analysis, including the
code for the statistical models, the data transformations, and the discussed
tables and figures. We reinforce that BDA is not a black-box framework for
decisions. BDA requires convergence checking, validation of the statistical
models, reporting transparency and it is complementary with other types of
analysis such as plots and tables. A correct interpretation of the results still
requires domain specific knowledge and understanding of the statistical models
and their limitations.

The remainder of this paper is organized as follows. Section 9.2 discusses
related work. Section 9.3 provides an overview of Bayesian data analysis,
including a discussion of practical aspects of Bayesian data analysis to ensure
that our models are valid and the results transparent. Section 9.4 provides a

9.2. RELATED WORK 131

description of the empirical data used to exemplify all the statistical models.
Section 9.5 provides a discussion of each statistical model, interpretation and
presentation of the results. Section 9.6 concludes this paper.

The online appendix can be found at: https://doi.org/10.5281/zenodo
.4067712

9.2 Related work

In this section, we provide an overview of related works in statistical analysis
for the development and comparison of algorithms.

In the frequentist setting, the work by Eftimov et al. [188, 189] provides an
analysis of different ranking schemes for analysis of benchmarking in evolution-
ary computation, concluding that different statistical tests can lead to different
ranking schemes. To overcome this, they propose the use of a different scheme
that uses the whole distribution instead of only the average or the median and
a new analysis method. The proposed approach is shown to be more robust to
outliers and the ranking scheme. However, the proposed approach is used only
in ranking situations and it does not take into account additional covariates and
the internal correlation between the data given by the benchmark functions.
Despite the focus on the practical significance, it is still subjected to the other
problems of frequentist analysis [93].

Gagliolo and Legrand [190] provide an overview of the survival analysis
to runtime distributions, discussing its usage in the algorithm selection. The
paper discusses the application and interpretation of the frequentist variation
of survival models such as the parametric Cox Proportional Hazard model
and the non-parametric Kaplan-Meyer estimator. In Section 9.5.5. we discuss
survival analysis and its application in the context of Bayesian Data analysis.
Chiarandini and Goegebeur [191] discuss the use of frequentist linear and
multilevel and models for different experimental designs. They reinforce the
need to separate the effects of the algorithms from the problem instances by
modeling the instances with random factors. All the statistical models in
Section 9.5 utilize random factors to separate the effects of the benchmarks
from the algorithms.

Bartz-Beielstein et al. [63] provide an extensive survey that discusses differ-
ent topics for promoting good benchmark practices, from objective statement
and selection of problems to the analysis and presentation of results. However,
from the analysis perspective, the paper focuses solely on the use of frequentist
statistics, while the known limitations and pitfalls of frequentist statistics are
not considered and BDA is not mentioned.

In the Bayesian setting, the work by Calvo et al. [192] provides the first
paper for Bayesian estimation in evolutionary computing. In the paper, they
provide a practical application of Bayesian data analysis on the comparison
of eleven algorithms on 23 optimization problems. The authors discuss the
Plackett-Luce model for ranking algorithms and compare it with the frequentist
approach. The algorithms are analyzed in stratified benchmark functions (e.g.
easy, medium, hard). In our work, we discuss an extension of the Bradley-Terry
model that, under some conditions, is equivalent to the Plackett-Luce model
for complete ranks but we also consider the random effects of the benchmarks.

132 CHAPTER 9. PAPER E

Furia et al. [93] provide a discussion of frequentist and Bayesian data analysis
in empirical software engineering (including a re-analysis of early research).
They discuss many of the shortcomings of frequentist statistics and provides
an introduction to Bayesian data analysis from the Software Engineering
perspective.

Carrasco et al. [193] discuss the application of both frequentist and Bayesian
non-parametric tests in the comparison of machine learning algorithms. They
discuss three Bayesian tests, a variation of the t-test that takes into account
correlation in the results, and two nonparametric tests. The discussed Bayesian
tests are based on the work of Benavoli et al. [194, 195] that provide closed
formulas for the nonparametric tests under specific prior conditions. The work
by Lacoste et al. [187] discusses a Poisson binomial test to compare algorithms
and demonstrates that the approach is more reliable than the sign test and the
Wilcoxon signed-rank test.

In our work, we base our analysis on parametric models that are of interest
for “scientific experimental analysis, where the interest is in explaining the
causes of the success of a certain optimization approach rather than in mere
comparative studies” [191]. At the expense of computational resources, our
models can utilize flexible priors since the posterior is computed numerically
(instead of analytically) by a Markov Chain Monte Carlo (MCMC) sampler.
Additionally, our models take into account the correlation by the benchmarks
and can be easily extended to additional correlations either nested or on the
same level.

9.3 Bayesian Data Analysis

In this section, we provide a short overview of the Bayesian data analysis
process and some practical aspects to ensure that our models are valid and
our results transparent. A full comparison between the Bayesian and the
frequentist framework is beyond the scope of this paper and we refer to other
sources [88,93,196,197].

The main idea behind Bayesian data analysis is the reallocation of credibility
across possibilities [88]. In practical terms, this means that we start with a
prior explanation of the results before seeing any data and a model on how
the data is generated. As we collect new data, our beliefs about the system
are reallocated. The probability of candidate explanations that do not fit well
the data is therefore reduced. In this updating process, we get a probability
distribution of each possible explanation of the data. This allows us to obtain
the credible (or uncertain) intervals [93,95].

The process of allocating explanations into probability distributions happens
through the principles of conditional probabilities and the Bayes theorem [93]:

P(h|d) =
P(d|h) · P(h)

P(d)
, (9.1)

where d represents the data, h the explanation (or hypothesis), P(h|d) is the
conditional probability of the hypothesis given the observed data. Below are
common names for the factors in the Bayes theorem:

• P(d|h) is called the likelihood of the data d under the hypothesis h.

9.3. BAYESIAN DATA ANALYSIS 133

• P(h) is called the prior.

• P(h|d) is called the posterior. The posterior represents the probability
distribution of each parameter estimate (the hypothesis h) given the
observed data

• P(d) is called the marginal likelihood and it is a constant, that is often
impossible to compute analytically.

9.3.1 Bayesian tools

Several tools are capable of performing Bayesian data analysis, such as IBM
SPSS, SAS, Stata, JASP, R, TensorFlow, Stan among others. Although the
discussed models can be used in most statistical software, we utilize the Stan
software and its modeling language [198], while we utilize the R language
for data transformation and plotting. Stan can be easily integrated with R,
with the rstan package1. Many R packages make modeling in Stan easier
(e.g. rstanarm2 and brms 3). However, in the online appendix, we decided to
provide the raw Stan model, since it can be used together with many different
programming languages such as Python, Stata, Julia, Matlab, where readers
can perform the data transformation and plotting in their preferred language
while utilizing the same statistical models that we provide.

9.3.2 Bayesian inference and MCMC

While the Bayes theorem provides how our initial beliefs are going to be updated
based on the observed data to generate the posterior, the actual computational
process is more complicated due to the marginal likelihood. The posterior
can be approximated without explicitly computing P(d) by using a class of
sampling algorithms called Markov Chain Monte Carlo (MCMC). The goal
of an MCMC is to generate an accurate representation of the posterior of the
model parameters [197] by generating a large representative sample of credible
intervals that represents the posterior distribution [88]. Although there are
several MCMC algorithms, we utilize in this work the Hamiltonian MCMC
No U-Turn algorithm (NUTS) [199] available in the Stan program [198], as
it provides faster convergence, handles correlated parameters in the posterior
better than others, and provides good diagnostic tools when the chain diverges.

One of the main disadvantages of Bayesian data analysis is the time neces-
sary to compute the posteriors of an MCMC process compared to maximum
likelihood estimates from the frequentist approach.

9.3.3 Posterior and intervals

One of the benefits of the Bayesian approach is that we get a posterior dis-
tribution of the estimated parameters from a model. With the posterior, we
can get not only point estimates (such as the mean or median of a parameter)
but also credible intervals (also called uncertain intervals) of these parameters.

1https://cloud.r-project.org/package=rstan
2https://cloud.r-project.org/package=rstanarm
3https://cloud.r-project.org/package=brms

134 CHAPTER 9. PAPER E

These intervals are useful to estimate the uncertainty of the parameters without
making assumptions of repeated sampling, such as the confidence intervals
given by the frequentist approach (that assumes that a fixed point estimated
will lie within an interval if the sampling process is repeated many times and
assuming that the null hypothesis is true). The credible interval is a probabilis-
tic statement about the real value of a parameter while the confidence interval
reveals only the uncertainty about the interval (if it contains the value or not).
Confidence intervals, due to their assumptions, cannot be used to understand
the probability of a point estimate parameter.

In Bayesian data analysis, we make use of the full posterior of the parameter
to make interval inferences instead of single-point estimates. To help our
analysis, three common intervals are used:

9.3.3.1 Equal tail interval

this is a credible interval that divides the posterior lower and higher tails
equally, based on quantiles. For example, the 95% interval will exclude 2.5%
of the data in each tail. This is the default interval that Stan provides after
sampling in R.

9.3.3.2 Highest Posterior Density (HPD) Interval

this is the narrowest interval in a unimodal distribution that will contain the
specified probability mass, the area under a density distribution. This is the
interval that best represents the parameter values consistent with the data [196].
Throughout this paper, we will present the HPD intervals for the parameters
we estimate.

9.3.3.3 Region of Practical Equivalence (ROPE)

is a practical interval that encloses the values that are considered negligible from
a practical perspective [197]. This interval combined with a credible interval
like the HPD interval can be used for decisions. For example, if from a practical
perspective an improvement or degradation of an algorithm of x0±10% around
a baseline x0 is considered irrelevant, this is the ROPE interval. If all or almost
all of the HPD interval (given a threshold such as 95% of the interval) falls
in the ROPE interval we can say that the algorithm doesn’t provide practical
improvement. If the HPD interval falls above or below the ROPE interval
we can say that there is a real improvement or degradation respectively. If
there is a large overlap, we cannot make an accept or reject statement like that.
Note that different to the frequentist approach, with such tools you can accept
the null hypothesis or reject it and do so without being concerned with one
or two-tail hypothesis and the family-wise error. It is worth noting that the
ROPE interval is highly dependent on the practical values that determine it
and the scale of the parameters (e.g. they are at different scales in a binomial
and a normal regression).

To avoid misuse of this interval and make mistakes similar to the ones often
seen in the null hypothesis significant testing, the use and reporting of the
ROPE interval should be explicitly specified and justified. Otherwise, it is
preferred that it remains unspecified to allow readers to use and assess the

9.3. BAYESIAN DATA ANALYSIS 135

results with their own ROPE intervals [197]. In Section 9.5, we opted to omit
the ROPE intervals.

9.3.4 Model checking

Since we can get inference from prior-to-posterior on any reasonable model we
should perform additional model checking procedures to ensure the validity of
the models. Therefore, in a good Bayesian data analysis we should check for
proper convergence of the MCMC, for the adequacy of the model fit with the
data, and check for the model robustness against different modeling choices [95].

9.3.4.1 Sampling convergence

After specifying the model, we need to specify the sampling parameters and
assess the convergence of chains for valid inference of the posterior. To allow
diagnostics of the sampling process, we follow the recommendations of the
Stan software4 and initialize the sampling with four chains, random initial
values and target Metropolis acceptance rate equals to 0.8. For the number
of iterations and warmup, we adjust accordingly to the number of effective
samples of the posterior and whether there are divergent iterations.

Trace plots of the chains: These are diagnostic plots to look at the
sampling of each chain. All chains should be well-mixed without any pattern
or trend [196].

Number of effective samples of the posterior neff: Markov Chains
are typically autocorrelated, which will result in the autocorrelation of the
samples. The number of effective samples of the posterior indicates the number
of independent samples. Stan provides warning messages if there is a low
number of effective samples in the posterior. As a rule of thumb [196], 200
effective samples of the posterior are enough to estimate the mean of a parameter
but we might require more if estimating quantiles or highly skewed posteriors.

Gelman-Rubin potential scale reduction (R̂): this statistic measures
the ratio of the average variances of samples within each chain to the variance
across chains [200]. This is a parameter that indicates the convergence of the
chains. If the chains have not converged, the R̂ will be greater than one. In
practical terms, we require values of R̂ < 1.05 and preferably R̂ < 1.01 [196]

Number of divergent iterations: During the sampling procedure we
specify a warmup period in which the sampler learns which parameters to use.
During this period, we can have divergent iterations. However, after warmup,
there should be no divergent iterations. If there are, the posterior estimates
cannot be considered valid.

9.3.4.2 Choice of priors

One aspect commonly discussed and criticized in BDA is the subjectiveness of
the priors. Priors are part of the modeling flexibility that BDA provides to
researchers. It adds the possibility of incorporating prior knowledge of previous
research on the model to create better and more robust models. For example, a
prior indicating that a parameter should be within a range of -10 to +10 might

4https://mc-stan.org/users/documentation/

136 CHAPTER 9. PAPER E

be added o constraint the parameter value. This is often a more reasonable
approach for the vast majority of cases than allowing a parameter to have a
range between −∞ to +∞ (as the frequentist data analysis does).

This flexibility also allows researchers to choose between non-informative,
weakly informative, and informative priors for their models. A non-informative
prior is based on bounded or unbounded uniform distribution and does not
aggregate any information to the posterior.

Weakly-informative priors are those that do not impact or aggregate much
information in the posterior parameters but it is not as vague as the non-
informative prior. They can act as regularizing priors and improve the inference
and convergence of the MCMC [196]. An example of such a prior would be a
normal distribution with a large variance compared to the expected parameter
value.

Informative priors are those that incorporate previous knowledge on the
subject to improve the model. These priors impact the posterior parameters.
As a rule of thumb5, if the posterior standard deviation of a parameter is more
than 0.1 times the prior standard deviation, the prior is considered informative.
A classification of the priors in informative and weakly informative is not only
a matter of the prior distribution (and its parameters) but the joint effect of
the prior, the number of parameters in the model, and the amount of collected
data. For small datasets, the prior will have a larger influence in the parameter
estimate compared to larger datasets. Therefore adjusting the prior distribution
parameters to be weakly-informative should be done together with the actual
data and model in question.

For all the models in Section 9.5, we adjusted the priors and hyperpriors to
be weakly-informative priors based on the presented rule of thumb.

9.3.4.3 Model comparison

For the same data, we might have different valid model candidates (including
different priors and likelihoods), and we should compare these models and verify
their performance. A recommended approach is to start with simple models
and start building more complex models. If the complexity does not increase
the predictive accuracy and it is not justifiable theoretically, simpler models
are preferred. Comparing the predictive accuracy can be done by analyzing
the model entropy information with the Watanabe-Akaike Information Criteria
WAIC [201] or the Leave-One-Out Cross Validation method (LOO-CV) [95].
The calculation of the WAIC and the LOO-CV requires the log-likelihood,
which is not calculated automatically in Stan. However, the models we use,
and available in the repository, calculate this value.

Note that, one should not use the AIC or BIC criteria in the Bayesian
context since both methods assume that the model utilizes flat priors and the
maximum a posteriori estimate [196]. These assumptions are often not true
since flat priors are discouraged and the estimation method is the MCMC.
Information criteria such as the WAIC provide results equivalent to the AIC
(when assumptions are met) and can also be used under different priors and
estimation methods [196].

5https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations\#how-inf

ormative-is-the-prior

9.4. THE EMPIRICAL DATA 137

9.3.4.4 Sensitivity analysis

During the development of a model, many alternative models might be consid-
ered, including different choices of likelihood, prior, predictors, etc. Sensitivity
analysis is a process to evaluate how much the posterior inferences change when
we change different aspects of the model. For example, we might have different
choices of priors. With sensitivity analysis, we can evaluate the impact of these
priors in the inferences we make. If after the modifications, the inference results
remain unchanged, we can say that the posterior inferences are robust. We can
perform a sensitivity analysis directly on the posterior parameters, verifying
if they still have similar magnitudes and directions, but also in terms of their
posterior predictive checks. Sensitivity analysis overcomes the critique of the
subjectiveness of BDA with transparency [196]. We provide an example of
sensitivity analysis in the online appendix.

9.3.4.5 Posterior predictive checking

Finally, the last step to analyze the validity of a model is through a posterior
predictive check [95]. Posterior predictive checking is a way to assess how large
are the residuals of the model, i.e. the difference between the predictive values
of the model compared to the observed values. If the model does not predict
or can’t explain the data well, it might not be a good or even valid model.

9.3.4.6 Sample size and power analysis

In BDA analysis, it is also possible to perform both prospective and retrospective
power analysis without some of the criticisms of frequentist power analysis
[197,202]. Prospective power analysis (such as determine an ideal sample size)
consists of generating point estimate hypothesized parameter values for the
model and using this model to generate data with different sample sizes [197].
The generated data is used to estimate the posterior parameters of the model. If
the HPD interval is contained inside a ROPE interval (that specifies the desired
size of the uncertainty interval), for each parameter estimate, we consider
that we have satisfied the uncertainty interval restriction with an appropriated
sample size. Since this study does not place a restriction on the size of the
uncertainty intervals for each model, we do not perform a sample size analysis
to collect the data. Therefore, our estimates and uncertainties are in accordance
with the data collected as described in Section 9.4.

9.4 The empirical data

In this section, we first present an overview of the algorithms and the benchmark
functions that are used to collect the empirical data. Then we present the
research questions that guided the development of the models in Section 9.5.

Since the goal of this work is to illustrate the statistical models and not to
provide an in-depth comparison of the state-of-the-art algorithms, we created
a simplified experimental simulation scenario with enough complexity to fully
illustrate the statistical methods. We performed an empirical evaluation of
eight well-known algorithms for black-box optimization against 30 benchmark
functions under different noise and budget conditions. In this experimental

138 CHAPTER 9. PAPER E

simulation, we focus only on continuous benchmark functions, although the
discussed models can be applied and extended to other problems.

9.4.1 The algorithms

The choice of the first six algorithms is based on their widespread use, the
computational speed (CPU time) for each function evaluation, and the easy
availability of a Python 3 implementation, on which the simulation framework is
based. Also, we selected a random search algorithm to be used as a baseline in
some of the comparisons, and a variation of the random search (Random Search
x2). The Random Search x2 can be used as a baseline for the comparison in
the cases in which there is noise in the output value of the benchmark function.

We utilize the following algorithms with their respective default parameters
from the software package:

• Particle Swarm Optimization [203]. We utilize the implementation
from the NiaPy package [54] with the following parameters: C1 = 2
(cognitive component) , C2 = 2 (social component), w = 0.7 (inertial
weight), vmin = −1.5 (minimal velocity), vmax = 1.5 (maximal velocity)
and population of 30.

• Cuckoo Search [204]. We utilize the implementation from the NiaPy

package [54] with the following parameters: pa = 0.2 (proportion of worst
nests) and α = 0.5 (scale factor for the Levy flight) and population size
of 30.

• Simulated Annealing [205]. We utilize the implementation from the
NiaPy package [54] with the following parameters: δ = 0.5 (movement of
neighbor search, T = 2000 (starting temperature), ∆T = 0.8 (change in
temperature), ε = 1e− 23 (error value) and a linear cooling method.

• Differential evolution [206]. We utilize the implementation from the
NiaPy package [54] with the following parameters: F = 1 (scale factor),
CR= 0.8 (crossover probability), random cross mutation and population
size of 30.

• Nelder-Mead [56]. We utilize the implementation from the NiaPy

package [54] with the following parameters: α = 0.1 (reflection coefficient),
γ = 0.3 (expansion coefficient), ρ = −0.2 (contraction coefficient) and
σ = −0.2 (shrink coefficient).

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[55]. We utilize the implementation from the package pycma [207]. We
utilize the following parameters σ0 = 0.5 (initial standard deviation).

• RandomSearch1 (Random Search x1) Random samples are selected to
search the space. Each sample is evaluated only once. We utilized our
own implementation.

• RandomSearch2 (Random Search x2) is a variation of Random Search
in which the same point in the search space is evaluated twice before
getting a new sample. We utilized our own implementation.

9.4. THE EMPIRICAL DATA 139

9.4.2 The benchmark functions

For the benchmark functions, we randomly selected 30 benchmark functions
from a pool of 220 benchmark functions from both the BBOB-2009 [208]
function definitions as well as from a literature survey [183]. All the benchmark
functions are used for the optimization of continuous parameters. To ensure
that they were correctly specified, they were tested nightly, for over a month,
with a random search algorithm to verify whether all the global minima were
identified and if these were indeed the global minima. Additionally, due to the
computational time required, we restricted the benchmark functions to a limit
of 6 dimensions, which is sufficient to illustrate the generality of the statistical
models.

For a mathematical definition of these functions, we refer to the survey [183]
and the BBOB-2009 function definitions [208]. The used benchmark functions
are: Sphere 6-D, Tripod, ChungReynolds 2-D, Pinter 6D, StrechedVSineWave
2-D, Trigonometric-1 6-D, BentCigar 6-D, ChenV, Discus 2-D, Schwefel2d20
2-D, ChenBird, Schwefel2d21 6-D, Zakharov 2-D, Damavandi, Schwefel2d4
6-D, Whitley 6-D, Shubert, XinSheYang2 2-D, Mishra7 6-D, Schwefel2d23 6-D,
Exponential 2-D, Salomon 2-D, RosenbrockRotated 6-D, Qing 2-D, Lunacek-
BiRastrigin 6-D, ThreeHumpCamelBack, Schwefel2d26 6-D, Trefethen, Price1
and Giunta.

9.4.3 The experimental conditions

All algorithms were run for all benchmark function ten times in each combina-
tion of an experimental condition:

• Noise: 0 or 3.0. When noise is present, we added a Gaussian random
variable on the output of the benchmark function with a mean in the
benchmark value and a standard deviation of 3.0. Although this might
impact differently each benchmark function result, it represents a constant
measurement error in real-world conditions.

• Budget: 20, 102, 103, 104 and 105 function evaluations per number of
dimensions of the benchmark function.

These conditions resulted in a total of 24, 000 data points in our data set,
in which each point corresponds to one algorithm run.

9.4.4 The logged metrics

Apart from the benchmark functions metrics (e.g. number of dimensions) and
the experimental conditions (noise level, budget), we logged additional metrics
for each algorithm. For these metrics we use the following notation:

X ∈ χ from a compact subset space χ ⊂ Rd is a vector of the input for the
benchmark function and has dimension d .

X∗ is the global minimum of the benchmark function fmin = f(X∗). We
consider that a benchmark function can have more than one global minima. The
relationship between these variables is represented by: X∗ = arg minX∈χ f(X).

Xopt is the output value/best solution of the optimization algorithm at the
end of the budget.

140 CHAPTER 9. PAPER E

Xi is a sampled point of the search space selected by the algorithm at
function evaluation i.

The logged metrics are represented below

• Final reward difference: ∆freward = f(Xopt)− f(X∗),

• Euclidean distance: D = ‖X∗ −Xopt‖2

• Solved at precision ε ∈ [1, 0.1, 1e− 3, 1e− 6]: this is a boolean variable
that indicates if the problem was solved or not at the end of the budget:
∆freward < ε

• Solved at FEval: the function evaluation (FEval) in which the algorithm
solved the problem with a specific precision ∆freward < ε

• CPU time: this computes the time spent by each algorithm in each
problem for the whole budget.

The presented models often make use of a transformation of these variables,
in such cases, we describe the specific transformation in each model.

9.4.5 The research questions

The presented statistical models in Section V address the following research
questions.

• RQ1-a: What is the probability of each algorithm solving a problem at
precision ε ≤ 0.1?

• RQ1-b: What is the impact of noise in the probability of success of each
algorithm at precision ε ≤ 0.1?

• RQ2: What is the expected improvement of these algorithms against the
Random Search in noiseless benchmark functions in terms of approaching
a global minimum based on the Euclidean distance to the location of the
closest global minimum?

• RQ3: How can optimization algorithms be ranked in the conditions of
10,000 evaluations per dimension budget in noisy benchmarks?

• RQ4-a: What is the average number of function evaluations (FEval)
taken by an algorithm to converge to a solution at a precision of ε ≤
0.1 and with a maximum budget of 100,000 function evaluations per
dimension?

• RQ4-b: What is the impact of noise in the number of function evaluations
(FEval) taken by an algorithm to converge to a solution at a precision of
ε ≤ 0.1 and with a maximum budget of 100,000 function evaluations per
dimension?

• RQ5: Is there a difference in the CPU time taken per function evaluation
between the PSO, the Random Search x1, and the Differential Evolution
algorithms?

9.5. STATISTICAL MODELS 141

9.5 Statistical Models

In this section, we provide an overview of five statistical models for answering
different practical research questions in benchmark data. For each model,
we present an introduction to the model, the model, and an analysis of the
results focusing on the interpretation aspect of the intervals with plots. We
conclude the discussion of each model with some final remarks, indicating
possible extensions or practical issues that one may find.

It is worth reinforcing that these models are not unique and several variations
can be made. Our choice for these models was based on the simplicity and
ability to answer many practical questions. More complex models can be made
and derived from these models. In BDA, starting with simple models and
extending them is encouraged, and reporting these models can provide a greater
level of transparency for research and replication studies.

Before we present the models, we provide a short overview of hierarchi-
cal/multilevel models. We emphasize the need of using hierarchical models for
benchmark comparison since they can compensate for the clustering effect of
the benchmarks.

In the online appendix, we provide the empirical data used in this text,
a step-by-step code used in all the data transformation, cleaning, plots, and
tables. Additionally, we provide the Stan code for all the models together with
the exact data used to fit these models and the analysis of the convergence and
validity of the models.

Notation convention:

• For notation clarity, we omit the indexing variable that indicates each
observation of the dataset, for example, instead of y[i] ∼ Normal(a+ b ·
x[i], σ) we represent as y ∼ Normal(a + b · x, σ). Similar notations are
widely used in other Bayesian data analysis texts [95,196].

• All dependent variables are indicated as y.

• All predictors (independent) variables are indicated with x with optional
subscripts i to indicate the algorithm.

• All intercepts (the independent terms of the linear regression without
any predictor), including the random effects of the models, are indicated
by a with optional subscripts i to indicate the algorithm and j for the
benchmark.

• All slopes of the models are indicated with b with optional subscripts i
to indicate the algorithm.

• The subscript index i indicates that there is one parameter for each
algorithm. For example, ai indicates that there is one intercept for each
algorithm, a1 for the first algorithm.

• The subscript index j indicates the parameter of the benchmark function.
For example abm,j indicates that there is one intercept for each benchmark
function.

• If there is no subscript index, the parameter is common for all algorithms
or benchmark functions.

142 CHAPTER 9. PAPER E

9.5.1 Compensating the effects of benchmarks

When the measured units are drawn from the same cluster within a population
(e.g. multiple samples from the same benchmark function), these can no
longer be considered independent samples. This situation can add bias from
unobserved variables into the model and shift the posterior distributions [209]. A
strategy to overcome such problems is called multilevel modeling or hierarchical
modeling, and it is not restricted to the Bayesian framework. Snijders and
Bosker [209] present a full treatment of multilevel modeling in the frequentist
setting. One approach to compensate for the clustering problem is to add a
blocking variable that estimates the effect of each cluster. With a large number
of clusters (e.g., 30 benchmark functions), we can model the effect of the clusters
utilizing a random-effects variable. This random effect variable indicates that
every benchmark will be drawn from a probability distribution (and therefore
we can only estimate the parameters of this distribution), reducing model
complexity and allowing us to evaluate the impact of the benchmark functions
overall. Of course, it is also possible to observe the effect of each function in
this framework.

In the Bayesian framework, we can condition the priors of the random
effects variables over new random variables called hyperpriors. For example,
let’s consider the example of a simple linear regression in which each of the
intercepts depends on the algorithm ai and the slope b is constant for all
algorithms. Variables a and b are not modeled as random effects and therefore
are modeled only with their priors.

If we consider that each observation comes from a finite number of clusters
(benchmarks), in which the cluster is represented by the index j, we can create
the Model 9.1 to include a random variable intercept that represents the effect
of each cluster on the observed variable. The random variable intercept for
the benchmarks is represented by abm,j . The exponential distribution is a
common choice for modeling variance in random effects [197], where lower rate
parameters create proper but weakly-informative hyper prior. However, other
common choices are the half-normal and the Cauchy distribution.

Model 9.1: Bayesian linear regression considering the effect of the benchmarks

y ∼ Normal(ai + abm,j + b · x, σ),

ai ∼ Normal(0, 10) [Prior],

b ∼ Normal(0, 10) [Prior],

σ ∼ Exponential(1) [Prior],

abm,j ∼ Normal(0, s) [Prior],

s ∼ Exponential(1) [Hyperprior].

In terms of interpretation, although we analyze the impact of each bench-
mark function (since we estimate the intercept of each benchmark function),
we are more concerned with the interpretation of the standard deviation of the
random effects (the s parameter). This parameter indicates how much variance

9.5. STATISTICAL MODELS 143

we can attribute to the clustering information of the benchmark functions.
Additionally, suppose the selection of benchmark functions is representative of
the set of problems that the algorithms are going to solve. In that case, we
can interpret how much variance we can expect in the model due to a change
of problem.

The multilevel approach can be easily extended for additional levels in the
hierarchy (if the function can be classified as easy or hard to solve, or other
properties, such as separability or modality) and include different hierarchies in
parallel. For more information regarding these extensions and other applications
of multilevel models, we refer to [95,196]. Note that the separation between
the main effects of the cluster effects introduces n parameters in the model, in
which n is the number of clusters.

9.5.2 Probability of success

In this subsection, we utilize a multilevel generalized linear model with a logit
link function to model the binomial response and answer the research questions
RQ1-a and RQ1-b.

RQ1-a: What is the probability of each algorithm solving a problem at
precision ε ≤ 0.1?

RQ1-b: What is the impact of noise in the probability of success of each
algorithm at precision ε ≤ 0.1?

9.5.2.1 The model

One model that can be used for addressing these research questions is the
generalized linear model with the binomial distribution and the inverse logit.
The binomial is a common choice of the likelihood distribution in generalized
linear models when one wants to estimate how many out N tries are successful
given a probability p [95, 196, 210]. Through the use of generalized linear
models, we can include random effects terms and predictors. This requires a
link function to transform the continuous linear equation to the input of the
binomial distribution. Common choices for link functions are the logit or the
probit functions. These link functions allow us to map the continuous output
of the linear regression to discrete values used in the binomial distribution.
The binomial model is represented by Model 9.2.

Model 9.2: Binomial model

y ∼ Binomial(N, p),

p = logit−1(aalg,i + abm,j + b noisei · xnoise),

aalg,i ∼ Normal(0, 5),

b noisei ∼ Normal(0, 5),

abm,j ∼ Normal(0, s),

s ∼ Exponential(0.1).

144 CHAPTER 9. PAPER E

Model 9.2 uses the following notation. Let’s consider the example of one
row in the dataset that indicates that the algorithm PSO was tried ten times
with noise=3.0, budget=1000 for one benchmark function. On those ten tries,
it solved the problem at ε = 0.1 two times. The inverse logit function, as
defined below, maps the values of x from (−∞,+∞) to the interval (0, 1), so its
output can be used as the probability parameter of the binomial distribution

• logit−1(x) = 1
1+exp(−x) .

• N : is an integer, parameter of the binomial distribution, that represents
the total number of tries (in our case the aggregated value of repeated
measures of a single algorithm). In the example N = 10 .

• y: is an integer that indicates from the N tries, how many of those were
successful (or had a result of 1). In example, y = 2.

• aalg,i: represents the mean (intercept) effect of each algorithm.

• b noisei: is the influence of noise in each algorithm.

• xnoise: indicates the noise used. In the example, xnoise = 3.0.

• abm,j : indicates the random effect of the benchmarks.

• p: is a variable modeled by the linear equation and it indicates the
probability of success. We can use this probability to assess how the
different parameters impact the probability of success.

The model above captures different coefficients for the influence of noise
and budget on each algorithm. If desired (e.g. to measure the impact of factor
regardless of the algorithm), these parameters could be aggregated in a single
parameter.

9.5.2.2 Model interpretation

After running this model in Stan (chains=4, warmup=200, iterations=3000),
we obtain the posterior distribution of the model parameters. Table 9.1 shows
the mean and HPD intervals of the model parameters as well as the mean odds
ratio (OR) and the OR HPD interval. The OR measure indicates the relative
probability of success compared to the probability of failure. If the odds ratio
is greater than 1, the parameter increases the probability of success. If the
odds ratio is between 0 and 1, it decreases the probability of success. It is
worth noting, however, that if an algorithm has a high odds ratio (or parameter
value) the influence of the benchmark might be small (due to the asymptotic
characteristic of the inverse logit function)

Table 9.1 indicates that the algorithms PSO, Differential Evolution, and
CMAES have a significantly higher mean of the OR compared to the other
algorithms, and are the only ones that, on average, have a higher probability
of solving a problem than not solving. However, all three also have a wide OR
HPD interval, meaning that their performance is greatly affected by external
random factors (such as choice of seed for example). The large overlap between
the OR HPD interval of those three algorithms indicates no statistical difference
between them.

9.5. STATISTICAL MODELS 145

Table 9.1: Estimated parameters of the model. OR indicates the odds ratio of
the respective parameter

Parameter Mean HPD

low

HPD

high

OR

Mean

OR

HPD

low

OR

HPD

high

a CMAES -0.10 -0.99 0.78 0.90 0.37 2.18

a Cuckoo -2.55 -3.40 -1.63 0.08 0.03 0.20

a DiffEvol. -0.21 -1.10 0.66 0.81 0.33 1.94

a NelderM. -4.35 -5.24 -3.42 0.01 0.01 0.03

a PSO -0.39 -1.26 0.49 0.67 0.28 1.63

a RandomS1 -2.01 -2.84 -1.07 0.13 0.06 0.34

a RandomS2 -2.22 -3.09 -1.33 0.11 0.05 0.27

a SimAnneal -2.56 -3.47 -1.69 0.08 0.03 0.18

b CMAES -1.27 -1.37 -1.18 0.28 0.26 0.31

b Cuckoo -0.81 -0.93 -0.70 0.44 0.40 0.50

b DiffEvol. -1.35 -1.46 -1.26 0.26 0.23 0.28

b NelderM. -0.39 -0.52 -0.25 0.68 0.59 0.78

b PSO -1.15 -1.24 -1.06 0.32 0.29 0.35

b RandomS1 -0.97 -1.08 -0.86 0.38 0.34 0.42

b RandomS2 -0.72 -0.83 -0.62 0.49 0.44 0.54

b SimAnneal -0.79 -0.91 -0.68 0.45 0.40 0.51

s 2.44 1.78 3.16 11.47 5.94 23.68

From the analysis of the odds ratio of the noise coefficient, we can see that
all algorithms perform more poorly in the presence of noise (all the odds ratios
are lower than one). Noise has a greater relative impact on the Differential
Evolution, CMAES, and PSO algorithms. However, this relative effect should
be analyzed in the context of the total probability of success. Since all other
algorithms have a much lower probability of solving a problem, the effect of
noise on them is smaller as they would probably not solve the problem even
without noise. Since the logit function is not linear, it is recommended to
evaluate both the marginal and absolute impact of the parameters in the model
predictive accuracy.

In terms of the effect of the benchmark functions, the effect of the benchmark
(by our model) is drawn from a normal distribution with a mean of 0 and a
standard deviation that has the posterior distribution of s. Since the effect of the
benchmarks are sampled from this distribution, it can have an impact with the
same magnitude or even higher than the choice of algorithms in the probability
of solving a problem. This reinforces that the choice of benchmark functions
greatly impacts the results of algorithms and that using higher hierarchy levels
for the benchmarks may improve the estimates of the algorithms.

9.5.2.3 Remarks

The same model can be used to answer many other research questions, such
as, the probability of an algorithm solving problems when duplicating the
budget (such question could be used to determine an appropriated budget for
some algorithms, especially in expensive functions), the probability to solve a
particular problem (now the focus is on specific benchmark functions), among
others. An equivalent variant of this model, one that does not use aggregated
data, utilizes a Bernoulli distribution as the likelihood instead of the binomial,
the inverse logit part and the priors can remain the same.

146 CHAPTER 9. PAPER E

Additional discussion about categorical models (such as the Binomial and
Bernoulli model) in the context of generalized linear models and possible
extensions can be found in both Bayesian and frequentist statistical textbooks
[196,210].

9.5.3 Algorithm relative improvement over Random Search

In this subsection, we address RQ2. For this question, we will use a model
based on a linear regression. This model is analogous to the frequentist linear
regression models but we have estimations of the full posterior distribution,
control over the priors, and credible intervals (instead of confidence intervals)
for inference. Linear models such as this one facilitate the direct comparison
of the magnitude and direction of the parameters. Since we are assessing
a linear model directly, interpretation mistakes over the absolute impact of
transformations such as the odds-ratio do not occur.

RQ2: What is the expected improvement of these algorithms against the
Random Search in noiseless benchmark functions in terms of approaching a
global minimum based on the Euclidean distance to the location of the closest
global minimum?

9.5.3.1 The model

Model 9.3 uses a regression model with normal distribution for the likelihood
and model the standard deviation (of the error term) with a single parameter
σ.

Model 9.3: Regression model

y ∼ Normal(µ, σ),

µ = aalg,i + abm,j ,

σ ∼ Exponential(1),

aalg,i ∼ Normal(0, 1),

abm,j ∼ Normal(0, s),

s ∼ Exponential(0.1).

In Model 9.3, we have the following notation:

• y: is the metric that indicates the relation between the Euclidean distance
of the algorithm and the random search. There are multiple ways to
measure improvement but, in this example, we will use the difference
between the Random Search x1 Euclidean distance and the algorithm,
divided by the Random Search x1 Euclidean distance. The results of
this ratio are caped between -1 and 1. The Random Search x1 Euclidean
distance is averaged in the repeated measures.

• aalg,i: represents the mean (intercept) effect of each algorithm.

9.5. STATISTICAL MODELS 147

• abm,j : indicates the random effect of the benchmarks.

• µ: represents the mean value of the likelihood, modeled by the linear
equation. This is a transformation parameter and not an estimated
parameter of the model. µ represents the average improvement to random
search after counting for the effect of the algorithm and the benchmark
but it does not include the variance added by the σ parameter.

• s: represents the standard deviation of the effect of the benchmark
functions.

9.5.3.2 Model interpretation

After running this model in Stan (chains=4, warmup=200, iterations=2000),
we get the posterior of each parameter and compute the HPD intervals for the
intercept of each algorithm. The appendix provides a table with the estimates
of every posterior parameter obtained by the model. Table 9.2 shows the
obtained posterior parameters and their HPD intervals. The mean value on
this table corresponds to the estimated parameters and not the mean value of
the likelihood (µ).

Table 9.2: Estimated parameters of the relative improvement model and their
respective HPD intervals

Parameter Mean HPD low HPD high

σ 0.64 0.63 0.65

a CMAES 0.15 0.09 0.21

a CuckooSearch -0.38 -0.44 -0.32

a DifferentialEvolution 0.30 0.24 0.36

a NelderMead -0.64 -0.70 -0.58

a PSO 0.32 0.26 0.38

a SimulatedAnnealing -0.57 -0.63 -0.51

s 0.15 0.11 0.19

The algorithm intercept represents the average improvement over random
search in an average benchmark with a null effect. The random effect standard
deviation s, has a similar interpretation as before. The impact of the benchmark
over the relative improvement given by the benchmarks is sampled from a
normal distribution with a mean equal to zero and standard deviation s. The
parameter σ represents the dispersion of the results around the average µ.

From Table 9.2, we can see that only the algorithms PSO, Differential
Evolution ,and CMAES have a positive relative improvement over the Random
Search x1 algorithm. All the other parameters had negative estimates, which
result that they perform on average worse than random search in approaching
the global minima. We can notice that the standard deviation of the measure-
ments (σ) is high compared to the estimates of the algorithms. This indicates
that there is a lot of non-explained variance in the data. For this case, since
the comparison is relative between algorithms, we see that the benchmark
functions have a smaller impact on the estimates, with a much lower standard
deviation for the random effects s.

148 CHAPTER 9. PAPER E

9.5.3.3 Remarks

This model can easily be extended to include other predictors as any regression
model, such as to evaluate the impact of noise and the log of budget, among
others.

Often, the first regression model we try is based on the normal likelihood.
However, if we see long-tail distributions or outliers, a robust regression might
be more appropriate. Robust methods are discussed in our last model in this
section. The choice between the different types of regression is often subject to
some experimentation to see which model works and predicts the data better.
The differences between the performance of all of these models can be compared
with information criteria methods such as WAIC.

It is worth noting that the MCMC is quite sensitive to numerical stability.
Inferences in which data goes from wide ranges such as 0.001 to 1000 usually
makes the MCMC fail to converge. This problem is particularly common in
benchmark data since functions have very different ranges. One solution to this
problem is to normalize the input data in respect to another baseline algorithm
(which we did). Another solution commonly used approach is to compare
ranking statistics. Ranking statistics have the disadvantage of throwing out
part of the data. Ranking allows researchers to assess which algorithm performs
better but not by how much.

9.5.4 Ranking comparison

In this subsection, we utilize a Bayesian variant of the Bradley-Terry Model
[211,212] to answer RQ3.

RQ3: How can optimization algorithms be ranked in the conditions of
10,000 evaluations per dimension budget in noisy benchmarks?

9.5.4.1 The model

The Bradley-Terry model [211] is a popular approach to investigate paired
comparisons [213]. In this model, a pair of competitors are compared and
one of them is classified as the winner. This model has been used in various
applications, from medicine to machine-learning applications on search engines.

The model is based on the idea of a comparison contest between players
(or in our case, algorithms) without the possibility of ties. The model can
be expressed through latent variables αi that represent the “strength” or the
ability of each algorithm [214]. The odds that algorithm i beats j is expressed
by αi/αj , and the probability that i beats j is expressed by:

Pr[i beats j] =
expαi

expαi + expαj
, (9.2)

= logit−1(αi − αj). (9.3)

Since we do not observe the probabilities, we will model it through a
Bernoulli distribution. The goal of this model is to estimate the strength
of the parameters and the order of these parameters will give a rank of the
algorithms. The main advantage of this model over the frequentist approach

9.5. STATISTICAL MODELS 149

with the maximum likelihood estimator is the ability to restrict the priors and
obtain a full posterior estimation of the parameters.

If we want to include other predictors as well as control for random effects
in the latent strength parameter, we can use the following linear transformation
for each latent strength variable [215].

αi =

p∑
k=1

(βkxk) + abm,i,j , (9.4)

in which p is the number of predictors we want to add, βk are the coefficients
we want to estimate, xk are the independent variables for each predictor, and
abm,i,j is the estimated effect of the random variable, such as the clustering
effect of the benchmark j in the latent variable αi. Here we note that each
benchmark will provide a different effect for each strength that is estimated in
the random effects variable. It is worth noting that in each paired comparison,
if the same covariates are available for both contestants, they will cancel the
effect on each other out.

Model 9.4 represents the Bayesian Bradley-Terry model with random effects
for the benchmarks:

Model 9.4: Bayesian Bradley-Terry Model

y ∼ Bernoulli(p),

p = logit−1(aalgo1 + abm,algo1,j − aalgo0 − abm,algo0,j),

ai ∼ Normal(0, 2),

abm,i,j ∼ Normal(0, s),

s ∼ Exponential(0.1).

In Model 9.4, we have the following notation:

• y: indicates which of the two algorithms (algo1 or algo0) won the contest.
It can have only two values 0 for algo0 or 1 for algo1.

• aalgo1 and aalgo0: represents a paired comparison between two algorithms

• ai: indicates the latent strength variable of each algorithm.

• abm,algo0,j and abm,algo1,j are the random effects due to the benchmark j
in the algorithm 0 or 1.

• s: represents the standard deviation of the effect of the benchmark
functions.

9.5.4.2 Model interpretation

After running this model in Stan (chains=4, warmup=200, iterations=4000),
we get the posterior of each parameter and compute the HPD intervals for the
intercept of each algorithm strength. Table 9.3 shows the summary statistics of

150 CHAPTER 9. PAPER E

Table 9.3: Estimated parameters of the ranking model and the respective HPD
intervals

Parameter Mean HPD low HPD high

a CMAES 1.04 -0.48 2.59

a CuckooSearch -0.41 -1.87 1.19

a DifferentialEvolution 1.99 0.43 3.51

a NelderMead -2.98 -4.51 -1.43

a PSO 1.58 0.08 3.13

a RandomSearch1 0.28 -1.28 1.78

a RandomSearch2 0.25 -1.25 1.81

a SimulatedAnnealing -1.69 -3.20 -0.11

s 1.82 1.59 2.05

the posterior distribution parameters of the model, the latent strength variables,
and the standard deviation of the random effects of the benchmarks.

These strength parameters can be used to either assess the probability of
one algorithm beating the other or to rank the algorithms. However, despite
the apparent large overlap between these latent parameters, it does not indicate
that the algorithms perform similarly. To compare a specific algorithm with
the other, it is possible to either compute the posterior distribution of one
algorithm beating the other (as in equation 9.2) or to calculate the posterior
distribution of the ranks.

To calculate the posterior distribution of the ranks, we use 1000 samples
from the posterior of the strength parameters (taking into account the effect of
the benchmarks) and rank them. With this procedure, we have a distribution
of the ranks, which gives us also information regarding to the uncertainty of
the ranking process. These results are shown in Table 9.4, which shows the
median rank and the rank variance for each algorithm.

Table 9.4: Ranking the algorithms based on the reward difference taking
accounting for the effect of the benchmarks

Algorithm Median Rank Variance of the Rank

DifferentialEvolution 1 0.20

PSO 2 0.30

CMAES 3 0.34

RandomSearch1 4 0.47

RandomSearch2 5 0.51

CuckooSearch 6 0.21

SimulatedAnnealing 7 0.01

NelderMead 8 0.00

9.5.4.3 Remarks

The Bradley-Terry model is the simplest model for analyzing ranks. Note that
this model does not take into account the differences between the algorithms
(despite how big or small they might be). We did not include any predictor in
our model since the predictor variable is always the same for each algorithm
comparison (since this is how we designed the experimental data collection)
and they would cancel each other.

9.5. STATISTICAL MODELS 151

There are extensions and alternative models to the Bradley-Terry model,
such as the Thurstonian model (that uses a probit instead of the logit function).
The Plackett-Luce model described in [192] is equivalent to the presented
Bradley-Terry model when a complete rank is converted to paired comparisons
with independence between the algorithms in the rank [216]. The advantage of
converting ranks into paired comparisons and using the Bradley-Terry model
is the possibility to use partial ranks.

Our model does not accept ties between contestants in its formulation.
Since we are comparing the true reward difference, ties only occur when the
algorithms achieve the global minima, which is a rare event. One approach to
solve ties is to randomly assign a winner [215]. However, in cases where ties are
common and estimating the probability of two contestant algorithms to tie is
relevant, such as in combinatorial optimization, extensions to the Bradley-Terry
model can be used. The most common extension to accommodate ties is the
Davidson generalization of the Bradley-Terry model [212, 217]. This extension
adds an additional parameter ν > 0 that estimates the overall maximum
probability of a tie and the dependence of the probability of a tie in the
strength parameter. If ν −→ ∞ the probability of a draw is 1. If ν −→ 0 the
probability of tie depends only on the strength of the algorithms. In the online
appendix we provide the Stan statistical model for the Davidson extension.
The model adds a conditional statement in the probabilities as seen below:

Pr[i beats j|not tie] = expαi

expαi + expαj + exp (ν + (αi + αj)/2)
,

Pr[i ties j] =
exp (ν + (αi + αj)/2)

expαi + expαj + exp (ν + (αi + αj)/2)
.

9.5.5 Number of function evaluations to converge to a
solution

In this subsection, we will consider two research questions that address the
number of function evaluations (FEval) to the occurrence of an event, RQ4-a
and RQ4-b. Such questions are usually discussed in the area of survival analysis,
in which the primer interest is when an event occurs [218].

RQ4-a: What is the average number of function evaluations (FEval) taken
by an algorithm to converge to a solution at a precision of ε ≤ 0.1 and with a
maximum budget of 100,000 FEval per dimension?

RQ4-b: What is the impact of noise in the number of function evaluations
(FEval) taken by an algorithm to converge to a solution at a precision of ε ≤ 0.1
and with a maximum budget of 100,000 FEval per dimension?

As we noticed with the previous models, some algorithms have a very low
success rate. For this example, we will use only the top 4 algorithms indicated by
the previous Bradley-Terry Model: Differential Evolution, PSO, CMA-ES, and
RandomSearch1. The proposed research questions address the average FEval
to converge to a solution divided by the number of dimensions because we are
utilizing a fixed budget per dimension as the experimental condition. This leads
benchmark functions with 6 dimensions to be evaluated up to 3 times higher
than benchmark functions with only 2 dimensions. Without correcting the

152 CHAPTER 9. PAPER E

number of FEval by the dimensions, the number of dimensions in a benchmark
function would create a higher difference than the choice of algorithms. This
transformation ensures that the results of different benchmarks are comparable
regardless of the number of dimensions.

9.5.5.1 The model

One important aspect of survival models, that makes them different from other
analyses, is the presence of censored data. Censored refers to the characteristic
that an event might not occur in the window of observation. If we do not
consider censoring, we will be eventually creating a downwards bias in our
inference [196]. Although there are many ways that data can be censored,
in the analysis of benchmark functions, we are concerned primarily with
uninformative and right censoring. Uninformative, because the censored data
does not contain information regarding the survival (e.g. the data is censored
because the algorithm has a bug and never converges to a solution) and right
censor because we do not observe the event due to the end of the window of
observation [218]. In our example, right censoring is when an algorithm is
unable to solve the problem given the budget.

Survival analysis is usually modeled in terms of two related probability
functions, the survival and the hazard functions. The survival function S(t)
models that an algorithm will not converge until function evaluation t. The
hazard function h(t) models the probability that an algorithm will converge
at function evaluation t during that particular evaluation, i.e., it is the instan-
taneous event rate of an algorithm converging to a solution if it hasn’t yet.
More commonly, we use the cumulative hazard function H(t), obtained by
integrating h(t) over the number of FEval. In summary, the hazard function
models the occurrence of the event (converge to a solution) and the survival
function models the non-occurrence of the event. The relationship between
S(t) and H(t) is given by: H(t) = − logS(t).

We will use the most common (and simple) survival model, the Cox’s
Proportional Hazard model and the Bayesian formulation proposed by Kelter
[219] for the random effects. This model assumes a time-invariant exponential
hazard function and is easily extended with additional predictors. In this model,
the hazard function is constant in time and we refer to it as λ(X), in which
X is the matrix of covariates, a is a constant baseline hazard (if all covariates
are zero) and b is the corresponding matrix of the coefficient of the covariates.
The expected value for the occurrence of the event is the inverse of the hazard
function and defined as:

h(t) = λ(X) = exp(a+ bX), (9.5a)

µ(X) =
1

λ(X)
. (9.5b)

In the Bayesian framework (instead of using the partial likelihood method),
we divide the model into censored and non-censored parts. While the non-
censored data uses the hazard function above, the censored data uses the
complementary cumulative probability distribution function. Our model is
represented by Model 9.5:

In Model 9.5, we have the following notation:

9.5. STATISTICAL MODELS 153

Model 9.5: Bayesian Cox’s Proportional Hazard

If event = 1 :

y ∼ Exponential(λi,j)

If event = 0 :

y ∼ Exponential-CCDF(λi,j)

λi,j = exp (aalg,i + abm,j + bnoise,i · xnoise),

µi,j =
1

λi,j
,

Priors :

bnoise,i ∼ Normal(0, 2),

aalg,i ∼ Normal(0, 10),

abm,j ∼ Normal(0, s),

s ∼ Exponential(0.1).

• event: is a binary variable that indicates if the algorithm has found a
solution or not.

• y: if event=1, y represents the function evaluation that the algorithm
finds a solution divided by the number of dimensions. If event=0, y is
considered a missing value.

• aalg,i represents the baseline effect of each algorithm.

• bnoise,i: is the influence of noise in the FEval to find a solution of the
algorithm.

• xnoise: indicates the noise of the benchmark function.

• abm,j : indicates the baseline of the random effects of the benchmarks.

9.5.5.2 Model interpretation

After running this model in Stan (chains=4, warmup=200, iterations=3000),
we get the posterior of each parameter and compute the HPD intervals for each
parameter. Table 9.5 shows the obtained posterior parameters and the HPD
intervals. Combined with equations 5a and 5b, we can infer that the algorithms
that have a lower baseline effect have a higher probability of surviving, i.e.,
not finding a solution in the specified budget. The average FEval to converge
in the noiseless case can be seen in table 9.6. The presence of a random noise
also increases the survival probability, as expected, and the lower the value of
the noise variable, the more it impacts the ability of the algorithm to find a
solution.

The average number of FEval taken by an algorithm to converge (RQ4-a)
is based on the expected value of the exponential distribution which is given
by the µi,j variable. By sampling 1000 values of the posterior distribution of

154 CHAPTER 9. PAPER E

Table 9.5: Estimated parameters of the time to converge model and the
respective HPD intervals

Parameter Mean HPD low HPD high

a CMAES -5.09 -6.03 -4.16

a DifferentialEvolution -6.37 -7.29 -5.42

a PSO -6.30 -7.22 -5.36

a RandomSearch2 -8.95 -9.91 -8.02

b CMAES -0.79 -0.93 -0.66

b DifferentialEvolution -0.96 -1.09 -0.83

b PSO -0.68 -0.80 -0.56

b RandomSearch2 -0.41 -0.55 -0.27

s 2.44 1.85 3.12

the Cox’s hazard model, we can compute the average function evaluation to
converge for any experiment condition or benchmark. Table 9.6 shows the
average FEval to converge and the HPD intervals for the noiseless condition
and the average of the benchmark functions (the condition where abm,j = 0).
We can see that in these conditions CMAES has a lower average number of
function evaluations to converge compared to the others, while both PSO
and Differential Evolution have approximately the same interval range. Note
that these intervals are relatively wide due to the diversity of the benchmark
functions and the uncertainty added by right censoring (when an algorithm
is not able to find a solution in the determined budget). To investigate the
average for each benchmark or for the scenario with noise, we can substitute
the equivalent estimated parameters and predictors in the equations of the
model 9.5 to obtain the µi,j . A computational example of this procedure is
shown in the appendix.

To facilitate the interpretation of the Cox’s regression model, we can
also analyze the hazard ratio (HR) quantities and the baseline hazard h0 =
exp(aalg,i). The HR represents the contribution of a parameter in the probability
of occurring an event (solving the benchmark problem). The HR is defined as
HR(b) = exp(b), if HR is greater than one the parameter increases the chance
of the occurrence of the event, if it is less than 1, it reduces the chance of
the occurrence of the event. Table 9.6 shows the HR of the mean value of
the parameters. We can see that all algorithms have a low baseline for the
hazard and that noise reduces this hazard even further, therefore, increasing
the number of function evaluations to converge to a solution. We can notice
as well that noise impacts the hazard of the Differential Evolution algorithm
more and the RandomSearch1 much less.

Table 9.6: Average FEval to converge and the Hazard Ratio for the FEval to
converge model

Avg FEval Hazard Ratio

Parameter Mean HPD low HPD high Baseline Noise

CMAES 179 42 349 0.006 0.456

DifferentialEvolution 663 177 1292 0.002 0.386

PSO 601 142 1159 0.002 0.509

RandomSearch1 6663 1746 13252 0.000 0.561

9.5. STATISTICAL MODELS 155

9.5.5.3 Remarks

In the model of survival data with the Cox regression, it is important to add
the random effects of the benchmark functions. Since the algorithms often
cannot solve a problem regardless of the budget, if we do not include the effects
of the benchmarks, we underestimate the hazard ratio of the algorithms.

The proposed model assumes that the number of function evaluations in
which the algorithms converge is independent of the number of dimensions of
benchmark function and therefore this effect is included in the random term.
However, if the set of benchmarks includes multiples times the same function
with different dimensions and the researcher wants to investigate the effect of
the number of dimensions in the number of function evaluations to converge,
the number of dimensions can be added as a linear predictor to the Cox hazard
model similar to how it was conducted with the effect of noise.

In our case, we assume survival functions based on the exponential distri-
bution, however, often different likelihoods such as the Weibull, Gamma, and
Log-Normal distribution can provide a better fit if the predictive accuracy of
the exponential model is low.

9.5.6 Multiple group comparison of CPU time

This last model addresses the specific problem of robust multiple group com-
parisons. We consider RQ5:

RQ5: Is there a difference in the CPU time taken per function evaluation
between the PSO, the Random Search x1, and the Differential Evolution
algorithms?

The motivation for this question comes from an exploratory visual analysis
from Figure 9.1. From this figure, it is clear that the Differential Evolution is
slower than the others but although the box-plot suggests that RandomSearch1
is faster than the PSO, we have multiple outliers and heavy-tail distributions in
the data. Besides the discussed problems in frequentist analysis (including the
impossibility to accept the null hypothesis), we cannot perform a frequentist
regression or ANOVA, because the residuals are not normally distributed and
the homoscedasticity assumption is not met [197]. The CPU time per function
evaluation is not exponentially distributed and transformations such as the log
of the CPU time still present heavy-tailed distributions (additional information
such as plots to support this statement are available in the appendix).

0

1

2

3

4

5

DifferentialEvolution PSO RandomSearch1
Algorithm

T
im

e
to

 c
om

pl
et

e
x1

0,
00

0
(s

)

Figure 9.1: Box-plot of the CPU time to complete of the three algorithms

156 CHAPTER 9. PAPER E

9.5.6.1 The model

This model is an extension of the BEST (Bayesian Estimation Supersedes the
t-Test) approach presented by Kruschke [197] with added pooled random effects
for each group. Each algorithm is modeled individually utilizing a Student-T
distribution, and assuming that there is not homogeneity of the variances
between the algorithms. In the Student-T distribution, we estimate a single
degree of freedom ν parameter for all distributions. The model is represented
by Model 9.6.

Model 9.6: Robust multiple comparison model

y ∼ Student-T(ν, µi, σi),

µi = aalg,i + abm,j ,

σi ∼ Exponential(1),

ν ∼ Exponential(1/30),

aalg,i ∼ Normal(0, 1),

abm,j ∼ Normal(0, s),

s ∼ Exponential(1).

In Model 9.6, we have the following notation:

• y: is the metric that indicates the CPU time to complete one function
evaluation. We compute the total CPU time of the optimization including
the CPU time spent on evaluating the benchmark function and divide it
by the number of function evaluations multiplied by 10,000.

• aalg,i: represents the mean (intercept) effect of each algorithm.

• σi: indicates the standard deviation of the Student-T distribution of each
algorithm.

• abm,j : indicates the random effect of the benchmarks.

• µi: represents the mean value of each algorithm in the linear equation.

• s: represents the standard deviation of the effect of the benchmark
functions.

• ν: represents the degrees of freedom of the Student-t distribution modeling
the tails of the distribution for the robustness. We initialize it with a
long tail prior.

9.5.6.2 Model interpretation

After running this model in Stan (chains=4, warmup=200, iterations=3000),
we get the posterior of each parameter and compute the HPD intervals for the
intercept of each algorithm and its standard deviation parameter. Table 9.7
shows the obtained posterior parameters of the model and the HPD intervals.

9.5. STATISTICAL MODELS 157

Table 9.7: Estimated parameters of the multiple group comparison model and
the respective HPD intervals

Parameter Mean HPD low HPD high

a DifferentialEvolution 1.78 1.66 1.90

a PSO 0.57 0.45 0.69

a RandomSearch1 0.44 0.32 0.56

σ DifferentialEvolution 0.09 0.08 0.09

σ PSO 0.07 0.07 0.07

σ RandomSearch1 0.04 0.04 0.04

s 0.31 0.23 0.39

ν 2.75 2.59 2.90

The degrees of freedom parameter ν is low, indicating that when we estimate
the model, the data indeed have long tails, which reinforces the need for a
robust regression. If ν > 30, the Student-T distribution approaches a normal
distribution and indicates that the model could also be modeled with similar
results by a normal distribution and that the presence of outliers did not
impact much the estimation of the parameters. Additionally, σi parameters
indicate that, due to the non-overlapping intervals, there is no homogeneity of
variances, which prevents the use of the traditional ANOVA for the multiple
group comparison (as it is a pre-requisite of many familywise comparison
methods). The effect of the benchmarks can be estimated from a normal
distribution with a mean equal to zero and with a standard deviation equal to
the posterior distribution of s. The intercept parameters of the benchmarks
drawn from this distribution indicate which functions introduce or reduce the
CPU time to the completion of the algorithms compared to the average CPU
time.

Since we want to estimate the difference between the pairs of algorithms,
the difference can be calculated by sampling (in this case 10000 times) the
posterior distribution of the intercepts of the algorithms and calculating the
difference. This results in a new posterior distribution of the differences. Table
9.8 shows the HPD intervals of the differences between groups. The non-zero
overlapping HPD intervals indicate a real difference between the CPU time to
the completion of each of these algorithms.

Table 9.8: HPD interval for the difference between the groups

Difference Mean HPD low HPD higher

PSO - RandomSearch 0.13 0.12 0.13

DiffEvolution - PSO 1.21 1.21 1.22

DiffEvolution - RandomSearch 1.34 1.33 1.34

9.5.6.3 Remarks

Other distributions can be used instead of the Student-T distribution for other
types of robust regression, such as a double exponential distribution [95]. This
robust multiple comparison model can also be easily extended to incorporate
other predictors in the linear regression of each algorithm, which is not possible

158 CHAPTER 9. PAPER E

in non-parametric frequentist models.

9.5.7 Extending the models

The presented models in this section can answer a variety of research questions.
However, different problems, research questions, and experimental conditions
might require modifications and extensions that go beyond the proposed models.
In the remarks subsection of each model, we discuss possible extensions specific
to those models. The proposed models are aimed at being the first step into
the BDA. We reinforce that the models we presented, despite the simplicity of
being based on the linear regression, still address the clustering information
from benchmarks and can take other predictors into account. Models based
on linear regression are useful to answer questions about the direction and the
magnitude of the effect of independent variables [93].

Different experimental conditions, as well as new covariates, can be con-
trolled and their effects investigated by adding the predictor terms in the linear
equation, similar to how the noise covariate was compensated in the binomial
and in the Cox’s Proportional Hazard models. Extending the model with
transformation in the covariates, for example adding the log of the maximum
budget, and investigating the effects of interactions as well as adding higher-
order predictors (if the relationship with the predictor is not linear) are also
possible [95,196].

The random effects models we used only take into account the repeated
measures of the benchmarks. However, higher levels can be introduced to
investigate other effects [95,209] (such as the difficulty level, if it is separable or
not, etc). Adding additional clustering information follows a similar procedure
as presented at the beginning of this section. Continuous random effects (instead
of categorical variables) are also possible through the usage of Gaussian or
Dirichlet processes as priors and are often discussed in Bayesian hierarchical
modeling textbooks [95,196].

As mentioned in the model comparison discussion (9.3.4.3), one important
aspect of BDA is the comparison of different valid model candidates. A
recommended approach is to start building complex models from simple ones,
such as the ones presented. If the new complex model indeed increases predictive
accuracy and reduces information entropy, then the complex model is more
adequate. Sensitivity analysis (9.3.4.4) is also valuable to analyze how much
the conclusions of a new complex model diverge from simple ones and why it
happens. If the conclusions do not diverge, it increases the confidence that the
results are not specific to the proposed model.

9.6 Conclusion

Bayesian Data Analysis (BDA) can address many of the shortcomings of the
traditional frequentist analysis and provides a greater level of flexibility in the
modeling and the transparency of the model assumptions. However, the use of
BDA is not widely spread in the analysis of empirical data in the evolutionary
computing community.

With this paper, we argue for the adoption of BDA and present related
concepts to ensure the validity of the models. We then present and discuss a

9.6. CONCLUSION 159

set of five Bayesian statistical models that are capable of addressing a range of
different research questions, that can be easily extended for new covariates and
that take into account the clustering information that the benchmark functions
introduce in the results by making use of multilevel models.

Acknowledgments

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, by the Software Center and with support from
Google Research Cloud Credits for Ph.D. candidates. The authors would like
to thank the comments made by Erika M. S. Ramos.

160 CHAPTER 9. PAPER E

Chapter 10

Paper F

Challenges and Strategies for Undertaking Continuous Ex-
perimentation to Embedded Systems: Industry and Re-
search Perspectives

Mattos, D. I., Bosch, J., Olsson, H. H.

19th International Conference on Agile Software Development, 2018,
pp.277-292.

161

Abstract

Context: Continuous experimentation is frequently used in web-facing com-
panies and it is starting to gain the attention of embedded systems companies.
However, embedded systems companies have different challenges and require-
ments to run experiments in their systems. Objective: This paper explores the
challenges during the adoption of continuous experimentation in embedded sys-
tems from both industry practice and academic research. It presents strategies,
guidelines, and solutions to overcome each of the identified challenges.
Method: This research was conducted in two parts. The first part is a
literature review with the aim to analyze the challenges in adopting continuous
experimentation from the research perspective. The second part is a multiple
case study based on interviews and workshop sessions with five companies to
understand the challenges from the industry perspective and how they are
working to overcome them.
Results: This study found a set of twelve challenges divided into three areas;
technical, business, and organizational challenges and strategies grouped into
three categories, architecture, data handling and development processes.
Conclusions: The set of identified challenges are presented with a set of
strategies, guidelines, and solutions. To the knowledge of the authors, this
paper is the first to provide an extensive list of challenges and strategies for
continuous experimentation in embedded systems. Moreover, this research
points out open challenges and the need for new tools and novel solutions for
the further development of experimentation in embedded systems.

162 CHAPTER 10. PAPER F

10.1 Introduction

Traditional embedded systems companies continuously rely on software to be a
differentiator on their products. As the software size of the products increases,
these companies are moving from being mechanical producers to software
companies. In their development process, these companies traditionally make
use of up-front requirements and rigid methodologies to ensure quality or safety
attributes in their products. Nevertheless, the requirements of several parts
of their systems are not clear or cannot be defined in advance [70]. In this
context, developers either negotiate with requirement teams or they make
implicit assumptions about the requirements [220].

Even during the requirement specification, several requirements are written
based on assumptions and does not necessarily deliver value to the company or
the customers. Often, research and development effort is spent on features that
are never or rarely used [107] by the users of the product. To minimize the full
development of features that do not deliver value, companies make use of post-
deployment data of current products to iterate in future software releases or in
even in new products. In the web domain, companies provide empirical evidence
of the use of continuous experimentation in their development, decision-making
and feature prioritization process [2, 18,32].

As software becomes the key differentiator for many embedded systems
companies, these companies started to adopt continuous development practices,
such as continuous integration, deployment, and experimentation to develop
faster, better and more cost-effective products. A typical pattern that com-
panies follow is shown in the “Stairway to Heaven” model [221]. When these
companies start to move to move to continuous deployment scenarios, they see
opportunities to run their first experiments as well. Although the research in
continuous experimentation in web systems is continually growing, there are
few examples of works investigating the use of continuous experimentation in
embedded systems.

This paper identifies and analyzes the different challenges that embedded
systems companies face when adopting continuous experimentation in their
development processes. Moreover, it also presents strategies, guidelines, and
potential solutions to overcome each of the identified challenges.

The scope of this research is captured with the following research question.

RQ: How can embedded systems industry adopt continuous experimentation
in their development process?

This research question is further developed in terms of the following sub-
questions:

RQ1: What are the recognized challenges towards continuous experimen-
tation faced by the embedded systems industry?

RQ2: What are the recommended strategies to facilitate the use of contin-
uous experimentation in the embedded systems domain?

The contribution of this paper is twofold. First, it identifies the key chal-
lenges faced by embedded systems companies when adopting continuous exper-
imentation. These challenges are identified from both the industry perspective,
through a multi-company case study, and the academic perspective, through a
literature review. Second, this paper proposes different strategies and guidelines
to overcome the identified challenges. This paper, to the knowledge of the

10.2. BACKGROUND 163

authors, is the first to present an extensive set of challenges and strategies that
embedded systems companies face when adopting continuous experimentation.
Moreover, the analysis of the challenges points out the need for new tools and
novel solutions for the further development of experimentation in embedded
systems.

The rest of the paper is organized as follows. Section 2 provides a background
review in continuous experimentation. Section 3 presents the research method.
Section 4 presents and discusses the results in the form of identified challenges
and suggested strategies. Section 5 discusses the validity threats of this research.
Section 6 concludes and discusses research challenges and future works.

10.2 Background

Continuous experimentation refers to the research and application of con-
trolled experimentation to drive software development, for reliably evaluate
and prioritize development activities [32].

Studies show that the prioritization of features is traditionally driven by
past experiences, beliefs, and organizational role [2, 11]. The decision to invest
development resources in a full feature can result in inefficiency and opportunity
cost if the feature does not have a confirmed value [5]. Companies traditionally
rely on customers interviews and qualitative studies to derive requirements for
the system in the early stages of the development [222]. However, customers
usually are not good in predicting what they want or they are not aware of
other potential solutions [70].

In the post-deployment stage, companies usually collect customer and prod-
uct data. Most software companies, from both the embedded and web systems
domains collects and logs usage and operational data [222]. In embedded
systems, these log data are mostly used for troubleshooting and improving
subsequent products. However, over the last decade, software companies are
showing an increasing interest in using the collected data to improve not only
future products but also to improve the current products. Recent technological
trends focus on not only identifying and solve technical problems but also
delivering value to their customers and users [7]. The Lean Startup method-
ology proposes the cycle build-measure-learn [46]. In this methodology, the
collected post-deployment data is also used in the improvement of the current
product. The HYPEX model [5] presents an approach to shorten the feedback
loop between companies and customers. The model uses hypotheses, customer
feedback and the minimum viable product (MVP) to continuously decide upon
the full development or abandonment of a feature.

Web-facing companies continuously report the use of post-deployment data
and controlled experiments to develop and continuously improve their systems.
The uncertainty raised by the environment, interaction with humans and other
agents impact in the system behavior in unknown and unpredictable ways.
Controlled experiments help companies to establish the causal relationship
between a variation in their system and the observed behavior [2].

In software development, A/B test is the simplest version of a controlled
experiment. “A” stands for the control variation and “B” stands for the
treatment variation. The treatment (variation “B”) represents any point in

164 CHAPTER 10. PAPER F

the system that you want to modify and compare to the control (variation
“A”). Both variations are deployed to randomized users, to avoid bias, and the
analyzed behavior is the measured in both cases. Statistical analysis helps to
determine if there is a causal difference between the observed behavior and the
variations. Other experimentation techniques are described in [2].

Kohavi et al. [2] provides a guide on how to run controlled experiments in
web systems. The paper discusses the important ingredients, limitations of
experimentation, architectures for experimentation systems, how to analyze and
how to design controlled experiments for the web. Kohavi et al. [73], presents
some rules of thumb and common pitfalls when running experimentation, such
as iterating in the experiment design, the impact of speed and performance,
number of users and how experiments impact key metrics.

Fagerholm et al. [7] provides a general infrastructure for running continuous
experimentation systematically. The RIGHT framework describes how to design
and manage experiments, and how different stakeholders (business analyst,
product owner, data scientists, developers, and DevOps engineers) interact
with an experimentation infrastructure.

Fabijan et al. [32] describes the Experimentation Evolution Model, based
on experimentation at Microsoft. This model analyzes how teams scale their
experimentation from a few experiments to a data-driven organization. The
model divides this evolution into four steps: crawl (teams are running and
setting their first experiments), walk (teams already run a few experiments
and determining metrics and experimentation platforms), run (the teams run
several experiments and iterate quickly to identify effects of experiments on the
business) and fly (experiments are the norm for every change to any product).
Each of these phases is discussed in three different perspectives, the technical,
the organizational, and the business perspectives.

One of the challenges in controlled experiments is defining an Overall
Evaluation Metric (OEC) [2,32,223]. The OEC is a quantitative measure of
the experiment’s objective. It provides a balance between short and long-term
effects considering the business objectives. Olsson and Bosch [223], present a
systematic approach to model the value of experiments. This approach allows
companies that are starting to run the first experiments to understand and
improve their own OEC metrics.

To the knowledge of the authors, the first research discussing the exper-
iments in embedded systems appeared in 2012 [64]. This paper discusses
experimentation in the context of Innovation Experiment Systems. It identifies
some challenges with experimentation in embedded systems, such as experi-
mentation in safety systems, managing multiple stakeholders and hardware
limitations. It also presents an initial infrastructure to run experiments in
embedded systems

Giaimo and Berger [67], discuss continuous experimentation in the context
of self-driving vehicles. The paper presents functional (such as instrumentation,
logging, data feedback to a remote server) and non-functional (separation of
concerns, safety, short cycle to deployment) requirements to achieve continuous
software evolution. Bosch and Olsson [26], extended the concept of experimen-
tation towards automated experimentation. Automated experimentation aims
to leverage the number of experiments by letting the system own and control
the experiments, opposed to the R&D organization. Mattos et al. [65, 66],

10.3. RESEARCH METHOD 165

identified a set of architectural qualities to support automated experimentation
that was implemented in a research mobile autonomous vehicle.

10.3 Research method

The research process used in this study combines a literature review with
multiple case study. This research method aims to strengthen the evidence of
the challenges and strategies found in a multiple case-study with others found
in the research literature. Research in continuous experimentation generally
utilizes the case study as the research method, combining results from both
approaches reinforce the empirical evidence of the findings.

The method is composed of two parts. The first part consists of a literature
review in the continuous experimentation domain. This literature review
collects challenges and strategies to overcome them from academic research.
The second part consists of semi-structured interviews with software companies
in the embedded systems domain. It aims to be exploratory, collect and
confirm challenges and strategies from the embedded systems industry. Below,
the research method is described in details. The results of both parts were
aggregated and described in Section 10.1. Table 10.1 summarizes the research
process used in this paper.

Step Description

1 Search definition and execution (LR)
2 Papers review (LR)
3 Identification of literature challenges and strategies (LR)
4 Data selection: Contact with companies (CS)
5 Semi-structured interview protocol definition (CS)
6 Data collection: Interviews and workshop (CS)
7 Data analysis: thematic coding and categorization (CS)
8 Case study report (CS)

Table 10.1: Summary of the research method. LR stands for the literature
review part and CS for the multiple case study part.

10.3.1 Literature review

The first part of the research method consists of a literature review in continuous
experimentation. Although most of the studies in continuous experimentation
focus on web-facing companies, the experiences from this domain, sometimes,
can be extrapolated to the embedded systems domain. In this literature
review, the authors identified challenges recognized in academic collaboration
with industry, regardless of the industry domain. The identified challenges
were discussed with the embedded systems companies to see if the literature
challenges were also relevant in this domain.

Relevant works in the literature covering continuous experimentation were
identified by searching the Scopus digital indexing library, by keywords, tile
and abstract. The used search phrase was “((continuous experimentation)

166 CHAPTER 10. PAPER F

OR (field experiments) OR (innovation experiment systems)) AND (software
engineering). This search query was restricted to the fields of engineering and
computer science and limited from 2000 to 2017. This search phrase resulted in
534 articles. Positioning papers and papers with less than 5 pages were excluded.
From this subset of articles, the results were filtered based on the abstract. After
the first screening process, the papers were read in their integrity. Continuous
experimentation is also largely studied from the statistical/algorithmic side.
Research papers that focused solely on improving or evaluating algorithms
without industry evaluation or application were excluded.

After this screening process, the authors identified 30 articles with relevance
to this study. An additional set of 12 articles were included using a snowballing
[224] process, where new references were added according to the references
mentioned in the other articles. Thematic coding was used to [77] identify the
challenges from the literature. These challenges were categorized according
to the three different categories of the Experimentation Evolution Model [32]
discussed in Section 10.2, the technical, the organizational and the business
perspective. The identified set of challenges were also used as input for the
semi-structured interviews as discussed in Section 10.3.2. The strategies are
categorized in three groups: changes in the development process, changes in the
system’s architecture and changes in how the experiment and organizational
data is handled and analyzed.

The complete set of papers can be found at the following link: https://gith
ub.com/davidissamattos/public documents/blob/master/LR-XP18.png.

This part of the research process allowed the identification of challenges
that served as input for the multiple case study and confirmation of identified
challenges inside the company.

10.3.2 Multiple case study

The second part of the research method consists of a multiple case study [77]
with semi-structured interviews conducted with software companies in the
embedded systems domain. This study was conducted from December 2016
to October 2017 with five companies in the embedded systems domain. The
empirical data consists of interviews and a workshops transcripts and notes.
There were 8 individual semi-structured interviews with an average of one
hour each, three in Company A, two in Company B, one in Company C, one
in Company D and 2 in Company E. The workshop session was conducted
with 8 people from Company A lasting 3 hours. The analysis of the empirical
data consisted of thematic coding of [77] interviews transcriptions and notes to
identify and categorize the challenges and solutions. Additionally, during the
interviews challenges identified in the literature were clarified to the interviews
and asked if the current company relates to the challenge partially or not.

The empirical data were aggregated together with the identified challenges
and strategies from the literature review. The current published research
already provides guidelines and solutions for the challenges that were also
identified in the literature review phase. Other guidelines and solutions were
suggested by practitioners during the interviews. Challenges identified in the
literature that was not confirmed neither through a previous case study nor by
the case study companies are not shown

10.4. CHALLENGES AND PROPOSED STRATEGIES 167

Due to confidentiality reasons, only a short description of each company
and their domain is provided:

Company A is a multinational conglomerate company that manufactures
embedded systems and electronics and provides software solutions for both
consumers and professionals. This study was conducted with two teams, one
providing mobile communications solutions and the other providing business-
to-business products. In recent years, the company started to adopt experimen-
tation in their software solutions and is looking for data-driven strategies in
their embedded systems products. The interviewees were developers, managers
and data analysts.

Company B is a multinational company that provides telecommunication
and networking systems. The company is adopting continuous development
practices and is looking for new strategies to deliver more value to their
customers by optimizing their products. The interviewees were managers.

Company C is a global automotive manufacturer and supplier of transport
solutions. As the company’s products are continuously growing in complexity
and software size, the company is looking for strategies to prioritize their R&D
effort and deliver more value to their customers. As some employees have
experience in web and pure software-systems development, experimentation is
getting attention in some development teams. Challenges in experimentation
arise since the company is subjected to several regulations and certification
procedures. The interviewee was a senior engineer.

Company D is a global software company that develops and provides
embedded systems software solutions related to autonomous driving technology
for the automotive industry. Autonomous driving is an emerging and fast-
moving technology and the company is looking to deliver competitive solutions
faster by adopting continuous development practices. However, as it interfaces
with the highly regulated automotive domain its software is also subjected to
regulation and certification. The interviewee was a manager.

Company E is a global software company that develops both software and
hardware solutions for home consumers. The company already has experience
running continuous experimentation in their web systems and is starting to
run experiments in their hardware solutions. The interviewees were senior data
analysts working in experimentation in their embedded systems.

10.4 Challenges and proposed strategies

This section presents results obtained from the research process. The challenges
are grouped in the three different perspectives as discussed in the Experimen-
tation Evolution Model [32]: the technical challenges, the business challenges
and the organizational challenges. The technical challenges refer to challenges
related to the system architecture, experimentation tooling and development
processes. The business challenges refer to challenges faced in the business
side, such as evaluation metrics, business models and privacy concerns. The
organizational challenges refer to challenges faced by the cultural aspect of the
R&D organization.

All the strategies identified in this study are used, suggested by companies,
or supported by strategies identified in previous literature case studies. The

168 CHAPTER 10. PAPER F

strategies are categorized in three groups: (1) changes in the development
process. This refers to how companies organize their development activities.
(2) changes in the system’s architecture. Often restrictions in the running
experiments comes from limitations in the system’s architecture, that does
not support data collection, or does not allow parametrization of features for
experiments. (3) changes in how the experiment and organizational data is
handled and analyzed. This refers to how the company stores data, comply to
data regulations or use data analysis tools. The challenges are not presented
in any specific order as they might reflect different challenges the companies
are facing.

Figure 10.1 represents a summary of the identified challenges and strategies.
In Figure 10.1, it is possible to see the relation of how each strategy relates
to the different challenges, as some of them are part of the strategy of one or
more challenge. This figure was obtained using the thematic codes generated
in the analysis of the interviews. It maps the identified challenges within their
groups with the obtained strategies groups. The rest of this section discusses
each challenge individually and presents strategies to overcome them.

10.4.1 Technical Challenges

10.4.1.1 Lack of over the air (OTA) updates and data collection,

Continuous experimentation requires over-the-air (OTA) post-deployment data
collection and updates. When testing a different hypothesis, the system
needs to have the ability to measure the specific behavior under investigation
and to update the system with the new variants as well. It is possible to
run experiments without OTA, however, several experiments pitfalls can be
identified in the first hours and be corrected [2]. Moreover, experiments for
optimization are looking in practical significance as low as 1−2% in their
metrics [2,73]. If OTA updates and data collection are not available the cost of
the experiment and the practical significance level are high and the optimization
process might not be worth it.

Strategies: At the moment of this study, embedded system companies
are not looking into experimentation in low level systems, but in computing
systems that already support modern operating systems with connectivity
and the necessary infrastructure for OTA updates. OTA updates and post-
deployment data collection should be part of the functional requirements of
the system when designing the hardware. Mobile companies already provide
such functionality in their operating systems. Car manufacturers are also
introducing continuous delivery of new software to their vehicles in the context
of autonomous vehicles (Tesla Motor’s Model S, Volvo Drive Me and the Volvo
XC90).

10.4.1.2 Lack of experimentation tools that integrate with their
existing tooling

Continuous experimentation started in web-facing companies. Today several
experimentation tools, both commercial and open source, are available on the
website and mobile applications domains. However, in the embedded systems
domain, companies lack tools that integrate with their development process.

10.4. CHALLENGES AND PROPOSED STRATEGIES 169

De
ve

lo
pm

en
t p

ro
ce

ss
 c

ha
ng

e
st

ra
te

gi
es

Da
ta

 h
an

dl
in

g
 c

ha
ng

e
st

ra
te

gi
es

Ar
ch

ite
ct

ur
al

ch

an
ge

 s
tra

te
gi

es

Ex
pe

ns
ive

 te
st

in
g

sc
en

ar
io

s

Re
al

-ti
m

e
an

d
sa

fe
ty

 c
on

st
ra

in
ts

Hi
PP

O

La
ck

 o
f O

ve
r-t

he
-

ai
r u

pd
at

es

La
ck

 o
f

ex
pe

rim
en

ta
tio

n
to

ol
s

M
an

ag
in

g
m

ul
tip

le

st
ak

eh
ol

de
rs

Ex
pe

rts
 d

oi
ng

re

pe
tit

iv
e

tu
ni

ng

M
et

ric
s

va
lid

at
io

n

Pr
iv

ac
y

as
su

ra
nc

e

La
ck

 o
f s

ha
rin

g
da

ta
 in

 b
us

in
es

s-
to

-b
us

in
es

s

Lo
ng

 re
le

as
e

cy
cl

es

La
ck

 o
f d

at
a

in
sig

ht
s

ED
AX

 m
od

el

M
et

ric
s

ev
ol

ut
io

n

St
ai

rw
ay

 to

H
ea

ve
n

m
od

el

Ag
ile

m

et
ho

do
lo

gi
es

Et
hi

ca
l g

ui
de

lin
es

Ex
pe

rim
en

ta
tio

n-
as

-a
-S

er
vic

e

Ec
os

ys
te

m

de
ve

lo
pm

en
t

Co
m

pl
ia

nc
e

to

da
ta

 re
gu

la
tio

ns

In
cr

ea
se

 in

re
so

ur
ce

s
fo

r
da

ta
 s

ci
en

ce

Bu
sin

es
s

Ch
al

le
ng

e

O
rg

an
iza

tio
na

l C
ha

lle
ng

e

Te
ch

ni
ca

l C
ha

lle
ng

e

Ar
ch

ite
ct

ur
e

fo
r

O
TA

 a
nd

co

nn
ec

tiv
ity

Ar
ch

ite
ct

ur
e

de
co

up
lin

g

Da
ta

 c
ol

le
ct

io
n

in
fra

st
ru

ct
ur

e

F
ig

u
re

10
.1

:
S
u
m

m
ar

y
of

th
e

ch
al

le
n
ge

s
an

d
th

e
st

ra
te

gi
es

fa
ce

d
b
y

em
b

ed
d
ed

sy
st

em
s

co
m

p
an

ie
s

ad
op

ti
n
g

co
n
ti

n
u
ou

s
ex

p
er

im
en

ta
ti

on
.

170 CHAPTER 10. PAPER F

Setting up an infrastructure to run experiments from scratch increases the cost
of running the first experiments while hindering the benefits.

Strategies: Several tools available for websites are open source or have
open source SDKs. Although not ideal, some of these tools can be modified to
support experimentation problems. Experimentation-as-a-Service (EaaS) is a
business model that provides a working platform for continuous experimentation.
EaaS have the benefit of avoiding the cost and pitfalls of development of an
experimentation platform from scratch. EaaS platforms also provide SDKs that
can be incorporated in the product, such as Optimizely 1. However, the system
under experimentation should support data collection so it can be integrated
with EaaS tools.

10.4.1.3 Expensive testing environments

Software-intensive embedded systems are extensively tested before release.
One of the challenges faced by embedded systems companies is to include
experimentation as part of the verification and validation process. In some
cases, such as in the development of a new vehicle, the testing environment is
expensive and not all experiment hypotheses are allowed to go to a physical
testing platform. This high cost also increases minimum level necessary to
reach practical significance and demotivates teams to formulate hypothesis
beyond the basic requirements of the system.

Strategies: the development of experiments in the embedded systems
domain require additional steps from the hypothesis to the final user. The
development of a feature in embedded systems follows a testing procedure,
beginning with integration and going to simulation, test beds, internal deploy-
ment until user deployment. The experimentation procedure should follow
similar testing procedure, to identify early pitfalls, and even improve the system
behavior during each testing phase.

The practical significance level to implement a new hypothesis increases
with the associated costs of such testing procedure. The EDAX model [26]
describes how experimentation and automated experimentation is incorporated
in this process. Automated experimentation [65] also suggests that it can
reduce the experimentation costs and therefore the practical significance level.

10.4.1.4 Experimentation constraints in real-time and safety-critical
systems.

Embedded systems are employed in several real-time and safety-critical sys-
tems. These products have subsystems that are constrained to regulations
and certification. Experimenting with these systems in the field might not be
allowed by regulation or might impact substantially the performance of the
system.

Strategies: Embedded systems companies are starting to run their first
experiments. Safety-critical or real-time systems provide additional challenges,
as it is subjected to legislation and certification. The initial recommendation
in all case study companies is not to run experimentation in these subsystems.

1https://www.optimizely.com/

10.4. CHALLENGES AND PROPOSED STRATEGIES 171

However, these safety-critical subsystems can run experiments in the earlier
phases prior to the deployment, as discussed in the EDAX model [26].

10.4.2 Business Challenges

10.4.2.1 Determining good experimentation metrics and metrics
validation.

One of the biggest challenge faced by companies is to determine good business
metrics to understand and compare different experiments, and validate that
the current metrics are aligned with the company strategy.

Strategies: Web companies traditionally rely on conversion metrics such as
Click-Through-Rate in the beginning of their experimentation process. As their
experimentation teams and the number of experiments increase the metrics
start to become more tailored to the business and stable [32]. Embedded
systems companies can have very different and complex metrics, depending on
the product. However, team level optimization experiments can use customized
metrics. Olsson and Bosch [223] presents a systematic approach to determine
metrics and value functions for experiments. This is an iterative process that
should be refined with usage and aligned with the business strategies and
goals. As the metrics become complex, companies allocate of resources for
the evolution and ensuring that the experiment metrics are aligned with the
company’s main KPIs.

10.4.2.2 Privacy concerns regarding user data.

Continuous experimentation relies on the collection and analysis of post-
deployed software. However, some issues arise when collecting data, such
as the legal and contractual issues or user consent and data sharing.

Strategies: Data sensitivity and the use of data vary largely between
different organizations and countries. Data collection should be aligned with
the legal requirements for utilization and consent of the users. Data regulations
such as the European GDPR 2 create restrictions that might imply in technology
and process modifications for compliance. Additionally, some ethical questions
regarding the experiment must be evaluated, such as: How are participants
guaranteed that their data, which was collected for use in the study, will not be
used for some other purpose? What data may be published more broadly, and
does that introduce any additional risk to the participants? Web companies,
besides compliance with regulations also create ethical checklists to ensure that
the experiments follow the companies’ policies [225].

10.4.2.3 Lack of sharing user data in business-to-business (B2B)
solutions.

Several embedded systems companies operate in a business-to-business domain.
In this scenario, there is a difference between user and customer data. Experi-
ments with users might not be possible, they might require deeper involvement
between the companies, or there might be a mismatch between the customer
and the user value [70].

2https://www.eugdpr.org/

172 CHAPTER 10. PAPER F

Strategies: Ecosystems refers to companies co-opting third parties to
build and leverage their products and services in such a way that they have
more utility value to their customers [226]. In this sense, companies might agree
on implementing and sharing data collected inside the ecosystem. Some mobile
operating systems (e.g. iOS and Android) collect data and usage statistics
to share with app developers. Although most of its use is connected to crash
reports, similar strategies can be used to share user data in business-to-business
products.

10.4.2.4 Lack of insights obtained from the collected data.

Companies are continuously collecting data from their deployed software. The
collected data is mainly used for troubleshooting purposes. However, little
insight is provided by the collected data [223]. In the Experimentation Evolution
Model [32], web companies evolve from centralized data science teams to small
data science teams presented in each product teams. The interviewed embedded
systems companies don’t have data science teams incorporated in the product
development.

Strategies: If the experimentation benefits are not clear, the extra cost
of involving data scientists in the product development might be a large step.
Different companies started to provided experimentation and data analysis
services. Experimentation tools usually incorporate basic statistical analysis,
such as statistical significance testing, power analysis, A/A tests and more.
Using experimentation and data analysis services to generate basic insights
can be used as a short-term solution. Once the benefits of experimentation are
clear to the company, investments such as integrating data scientists in the
product development or acquiring a complex tool are easier to justify.

10.4.2.5 Long release cycles

Traditionally, embedded systems have a long software release cycle based on up-
front defined requirements. Sometimes the software is deployed only once and
last for several years [64,70]. This happens due to several reasons, from both
the organizational (structure and decision-making) and business (engineering
effort in every cycle, requirements definition and products updates) to the
technical perspective (architecture, functionalities available and support for
over-the-air updates).

Strategies: From the organizational and business perspective, continuous
experimentation aligns with the organizational transition to agile methodologies
and the Lean Startup methodology [46]. Continuous experimentation makes
use of extreme programming practices such as continuous integration, delivery
and deployment to deliver experiments and new software aligned with customer
behavior. The Stairway to Heaven [221] conceptual model helps companies to
evolve their practices towards continuous deployment of software.

10.4. CHALLENGES AND PROPOSED STRATEGIES 173

10.4.3 Organizational Challenges

10.4.3.1 Managing multiple stakeholders in the experiment design.

One of the challenges embedded systems companies face is the involvement of
multiple stakeholders in an experimental design. Experimentation in embedded
systems requires that the involved stakeholders understand the implications of
continuous practices in their systems.

Strategies: Embedded systems require the interaction with multiple stake-
holders, such as software developers, systems architects, electrical and me-
chanical engineers, suppliers and subcontractors. Continuous experimentation
requires that these stakeholders are aware of the implications in the system
design. To overcome some of these challenges, it is proposed a decoupling
of the application and the underlying software and also a decoupling in time
(software is not integrated at the manufacturing time) [64]. Additionally, if the
interaction of the stakeholders happens in a business ecosystems perspective
the experiment can be designed to benefit multiple parts [226].

10.4.3.2 Highest Paid Person Opinion - HiPPO.

Some companies are organized in vertical structures, where lower rank de-
velopers have fewer possibilities to influence and address customer’s needs.
Several requirements and architecture specifications are based and determined
by higher paid ranks inside the company.

Strategies: This challenge is persistent in several domains and it is not
restricted to the embedded systems industries. This challenge is discussed
extensively in [2] among other publications. The traditional adopted strategy is
to run the first experiments. Usually, experiments continuously disprove beliefs
and opinions adopted by the higher paid ranks [2]. However, this requires
changes in the organizational and cultural aspect of the company.

10.4.3.3 Tuning experiments is repetitive and requires highly qual-
ified engineers.

One of the interviewed companies runs experiments for parameter optimization.
The experiments rely on the system response instead of the customer response.
However, running these experiments for tuning and optimization is a repetitive
task that consumes R&D time and requires highly qualified engineers to perform
them.

Strategies: Existing algorithms in search-based optimization, reinforce-
ment learning and others artificial intelligence algorithms support this kind
of optimization strategies. However, both the complexity of these algorithms
as well as the introduced technical debt in the existing systems [104] prevent
embedded systems companies to use such strategies. Experimentation-as-a-
Service solutions allow companies to test Machine Learning algorithms in their
system for optimization purposes. Although still in early phases, automated
experimentation [65] solutions can help companies to optimize their systems
through field experiments.

174 CHAPTER 10. PAPER F

10.5 Validity Threats

The first threat to the validity of this study refers to the scope of the literature
review. The search query was applied to the Scopus indexing library. Both the
choice of the search string and the indexing library could miss other research
work that can contribute to the literature review. To mitigate this threat the
authors performed a backward and forward snowballing [224] process. The
snowballing process allowed the authors to identify other cited work in the
same area that was not identified by the search query.

An external validity to this is study is the generalization of the challenges
to the entire population of embedded systems companies. To mitigate this
threat, the authors sample companies producing different products in embedded
systems. The authors sampled contacted multiple companies explaining the
research goal, and selected only companies that are adopting/running controlled
experiments in their development process were included. During the data
analysis part, we reviewed all challenges only challenges that had correspondence
in more than one company or that could be triangulated with the literature
review were included. Challenges that could not be triangulated with other
source, and that could be specific to current situation of the company, were
not included in this study.

The companies that participated in this study are adopting their first steps
towards continuous experimentation and are running their first experiments or
trying to scale experimentation practices from a few development teams to the
organization. Therefore, most of the presented challenges are faced in these
first steps and cannot be generalized to companies or teams that are running
experimentation at scale. As the companies evolve their experimentation
practices, new challenges will arise from all three perspectives.

10.6 Conclusion

This paper addresses the question of how embedded systems companies can
adopt continuous experimentation in their software development process. This
question can be divided in two parts: first, the identification of problems and
challenges that limit the adoption of continuous experimentation, and second
selected strategies adopted by companies to overcome these challenges.

This paper identified twelve key challenges faced by embedded systems
and them grouped in three perspectives, the business, the technical and the
organizational. The challenges are also presented with suggested strategies
to overcome them. The set of strategies can be grouped in three categories,
changes that need to take place in how the company handles and analyze
the post-deployment collected data, changes in the company development
process and changes in the product architecture. The relation between the
different strategies and the challenges is seen in Figure 10.1. The paper used a
combination of literature review and a multiple company case study to provide
a stronger empirical evidence.

Further research is needed to understanding how the system can be archi-
tected to support continuous experimentation as a first-class citizen in the
development process while still guaranteeing safety and real-time requirements

10.6. CONCLUSION 175

as well as intermittent connectivity. Additionally, continuous experimenta-
tion changes how the development process takes place, as it emphasizes in
an outcome-driven development and this scenario might lead to impact and
changes in the organization.

For future works, the authors are investigating where is the perceived highest
return on investment that companies see and plan to invest to overcome the
identified challenges and further support of continuous experimentation in their
products.

Acknowledgments

This work was partially supported by the Wallenberg Autonomous Systems
and Software Program (WASP) and the Software Center.

176 CHAPTER 10. PAPER F

Chapter 11

Paper G

The HURRIER Process for Experimentation in Business-
to-Business Mission-Critical Systems

Mattos, D. I., Bosch, J., Olsson, H. H.

In submission to the Journal of Software: Evolution and Process,
2020

This paper is an extension of the published conference paper: Mattos, D.I.,
Dakkak, A., Bosch, J. and Olsson, H.H., 2020, June. Experimentation for
Business-to-Business Mission-Critical Systems: A Case Study. In Proceedings
of the International Conference on Software and System Processes (pp. 95-104).

177

Abstract

Continuous experimentation (CE) refers to a set of practices used by software
companies to rapidly assess the usage, value, and performance of deployed
software using data collected from customers and systems in the field using
an experimental methodology. However, despite its increasing popularity in
developing web-facing applications, CE has not been studied in the development
process of business-to-business (B2B) mission-critical systems. By observing
the CE practices of different teams, with a case study methodology inside
Ericsson, we were able to identify the different practices and techniques used
in B2B mission-critical systems and a description and classification of the four
possible types of experiments. We present and analyze each of the four types
of experiments with examples in the context of the mission-critical Long Term
Evolution (4G) product. These examples show the general experimentation
process followed by the teams and the use of the different CE practices and
techniques. Based on these examples and the empirical data, we derived the
HURRIER process to deliver high-quality solutions that the customers value.
Finally, we discuss the challenges, opportunities, and lessons learned from
applying CE and the HURRIER process in B2B mission-critical systems.

178 CHAPTER 11. PAPER G

11.1 Introduction

Companies are expected to continuously deliver fast, high-quality software that
provides value to customers. For example, in the telecommunication domain,
mobile networks are constantly evolving to support new user equipment and
improve service quality. Additionally, the deployed software is becoming in-
creasingly complex and has a high degree of interdependence with the operating
environment. These aspects make it hard for the development organization to
evaluate the delivered value and the quality of the software [2, 28].

With the success stories from the web-facing systems [2, 32, 158], organi-
zations in other domains have also been moving towards continuous experi-
mentation (CE) practices [70, 227, 228]. CE is used not only to validate the
value delivered to customers but also to assess quality aspects that cannot
be verified during internal development and pre-deployment quality assurance
activities [229]. CE has been primarily focused on Software-as-a-Service and
web-facing systems, in both research and industry [227]. Despite a few papers
that explored the introduction of CE in a business-to-business (B2B) con-
text [40,71,230], no publications studied the industrial usage of a CE process
in B2B mission-critical systems.

Fowler defines Mission-critical systems as “in the presence of failures or
degradation in the system can lead to property damage, reputation damage as
well as preventing the main task to be successfully completed” [231]. Fowler
[231] also points that such systems are often subject to regulations and standards
(e.g. the 3GPP specification [151]). Mobile communication is an integral part of
payment and banking systems, medical and transportation devices, and others
which, if disrupted, can lead to severe-major failures for different businesses
and society [231]. Experimentation in the B2B and mission-critical systems
domain have different characteristics compared to most web-facing applications.
For example, there is a difference between customer and users, ownership of
the product and the data, who has control over new deployments, service level
agreements, presence of risk analysis, and the impact of failure and strategies
to overcome them, among others. In the mobile communication domain, the
mobile operators control which version of the software will be deployed, how
and when the deployment will take place. These decisions are based on the
risks and benefits of the new software version. Some of the risks can be
mitigated by controlled deployments. Therefore any experimentation activity
requires in-depth collaboration between the development organization and the
customers.

To investigate the use of CE in B2B and mission critical-systems, we con-
ducted a case study in collaboration with Ericsson. Ericsson is a multinational
networking and telecommunications company, with an R&D organization of
over 24000 people 1. Ericsson is arguably one of the largest software develop-
ment companies operating in the B2B domain. By observing the CE practices
of different teams, we were able to identify the key activities and derive an
experimentation process that addresses the deployment of experiments with
customers in the B2B and with mission-critical systems.

This paper provides four main contributions. First, we provide a classifi-
cation of the different types of experiments, practices, and techniques used in

1https://www.ericsson.com/en/about-us/company-facts

11.2. BACKGROUND AND RELATED WORK 179

B2B mission-critical systems. These techniques are discussed in the context of
existing research in other domains. We identified four types of experiments that
are conducted, business-driven, regression-driven, optimization, and customer
support experiments. Second, we present and analyze four examples, one
for each of the four types of experiments. These examples show the general
experimentation process followed by the team as well as the usage of the
different practices and techniques. Third, based on the empirical data we
derived the HURRIER process (High valUed softwaRe thRough contInuous
ExpeRimentation), a process that combines different experimental techniques
and practices to deliver high-quality solutions that the customers value. The
HURRIER process can help the R&D organization to validate feature func-
tionality, increase coverage, identify and trace stochastic faults and increase
the confidence in the developed solutions much faster than without the field
experiments. Finally, we discuss the challenges, opportunities, and lessons
learned from applying CE and the HURRIER process in B2B mission-critical
systems.

This paper is an extension of the paper ”Experimentation for Business-
to-Business Mission-Critical Systems: A Case Study” [69] presented at the
International Conference on Software and Systems Process 2020. This paper
provides the following main contributions in addition to the conference paper,
based on the two new proposed research questions. First, we provide a classi-
fication of the different types of experiments, practices, and techniques used
in B2B mission-critical systems (Section 11.4). Second, we provide a revised
version of the HURRIER process to include relevant information to complement
the different types of experimentation (Section 11.6). Third, in addition to
the original example (in regression-driven experiments), we added three new
examples for the other types of experimentation (Section 11.5). Finally, we
have expanded Section 11.7 to include relevant discussion for the new research
questions. In addition to the main contributions in respect to the conference
paper, we have revised and expanded the background section and the discussion
section.

The rest of this paper is organized as follows. Section 11.2 presents back-
ground information in CE and related work in CE in the B2B domain. Section
11.3 describes the research method and validity considerations. Section 11.4
presents a classification of the different types of experiments, practices, and
techniques used in B2B mission-critical systems. Section 11.5 presents four
examples, in the context of the Long Term Evolution (4G) product, of different
types of experiments as well as the practices and techniques. Section 11.6
presents the derived the HURRIER process. Section 11.7 presents a discussion
on the results addressing each of the research questions. Finally, Section 11.8
concludes the paper.

11.2 Background and related work

11.2.1 Continuous experimentation

Fitzgerald and Stol [228] provide a review on several different initiatives around
the term continuous. They present a holistic view of the various software
development activities throughout the entire software life cycle. These activities

180 CHAPTER 11. PAPER G

are divided into three phases: business strategy and planning, development and
operations. Continuous experimentation acts as a link between the strategy
and operations and the development, where repeated cycles of build, measure,
and learn [46] guide the product improvement, evolution, and innovation inside
the company.

CE aims at minimizing the risk of developing software that does not de-
liver value to the customer through continuously identifying, prioritizing, and
validating critical product assumptions during all development phases [70]. A
significant amount of research has been conducted in the context of continuous
experimentation. Auer and Felderer [227] performed a systematic mapping
study in CE from 2007 to 2017 and identified a total of 82 publications. In
their work, they identified that most of the research with industry participation
is in the context of web-facing companies such as Microsoft, Yandex, Facebook,
Google and LinkedIn. Additionally, CE is discussed mainly through randomized
controlled experiments (A/B testing). However, CE constitutes a group of
techniques that goes beyond randomized controlled experiments [41, 232], and
that can encompass many other activities and techniques.

Auer et al. [233] provide a taxonomy synthesized from a systematic literature
review on the characteristics of experiments in the online domain. These
characteristics are divided in five themes, overall, analysis, ideation, execution
and design. These characteristics reflect on decisions during a complete A/B
testing iteration, such as selection of metrics, scope and hypothesis definition,
telemetry and alter conditions, as well as segmentation, number of participants
and risk evaluation.

Schermann et al. [41, 229] identify two groups of goals when conducting
CE activities. The first group, business-driven experiment, aims to evaluate
the delivered value, the development ideas, business changes, and design
decisions. The second group, regression-driven experiments, aims to identify
and mitigate the impact of software changes in existing behavior, functional and
non-functional bugs that evaded or can not be detected in the pre-deployment
quality assurance activities, and scalability issues.

A critical aspect of CE in the business-to-business domain is the difference
between customers and users. Customers acquire or subscribe to a product
or service for the users [70, 71]. In the business-to-customer domain, the
customers are also the users and generally acquire or subscribe to the product
for themselves. Therefore, in the B2B domain, vendors usually sell products
and services to other companies that sell products or services to users. A
distinctive factor is that user data, product usage, and user feedback are not
readily or easily available for the vendors without prior agreements. This can
restrict the data collection, user feedback and even new deployments aimed at
product improvement.

Yaman et al. [40] describe the process of introducing continuous experi-
mentation in companies with an established development process using two
company cases with pure software products, Ericsson and a digital business
consulting company. The study investigates the introduction of experimenta-
tion in a cloud service platform. It describes relevant decision points taken
(such as the target of the experiment, how to update the experiment design,
etc), benefits from the experiment (new insights, reduced development effort
etc) and challenges (access to end-users, inexperience with experimentation,

11.2. BACKGROUND AND RELATED WORK 181

length of the process, etc). Rissanen and Münch [71] investigate challenges,
benefits and organizational aspects when introducing CE in the B2B domain.
They identified that customers play a major role when designing and deploying
an experiment.

In the context of mission-critical systems, continuous experimentation
has started to gain visibility in the automotive domain. Giaimo and Berger
[42] investigate specific software architecture and design criteria to further
enable experimentation in automotive systems. Mattos et al. [31], discuss
challenges and lessons from the automotive industry when starting to run the
first A/B experiments. While some challenges are visible in other domains,
such as the number of variants, suppliers, or the low number of users to run,
others are specific to the automotive domain and do not generalize to other
domains, such as restrictions imposed by the AUTOSAR architecture. However,
experimentation in the automotive domain has only recently started. The
current industry practices and the research state-of-art require more evidence
to generalize to other companies or other mission-critical systems.

11.2.2 Experimentation processes

Several academic publications discuss the experimentation process used when
introducing, scaling, and deploying experiments in online systems [5, 7, 27]. In
this subsection, we provide an overview of these processes and we compare
them with the HURRIER process in the section 11.7.

The presented experimentation process models take into account a two pre-
requisites for effectively conducting experiments. First, the ability to measure
and instrument the software as well as collect this data from field. Second, the
ability to deploy or configure the new software to the user based on experimen-
tal design conditions. This condition specifies that either the users will have
different versions of the software based on the experimental design or that they
will have the same software configured in a different way. In addition to this
prerequisites, these models assume a continuous software development process
with short development time and continuous delivery. The presence of Agile
software development, continuous integration and deployment and towards
DevOps are seen as necessary prior to a broader adoption of CE [7,47,221].

11.2.2.1 The Build-Measure-Learn model

The Lean Startup methodology [46] proposes an approach for companies to
continuously and systematically innovate from a startup perspective. The
methodology employs a Build-Measure-Learn cycle to ensure that the software
development is aligned with the customer’s wishes. One of the critical aspects
of this Build-Measure-Learn cycle is running scientific experiments to validate
customer needs and ensure that the product is aligned with these needs. The
build phase reinforces the use of a minimum viable product to steer the product
roadmap’s direction in a startup environment. The measure phase emphasizes
instrumentation needs in the products to measure users’ and systems’ behavior.
Finally, the learn phase uses collected post-deployment data to understand and
learn movements in hypothesis metrics. This methodology describes a general
experimentation process similar to experiments for learning and innovation.

182 CHAPTER 11. PAPER G

11.2.2.2 The ESSSDM model

The Early Stage Software Startup Development Model (ESSSDM) [47] proposes
an operational support, based on lean principles, for practitioners to investigate
multiple ideas in parallel and scale their decision-making process. The model
consists of three steps. The first is the generation, in which the startup (or
the existing company) generates ideas to expand their product portfolio. The
second is the prioritization of the potential ideas in a backlog. The third is the
systematic validation funnel using a Build-Measure-Learn loop similar to the
Lean Startup methodology. In this step, multiple ideas can be investigated
and validated in parallel. The funnel is divided into four stages: the validate
problem, the validate solution, the validate the minimum viable product on a
small scale, and the validate the minimum viable product on a large scale. In
addition, this model supports the use of experiments for learning and innovation
in a similar manner as the Build-Measure-Learn model.

11.2.2.3 The QCD model

The QCD model (Quantitative/qualitative Customer-driven Development) [48]
explores the continuous validation of customer value instead of relying on
up-front requirement specification. The QCD model treats requirements as
hypotheses that need customer feedback for validation at the beginning of the
development process. All hypotheses are gathered in a hypotheses backlog,
where they are prioritized and selected for evaluation. In the validation cycle,
the selected hypothesis is evaluated through both quantitative and qualitative
feedback. If the hypothesis is not confirmed through the evaluation techniques,
it can be refined in another hypothesis for a future iteration or abandoned.
This model provides a higher-level experimentation process abstraction. It
considers both qualitative and quantitative data analysis methods.

11.2.2.4 HYPEX model

The HYPEX (Hypothesis Experiment Data-Driven Development) model [5] is
a development for companies aiming to shorten the feedback loop to customers.
Instead of spending engineering efforts on large pieces of non-validated function-
ality, the HYPEX model reinforces the need for an iterative and incremental
approach. The model divides the development process into six steps: (1) Gen-
eration of a feature backlog. (2) Feature prioritization and gap specification.
(3) Implementation of a minimum viable feature (MVF). (4) Analysis and
comparison of the actual behavior with the expected one.(5) Generation of
hypotheses to explain the actual behavior of the MVF. (6) Deciding if the
feature should be abandoned, iterated once more, or if it should be considered
completed.

11.2.2.5 The RIGHT model

The RIGHT (Rapid Iterative value creation Gained through High-frequency
Testing) [7,8] is a model for driving experiments in a startup environment. The
RIGHT process model uses the Build-Measure-Learn loop to help a startup
company to achieve the company’s vision through continuous experiments.

11.3. RESEARCH METHOD 183

Hypotheses that implement business strategies are generated and prioritized,
minimum viable features or products are implemented and instrumented, and
data are collected. The analysis of the collected data helps the decision-making
process in a similar manner to the HYPEX model [5], where decisions to
continue iterating, abandoning, or moving on to the next cycle are made. The
RIGHT model describes a high-level experimentation process that can be used
in innovation and learning experiments.

11.3 Research Method

The purpose of this research is to gain an in-depth understanding of the use of
continuous experimentation, including the objectives, the practices, the process,
and the current challenges and opportunities when applied to a company that
develops mission-critical B2B systems. Based on this purpose, we formulated
the following research questions:

• RQ1: What are the types of experiments that are conducted in Ericsson
and that are relevant in the development of mission-critical B2B systems?

• RQ2: What are the current continuous experimentation practices used
at Ericsson in the development of mission-critical B2B systems?

• RQ3: Can the HURRIER process can be used to drive CE in mission-
critical B2B systems at Ericsson?

• RQ4: What are the current CE challenges and opportunities in mission-
critical B2B systems observed at Ericsson?

11.3.1 The case study

This study was founded on a qualitative case study design for two main reasons.
First, it allows the researchers to study and understand the phenomenon in
its context in more depth [79]. Second, since CE in mission-critical and B2B
systems, to the best of our knowledge, has not been discussed and investigated in
research, a case study is an appropriate method for understanding a particular
phenomenon in an industrial context [74–77].

We followed the five steps for a software engineering case study using
the guidelines proposed by Runeson and Höst [77]: (1) case study design:
the objectives are defined and the study is planned, (2) preparation for data
collection: procedures and protocols for data collection are defined, (3) collecting
evidence: execution with data collection on the study case, (4) analysis of the
collected data and (5) reporting of the results.

11.3.1.1 The case company

This research was conducted at Ericsson AB. Ericsson is a multinational
networking and telecommunications company that develops, produces, and
sells telecommunication equipment, services, software and infrastructure to
telecommunication operators in mobile and fixed broadband. Ericsson employs
over 95,000 people in around 180 countries. Over the last ten years, Ericsson

184 CHAPTER 11. PAPER G

started the transition from traditional development to agile and towards DevOps.
In the previous three years, CE began to get attention and promotion inside
Ericsson. Although continuous experimentation is not a well-defined process
throughout the company, several teams independently conduct over a thousand
field experiments a year in different products and parts of the system. In
Ericsson, experiments are used in many use cases ranging from innovation and
new feature development to legacy assurance and performance optimization.
Although this case study was conducted with a single company, we investigated
CE practices in multiple teams, areas, and products spread over six locations
in four countries.

11.3.1.2 Data collection

The data collected consists of a mix of different data sources, including tran-
scripts of semi-structured interviews, notes from meetings, emails, documenta-
tion, project plans, and presentations. The first author is conducting research
on-site and working in close collaboration with Ericsson employees. The second
author is employed by Ericsson. He was involved in several of the project
meetings and was also responsible for selecting the interview participants for
this study.

We utilized a combination of criterion sampling with convenience sampling,
where we interviewed the practitioners who were knowledgeable and accepted to
participate in this study. We interviewed both participants that were part of the
development and design of features that were validated using experimentation,
as well as participants that were not involved but had extensive experimentation
experience inside Ericsson.

We conducted semi-structured individual and group interviews. The inter-
views were both on-site and through phone conferences since the 25 practitioners
were distributed in six locations in four countries. They had experience ranging
from 3 to 25 years working in a range of different roles, as shown in Table 11.1.
The interviews were conducted in English, were designed to last approximately
one hour, and had an average duration of 55 min with a minimum duration of
41 min and a maximum duration of 1 hour and 8 min. The interviews were
conducted between December 2018 and May 2019.

Since part of the interviewees were actively engaged in the deployment
of a mission-critical feature that was being deployed and validated with field
experiments, we conducted additional four follow-up interviews with ten mem-
bers, as discussed in section 11.5.2. These interviews were used to evaluate the
experience with the experimentation processes in this mission-critical feature.
In Table 11.1, the follow-up interviews are identified in the second part of the
table.

At least two authors were present in all interviews. In addition, interview
guides were created depending and specific questions were asked based on
the role of the interviewee. This allowed us to focus on their expertise and
knowledge in the particular part of the experimentation process.

All interviewees were asked about their background and experience with
customer experiments, live trials, data collection and feedback from both
customers and users. Relevant concepts to continuous experimentation already
identified in literature such as gradual releases, dark deployments were also asked

11.3. RESEARCH METHOD 185

Table 11.1: Overview of the interviews

Interview N. Inter-
viewees

Role Location
site

Years
of exp.

A1 1 Operational prd. owner L1 3
B 1 Test manager L2 28
C 1 Program manager L2 23
D 1 Technical specialist L2 15
E1 6 Developers and testers L1 3 - 5
F1 1 Prd. guardian L1 6
G 1 Prd. introduction manager L2 20
H 1 Prd. introduction manager L2 19
I 1 Prd. manager L6 12
J 1 Prin. project manager L2 23
K 1 Program manager for field analy-

sis
L2 22

L 1 Customer solutions manager L3 7
M 2 Operational Prd. Owner, Devel-

oper
L4 8, 12

N 1 Customer support manager L2 22
O 1 Release manager L2 24
P1 4 Technical coord., Field feature

tester, CD for customer support,
Project manager support

L5 3 - 15

A2 1 Operational prd. owner L1 3
E2 6 Developers and testers L2 3 - 5
F2 1 Product guardian L2 6
P2 2 Technical coord., Field feature

tester
L5 3 - 15

whether the subjects had previous experience with these concepts or related ones.
We asked more in-depth questions about the process used, project timeline,
impediments, lessons learned, perception of the benefits, and the disadvantages
for all participants that have conducted entirely or partially projects with an
experimentation component. For the interviews with the subjects involved in
feature development, additional questions regarding the feature, the impact
of the feature in the 4G product, the specific experimentation process used,
results, lessons learned, among others. For interviewees in managing positions,
we also asked their reflections on experimentation projects they supervised or
followed and how the development organization moved towards experimentation.
For participants in customer units, we asked questions regarding customer
feedback and perception in experimentation projects, data collection and their
current and future interest in collaborating in experimentation activities. The
additional 10 interviews evaluated the use of experimentation in a mission-
critical feature. Therefore for them, we asked specific questions about the
project, the results, customer perception and feedback, lessons learned and
impediments created by the use of a CE process and its application in a

186 CHAPTER 11. PAPER G

mission-critical feature.

For all interviews, the academic purpose of the study and a statement about
participants’ anonymity in the analysis and results were explicitly shared before
the start of the interview and agreed by the participants. All interviews were
recorded and transcribed for the qualitative analysis, both the questions and
participants’ answers. Since all authors have non-disclosure agreements with
Ericsson, the interviewees could utilize internal examples and freely discuss
their experiences and practices.

Additionally, we collected data from over 30 documents, including project
documentation, feature development plans, solutions, and product presenta-
tions for both internal employees and external customers. These additional
documents were shared, mentioned, or discussed during the interviews, meet-
ings, or emails and were available to the authors through the internal network.
These documents contained detailed information about the development and
release process of different features and products, the sequence of steps taken,
customer feedback on both the continuous experimentation process and specific
feedback used by the development team (e.g., feedback given in the customer
feedback channel of the HURRIER process). We utilized these documents as
a triangulation source to support the data collected from the interviews, in
particular, to help the ordering and timeline of activities to derive both the
HURRIER process and answer the other research questions.

The described collected data was the main source of information to answer
all research questions. The interview protocols, as well as how they connect
to each research question, are available as supplementary material at https:

//doi.org/10.5281/zenodo.4943011.

11.3.1.3 Data analysis

The collected data was added to the qualitative analysis software NVivo, and
thematic coding was used as the data analysis method. We utilized the six-phase
process proposed by Braun and Clark [82]. We utilized inductive thematic
coding, as the themes were first identified and linked to the data, rather than
on previous subject coding frames.

The first phase consists of familiarizing with the data. The authors familiar-
ized with the data in several ways, such as participating in the interview process,
the transcription process, reading the transcriptions and interview notes. In
the second phase, we generated the first set of codes, representing interesting
concepts and ideas captured in the interviews or discussed in the additional
documents. These codes identified in the interviews the goal of the experiment,
perceived advantages and disadvantages, technical limitations, organizational
limitations, deployment and experimentation techniques, customer perception,
steps taken, deployment prerequisites, showstoppers, etc. In the third phase,
we discussed potential themes for the identified codes. In the fourth phase,
we reviewed the potential themes and merged similar codes when possible.
Then, we classified them as part of the theme-groups: experimentation ob-
jective, experimentation practices, experimentation activities, B2B challenges,
mission-critical challenges, perceived advantages, customer involvement, among
others.

In the fifth phase, we analyzed each theme individually, generating the main

11.3. RESEARCH METHOD 187

Exp. Activity

"We tested (the feature)
in our internal tests and run
regression tests in the virtual
environment.

This is one of the most
important features that
we have in LTE…So that
it is quite important for
the end user

Later on we are going to run
experiments with other customers
and in other countries.

The field deployment (in
maintenance hours)
allowed us to identify a
problem that
none of our existing internal
testing could identify

The passive deployment was a
very valuable activity. Besides the
validation, we could also collected
a lot of data to support other
development activities in future
iterations of this project.

 The customers want to be
safe, to be sure that
everything is fine (before
the field experiments)

B2B challenges
Perceived

advantages

MCS challengesQuality
Assurance

that the framework has a huge number of
interactions with other functionalities that we have in
our software.
So that means that the one customer that we are
going to start with does not have all the
configurations that we would like to test. ...

Figure 11.1: An example of the coding process where both interviews and
additional data were added in the themes. In colors, we represent the different
themes that emerged from the data. The text represents different quotes and
color-coded to map how they link to each theme. Some quotes map into more
than one theme. The project diagram refers to the plan of feature development
discussed in example B in section 11.5.2. The project diagram indicates the use
and order of passive deployment before the active deployment (experimentation
activity theme). Parts of the project diagram were blurred to hide specific
details of the project (at the company request).

results and discussion points to answer each research question. Additionally,
in the fifth step, we selected, summarized, and removed company-specific
information for the examples presented in this paper. The last phase consists
of this publication, where the results are presented, and the research questions
explicitly answered in the discussion. Figure 11.1 provides an illustrative view
of how different sources of the collected data was combined in themes.

11.3.2 Identification of the HURRIER process

The HURRIER process was identified by observing the CE practices of different
projects, teams, and products. Utilizing the thematic coding approach, we
were able to identify the key activities performed by each team, the order of
these activities, techniques used, pre-conditions, challenges and impediments,
results, and lessons learned. We ordered all these activities in time and terms
of importance. From these, we iteratively derive an experimentation process
that addresses the deployment of experiments for all of the analyzed teams
and features involved in this research. All were developed in the context of
B2B. While some of them are not mission-critical, over half are considered

188 CHAPTER 11. PAPER G

mission-critical. In section 11.5.2, we illustrate the HURRIER process in
one mission-critical project. The HURRIER process itself did not trigger the
CE process used in this example, but it is our conceptualization of and a
generalization of the observed CE experimentation process.

11.3.3 Validity considerations

Below we provide an overview of the main validity threats we identified and
discussed the different strategies used to minimize these threats. We also
acknowledge the limitations of this study.

External validity: This case study was conducted within multiple teams,
areas, and products in a single software company. To minimize the bias of
working with a single team inside the company, the results we identified were
based on several teams’ experimentation and practices in four countries. The
different identified experimentation types and practices are used in specific
parts of the organization, depending on the focus of the different teams. Some
parts of the organization conduct only a specific type of experiment related
to their specific task, such as a tuning experiment, and are not involved in
customer support experiments. The practices and types of experiments are
general enough to be valid in other domains since they are based on general
scientific tasks used in other areas of science. However, these practices might
not be identified in other companies since they may require specific conditions
and maturity to emerge.

The presented HURRIER process is used in its entirety or a subset of
it by the different teams and parts of the organization. We abstracted the
activities of the HURRIER process performed by Ericsson in terms of common
development activities used in different industries and research, such as contin-
uous integration, passive launch, simulations, laboratory evaluations, gradual
rollouts, etc. Although identified in Ericsson, the HURRIER process does not
restrict specifically to Ericsson or the telecommunication industry, and therefore
can be instantiated, used, or adapted by other software companies striving
to introduce CE in mission-critical in the B2B domain. However, due to the
nature of this study within a single company, we do not claim generalization of
the process to the entire software industry.

Construct validity: The authors of this paper are well familiar with continu-
ous experimentation practices and related research. However, the participants
not always utilized the same nomenclature as research in continuous exper-
imentation. To mitigate the threat to construct validity, the second author,
who works as a full-time employee at Ericsson, was present in all interviews.
When the practitioners asked for clarification or misunderstood a question, the
second author explained or rephrased questions and concepts in the technical
vocabulary used internally and given examples of well-known internal practices
at Ericsson that exemplified the concept or question.

Internal validity refers to whether the unaccounted factors could impact the
results of the investigated factors when causal relations are examined [77,98].
Given the choice of the research method, the data collection, and the analysis,
it is impossible to separate the observed results from a complex context where
this study takes place or establish causal relationships. Although not causal,
the inferences made in this research have been checked with explanation building

11.4. CONTINUOUS EXPERIMENTATION AND PRACTICES 189

and addressing rival explanations as tactics to increase internal validity in case
study research [79].

Conclusion validity refers to the particular reasons, methods, and procedures
we use to conclude a possible covariation between variables [33, 102]. This
research does not analyze covariation between variables. The conclusions
presented are based on the thematic coding analysis method presented earlier.
We utilize the well-establish thematic coding procedures from Braun, and
Clarke [82]. However, the themes and results obtained are not a property of
the data, but they emerge from the links and understanding we make from
them and cannot be separated from the researchers [82,84].

11.4 Continuous experimentation and practices

The diversity of the data from the different teams, areas, and products that are
actively conducting experimentation indicates many experimentation objectives
and practices. Although these objectives and practices are not restricted to
Ericsson, or the B2B mission-critical systems, they greatly impact how the
experimentation process is planned and conducted.

Next, we present the types of experiments identified during the case study
and used within Ericsson. Then, we present the different practices and tech-
niques used in these experiments.

11.4.1 Types of experiments

One of the central aspects differentiating how different teams and part of
the organization plan and conduct experiments is the purpose of the experi-
mentation activity. This study identified four main groups: business-driven,
regression-driven, optimization/tuning, and customer support experiments. We
provide here a definition and specify how those types are used in the process
in Section 11.6.

11.4.1.1 Business-driven experiments

These experiments are used to validate and assess business hypotheses by
quantifying the value a particular change in the system results in and how it
impacts higher-level customer/stakeholders metrics and KPIs. This type of
experiment has been subjected to extensive research [7, 41, 223]. In Section
11.5.1, example A analyzes a business-driven experiment in the context of a
machine learning feature in the 4G product.

11.4.1.2 Regression-driven experiments

This is a quality assurance technique where the experiment is designed to
observe if the new variation or system change harms one or several quality
factors and system properties. These experiments are used when laboratory
and internal tests cannot assess the impact of the modification because they
either cannot accurately replicate all customer’s equipment configuration or
deployment conditions, such as complex environments, traffic profiles, usage

190 CHAPTER 11. PAPER G

behavior. In Section 11.5.2, example B analyzes a regression-driven experiment
in the refactoring of a mission-critical feature in the 4G product.

11.4.1.3 Optimization and tuning experiments

These are experiments done in post-deployment stages, where a system’s
constants, configuration or calibration parameters are modified to tune the
system for a particular operating condition. This type of experiment does not
require a new deployment if the necessary metrics and the configuration system
are already in place. In this type of experiment, both system internal metrics
and business metrics can be used for tuning purposes. In the telecommunication
domain, LTE optimization with tuning experiments is a common procedure
conducted by both the supplier and the mobile operators [30, 144, 234]. In
Section ??, example C analyzes the use of A/B testing to optimize a feature
performance in the 4G product

11.4.1.4 Customer support experiments

These experiments are usually after a negative impact has been identified.
Since the negative impact cannot always be traced back to a particular change,
as it depends on the deployment conditions, usage behavior, configuration
parameters, and other factors, experiments are needed to identify the root
cause of the failure or negative change. Since errors in such complex situations
can be stochastic, the experiments, in this case, consist of running controlled
experiments with the current release of the software and one or multiple previous
releases to identify where the error was introduced and which conditions trigger
this error. In Section 11.5.4, example D describes the usage of customer
support experiments to identify faults in stochastic scenarios in collaboration
with customers in the 4G product.

11.4.2 Experimentation practices and techniques

In this subsection, we present the different continuous experimentation practices
and techniques identified in the collected data. When available, we contextualize
these practices in relevant research in continuous experimentation and present
other techniques not discussed before. We categorize the different practices
and techniques into four groups. Experimental design and analysis, variation
assignment, implementation, and release techniques.

A critical difference regarding web-facing systems and business-to-consumers
is the presence of two experiment levels. The first level aims to measure and
evaluate the impact on the final users metrics (such as mobile phones). The
second level aims to evaluate the impact of changes in the network level,
such as radio base station metrics. The experiment’s level impacts the choice
of experiment design, the variation assignment, the implementation and the
release technique.

11.4.2.1 Experiment design and analysis

An activity that impacts the planning and process for continuous experimenta-
tion is choosing the experimental design and the analysis method. At Ericsson,

11.4. CONTINUOUS EXPERIMENTATION AND PRACTICES 191

we identified the four experiment design types presented below.

Randomized experiments A randomized (and possibly controlled) exper-
iment is a type of scientific method used to investigate cause-effect relation-
ships [2, 16]. This is the most common CE practice and has wide adoption in
web-facing systems. It consists of randomly assigning participants to different
experimental groups. These groups differentiate by the treatment they are
exposed to, while one group is held as a control group. In CE this group of
techniques encompasses A/B testing and multi-variate testing. According to
multiple interviews and as discussed in Section 11.5, Ericsson uses controlled
experiments in regression-driven, business-driven, and customer support ex-
periments when observing the impact of changes in mobile equipment metrics
(first level experiment).

Crossover experiments Crossover experimental design is a particular type
of design that the same subjects receive a series of treatments over time [39].
In this design each subject serves as its own control since we measure and
evaluate within-subjects variance. One of the challenges of crossover designs is
when the presence of carryover or learning effects is identified. If not controlled
for that, the variance can significantly increase (or decrease), invalidating the
design because the subjects change as they are exposed to different treatments.
However, if the presence of carryover is known, different groups with different
treatment sequences can be created to estimate the carryover effects [39]. One
of the advantages of crossover designs is when a limited number of subjects do
not present carryover effects. According to empirical data (both interviews and
internal documentation), Ericsson utilizes crossover designs when there is a
limited number of systems for an experiment. For example, in the second level,
experiments evaluate the impact of changes in the network level. Crossover
experiments are used in all four types of experiments.

Multi-armed bandits experiments Multi-armed bandit experiments are
a particular type of experiment design aiming to minimize cumulative regret
by allocating fewer users to under-performing variants. As an example, if A
is the current system and B is the system with a modification. Initially, both
A and B are allocated with 50% of the users. If A is under-performing B,
the design shifts the user allocation to B, which would have more than 50%
of the users. This type of design aims to minimize the average number of
users exposed to worse variations. Mattos et al. [38] provide an overview and
comparisons of multi-armed bandit designs and controlled experiments. At
Ericsson, multi-armed bandit experiments are used in optimization and tuning
experiments [30]

Quasi-experiments Quasi-experiments are a specific type of experiment
that supports causal and counterfactual inference similarly to randomized
control experiments, with the key characteristic that it lacks random assignment
[33,37]. The assignment of variations to the subjects occurs by using cut-off
criteria to divide the groups. The criteria can be based on natural conditions
such as demographic data or other criteria or artificial conditions such as

192 CHAPTER 11. PAPER G

clustering methods based on different characteristics. Since quasi-experiments
do not use randomization to minimize selection bias, this can decrease internal
validity since additional confounding factors can be introduced during the
assignment. However, well-planned transparent designs can minimize internal
validity threats. One of the key motivating factors to use quasi-experimental
designs compared to randomized designs is when randomization is impractical or
unethical. From the interviews, Ericsson relies on quasi-experimental designs to
investigate deployments in mobile networks, when the operators are responsible
for selecting which parts of the network will receive an update first, or when
geographical constraints do not permit complete randomization.

Optimization Experimental optimization is a general group of CE ap-
proaches used to optimize a software based on a subject behavior (system
or user). The approaches are generally used in optimization and tuning ex-
periments to optimize system constants or calibration parameters. We group
these approaches as a single practice because of their common experiment
type. However, these techniques are based on very different premises and theo-
ries, ranging from Bayesian analysis [53], response surface methodology [16],
Taguchi optimal designs [2, 145, 235] to search-based heuristics [51, 147]. These
techniques are commonly used in network optimization and can be performed
by both the mobile operators as well as Ericsson [30].

11.4.2.2 Variation assignment

The choice of experimental design influences how each variation will be assigned
to the users or customers. However, even in a specific design, assignment
considerations should be made. The choice of the experimental design described
earlier is interconnected with how the variants are assigned in the experiment.
Variant assignments also have a large influence on the implementation and
release techniques and the data analysis, the causal inference, and the validity
of the experiment.

The variation assignment is often not a CE choice but rather a restriction
imposed by the combined effect of the type of system, restrictions on how the
data can be collected, how and to whom new variations can be deployed. We
identified three main assignment choices: complete randomize, cluster-based
and manual assignment.

Complete randomization Complete randomization is the variation assign-
ment practice used in controlled experiments and crossover designs. It consists
of assigning the system with or without the modification randomly to all units
or users. This practice allows the differences between the units to average out
as they are randomly sorted, and therefore the observed changes are due to the
modifications on the system and not by individual differences between the units.
Although this practice has a higher internal validity, it is not always possible
to conduct. Complete randomization is common in level 1 experiments (with
the final users) inside a single or a similar group of radio base stations. From
documentation and interviews, such functionality is implemented in specific
features of the product.

11.4. CONTINUOUS EXPERIMENTATION AND PRACTICES 193

Cluster-based randomization Cluster-based randomization is a type of
variation assignment technique that divides the population into clusters that
are randomized together [20,236,237]. This kind of randomization is common in
natural restrictions such as geographical location, as discussed in the interviews.

Automatic assignment Automatic assignment is a type of variation as-
signment that is based on a criterion that is not necessarily randomization.
For instance, multi-armed bandit systems can use different metrics to perform
assignments, such as the upper confidence bound [38]. Also, optimization
experiments can use a different range of variation assignment heuristics such as
the expected improvement [53] or nature-inspired exploration techniques [147].

Manual assignment In B2B, the R&D organization might not have control
over the assignment process. In such cases, they rely on the customer to
assign how each variation will be assigned to users. In this manual process,
the customer utilizes existing metrics to create two comparable groups. This
manual process might also be aided by matching tools such as propensity score
matching [106].

11.4.2.3 Implementation techniques

As part of the design of the experiment, the R&D organization, in collaboration
with the customers/users, might decide on different implementation techniques
to deliver the software change. We refer to implementation techniques as to
how the modification in the software are implemented to be activated to the
customers/users.

Feature toggles Feature toggles are conditional statement blocks in the code
that allows enabling and disabling features based on configuration parameters
[229, 238]. In the telecommunication domain, feature toggles are extensively
used by customers and by the R&D organization to configure and customize
specific parts of their network. Besides the configuration flexibility, feature
toggles facilitate both the R&D organization and the customers to conduct and
launch experiments without needing a new software build or a new deployment.

Software versions The simplest form of deployment of a software modifica-
tion for experiments is to generate different software versions and deploying
them manually. Although such an approach might not be feasible for large
scale experiments, in the second level of experiments (the network level), the
sample size is small, and this technique is viable. Additionally, customer
restrictions in the deployment strategy can restrict other techniques such as
feature toggles. As observed in the interviews, this strategy is more common
in the first iterations of prototypes with customers.

Traffic routing The technique consists of redirecting requests randomly
between different instances of the system (one with the modification and one
without) [2,41,229]. This technique is commonly used in controlled experiment
designs and in websites and back-end systems where concurrent experiments
are low. However, it can provide low experimentation scalability or degradation

194 CHAPTER 11. PAPER G

on the user experience [2]. In the context of 4G product, this technique is not
used or recognized among the interviewees, as redirecting traffic to different
radio base stations is not practical and can severely impact the whole network.
However, this technique can be used in other web-facing products developed
by Ericsson.

11.4.2.4 Release techniques

After having the software ready for an experiment, the R&D organization
decides together with the customer how this software will be released in the
field. These release techniques are often risk minimization techniques aimed at
preventing negative effects that have a large impact. If a negative impact is
not observed, the scope of the release is increased.

Canary release Canary releases are a practice of deploying a release to only
a small percentage of the active customers and monitoring the behavior of the
system for negative impact [41,239,240]. Since large negative effect sizes can be
observed in smaller samples, this technique effectively minimizes the exposure
of a negative change to the general population [16].

Passive deployment or dark launch Dark launch, also known as shadow,
dark or passive deployment, is a technique where the new piece of functionality
is deployed invisible to the customer [41, 239,240]. This means that the silent
modification is exposed to real-world data but without acting on the system.
The modification can be analyzed to see how it performs in a production
environment and compares it to the existing solutions. While not a standard
practice, this solution has been explored at Ericsson, as seen in section 11.5.2.

Gradual rollouts Gradual rollouts consist of gradually increasing the num-
ber of customers exposed to the new release [241]. This technique is commonly
used together with canary releases. When no negative impact is observed, the
sample of customers exposed to new release is gradually increased [23,41, 240].
This technique is also known as ramp-up and is commonly used in combination
with A/B testing. Gradual rollouts are commonly used by internal development
and customers in project plans and documentation.

Ring-based releases Ring-based release is a common release technique in
experimentation, where the software change is deployed to customers that
have previously agreed with the release conditions [242]. The inside rings are
exposed to a faster deployment cycle with new features and bug corrections
at the expense of less stable builds. The problems identified earlier in the
inside rings are corrected, and slower and more stable builds are released to
customers in the outside rings, such as the General Availability (GA) features
to all customers. Although not referred by this name, ring-based release is
often mentioned in documentation and meeting notes.

Time-window releases Time-window release is a technique where the sys-
tem modification is released only when the application has a lower risk of
negatively impacting users. Usually, the period corresponds to the lowest

11.5. EXAMPLES 195

traffic/usage period or in maintenance hours. Similar to canary releases, this
technique is also based on the fact that large negative effect sizes can be
observed in smaller samples. As the development organization gains more con-
fidence in the system’s performance with live but low-risk data, the application
can be rolled out gradually to larger time windows. This technique is often
combined with other techniques, such as canary releases or gradual rollouts
in the whole period. While not a standard practice, this solution has been
explored by both customers and at Ericsson, as seen in section 11.5.2.

Table 11.2 summarize the types of experiment and practices identified in
the empirical data.

11.5 Examples

This section presents four examples that investigate or utilize the discussed
experimentation practices in the context of the Long Term Evolution (4G)
system. The identified experimentation activities and techniques presented in
Section 11.4, the presented examples lay the foundations of the inductively
derived HURRIER process described in Section 11.6.

11.5.1 Example A: Business-driven experiments

This example investigates the development of a new machine-learning feature
aimed at replacing an existing solution. The new feature utilizes a machine-
learning algorithm to provide faster and better hand-over decisions for the user
equipment. Although the team also performs regression-driven and tuning
experiments, we focus here on the business-driven experiments as captured in
the quote below:

““We cannot prove the feature benefit for the customer in the lab, as it is very
hard to simulate the customer network and traffic patterns... Also, customers
value different aspects of how the feature impacts their network. So this type
(business-driven) of experiment is the most valuable for us.”” — Interview
M

This feature came from developments in research and was selected by the
team to proceed to the pre-study phase. The pre-study phase consisted of
simulations to support (and replicate) the research results and determine the
instrumentation and data collection.

“ “The idea came from research. We had some simulations but nothing concrete
to become a product. The question was not only if the idea would work in a live
network but also if it is possible to do it in an embedded system. How much data
would we need? Would the (ML) models fit the hardware constraints? Some of
these questions we could answer before doing a prototype.”” — Interview M

Initially, the prototype supported only the data collection in collaboration
with a customer. This data supported the iterative development of the machine
learning models and the introduction of the software to the embedded system.
After several iterations in the prototype led to a first minimal viable feature that
could be deployed in a live network. The first deployment of the feature was done
with passive deployment, where both the customer and the development team
could verify the behavior of the feature. Given the positive impact observed

196 CHAPTER 11. PAPER G

T
ab

le
11.2:

O
v
erv

iew
of

th
e

ty
p

es
o
f

ex
p

erim
en

t,
p

ra
ctices

a
n

d
tech

n
iq

u
es

T
y
p

e
o
f

e
x
p

e
rim

e
n
t

E
x
p

e
rim

e
n
ta

l
d

e
sig

n
V

a
ria

tio
n

a
ssig

n
m

e
n
t

Im
p

le
m

e
n
ta

tio
n

R
e
le

a
se

B
u

sin
ess-d

riven
R

an
d

om
ized

C
om

p
lete

ra
n

d
o
m

iza
tio

n
F

ea
tu

re
to

g
g
les

C
an

ary
release

R
eg

ressio
n

-d
riven

C
rossover

C
lu

ster-b
a
sed

S
o
ftw

a
re

versio
n

P
assive

d
ep

loy
m

en
t

O
p

tim
iza

tion
a
n

d
tu

n
in

g
M

u
lti-arm

ed
b

an
d
it

A
u

to
m

a
tic

a
ssig

n
m

en
t

T
ra

ffi
c

R
o
u

tin
g

G
rad

u
al

rollou
ts

C
u

sto
m

er
su

p
p

o
rt

Q
u

asi-ex
p

erim
en

ts
M

a
n
u

a
l

a
ssig

n
m

en
t

R
in

g-b
ased

T
im

e-w
in

d
ow

11.5. EXAMPLES 197

in the passive deployment, the prototype was tested in a limited number of
radio base stations. The evaluation of this deployment was conducted in two
ways, first through a quasi-experiment with a manual assignment and second
in a crossover experiment. For the quasi-experiments, the customer manually
assigned two comparable zones for the deployment. In one zone, the feature
was activated, and in the other, it was in a passive deployment (the feature was
available together with the instrumentation but not impacting the network).
For the crossover experiment, the active zone was compared against its own
metrics baseline, while the passive zone was monitored to see if there were
changes in the metrics baseline.

““This feature started as a prototype. We had the idea of what we wanted
to do. After a few experiment iterations, we collected some field data and
analyzed it. Together with good customer feedback, we got strong support for it
to become a product.”” — Interview M

With the expansion of the prototype to a product, the R&D team is able
to conduct multiple customer validations and optimization experiments to
improve the feature and the machine learning models.

11.5.2 Example B: Regression-driven experiments

This example investigates the usage of CE in a project that consists of the
refactoring of a framework that implements several functionalities of the 3GPP
specification [151]. This framework is used to increase the speed, coverage,
and capacity of mobile communication systems. It is considered a mission-
critical system in the LTE context, i.e., without the proper function of this
framework, critical functionalities of the 4G are compromised with possible
mobile traffic disruptions for the affected region. The refactoring procedure
aims to increase performance, scalability of the system for new solutions and
specification modifications, support for a number of new future user equipment,
and open the space for new machine-learning and artificial intelligence solutions.
The importance and critical aspect of the framework are captured in the quote:

““This is one of the most important features that we have in LTE ... as it has
a great impact for the end-user”” — Interview F1

The framework is highly complex as it interacts with over 20 different
functionalities in the LTE system. It needs to interact and perform well with
over the 5000 different configurations of user equipment available in the 3GPP
specification and the additional new 5G systems. Combined with the different
traffic profiles and optimizations that mobile operators can have, verifying and
validating this system in all different conditions in-house is unfeasible. In terms
of cost to create such a testing facility, the evolution of the testing facility to
include the continuously increasing number of user equipment and the time to
validate the solution. Internal testing of the framework can verify functionality
interaction of the framework with new features and how new features can
impact the framework. However, it is not possible to achieve high coverage and
quantify the improvement of the solution without running field experiments in
a customer network. This project involved design teams, development units,
and customer units in 4 different countries.

198 CHAPTER 11. PAPER G

“ “We want to test it in the field with the customers . . . the main reason is
that the feature that we are working on is highly dependable on the configuration
that is used in the field, and the configuration is different in different countries.
It is different between operators in the same country, and it is different between
different types of user equipment that we have on the market. And due to
that, it is very hard and probably impossible to verify all the functionality
with internal testing, or in our lab. In our lab, we only have a limited set of
user equipment, a limited set of configurations. So to secure the quality of the
product that we are delivering, we want to have the ability to deploy that in
some of the customers’ networks, before we go full scale.”” — Interview F1

During the pre-study phase, one mobile operator had a network profile
that could be used to validate a large part of the refactored framework and
had a high interest in the evolution of the system after the framework has
been deployed. The operator provided initial field data to aid the initial stages
of the development. Following an incremental approach, the first version of
the new framework was developed. In parallel, the R&D organization worked
on securing that internal verification is set up to cover major use cases and
apparent configurations. The internal feedback channel was implemented with
the existing Ericsson procedures for quality assurance, including CI reports,
simulation status, and laboratory validation tests.

““We tested (the feature) in our internal tests and run regression tests in the
virtual environment. The field is a second step for validating. The customers
want to be safe, to be sure that everything is fine (before the field experiments).””
— Interview E

The customer feedback was implemented together with the local customer
unit. It contains both automated data collection of the instrumented software in
addition to an ad-hoc manual collection of further performance and diagnostic
data, if necessary. Because of the critical aspects of the framework, the
single customer validation followed all activities. After passing the customer
laboratory evaluation, the passive launch activity allowed benchmarking the
responses from the new framework with the existing one. This activity allowed
the R&D organization to identify corner cases from the live network traffic,
that were not covered during the internal validation and customer laboratory.
The frequent feedback and iterations allowed the software to have enough
confidence for a restricted launch in the live network.

“ “The passive deployment was a very valuable activity. Besides the validation,
we could also collect a lot of data to support other development activities in
future iterations of this project.”” — Interview F2

The restricted launch enabled the framework only during maintenance hours
for a week. Maintenance hours correspond to lower traffic and requirements on
the network, making it a lower risk scenario in cases of faults. The analysis of
the restricted launch was made by comparing key metrics and time series of
the maintenance hours of the experiment week against a control week with the
old framework. When the new framework reached enough quality level in key
metrics, it proceeded to the gradual rollout.

“ “The field deployment (in maintenance hours) allowed us to identify a
problem that none of our existing internal testing could identify”” — Interview
F2

11.5. EXAMPLES 199

The gradual rollout followed the existing customer deployment plans for
new software, where the software is deployed in groups, and the performance
of each group regarding KPIs is measured before the deployment of the next
group occurs. In this stage, quantitative feedback regarding the KPIs ensured
that the new framework behaved as designed.

“ “Later on we are going to run experiments with other customers and in other
countries. The reason for that is that the framework has a huge number of
interactions with other functionalities that we have in our software. So that
means that the one customer that we are going to start with does not have
all the configurations that we would like to test. ... If we get positive results
from this first customer we want to expand that to the other customers”” —
Interview A

In parallel with the first (single) customer validation, the R&D organiza-
tion contacted other customers for further field experiments. The contacted
customers that also showed great interest in the framework had different net-
work profiles to increase the coverage of the solution. Since the first customer
validation already validated the most critical aspects of the framework, the
R&D organization performed the gradual rollout (after the customer verify
the software in their own laboratories). Therefore, these new field experiments
with multiple customers were aimed at increasing the coverage and confidence
in the framework in special and corner cases.

The field experiments with multiple customers generated enough data and
evidence for the R&D organization to proceed towards final documentation
and release of the framework in GA for other customers.

11.5.3 Example C: Optimization and tuning experiments

This example discusses a feature developed in the 4G system to improve the
configuration parameters of existing features utilizing experiments. The feature
consists of an A/B testing framework that performs randomization in the first
level (user equipment). The feature can randomize the users in multiple groups,
where each group receives a different set of parameters. The feature utilizes
existing performance metrics and relies on the configuration parameters already
implemented in the system.

“ “You can see exactly how each set of parameters impact the system at the
same time, so you don’t have the disadvantage of running the experiment for
one week, and a holiday changes the traffic profile and the datasets are no
longer comparable”” — Interview D

The parameters to be investigated comes from team-level performance goals,
where it is hypothesized the expected impact and the proposed modifications.
If the feature is already deployed in the customer network, it does not require
a new deployment. However, the customer manually decides upon selecting
the network cluster where this feature will activate (second level). Suppose a
particular set of parameters outperform in this limited release. In that case, it
can be gradually rolled out to other parts of the network, where the aggregated
effects can be investigated in a crossover experiment.

However, optimization experiments are not exclusive of feature configura-
tions but are also possible at the network level (second level) and even without
the participation of the R&D organization.

200 CHAPTER 11. PAPER G

“ “The customers tune their network over many years. They have a lot of
knowledge over the dependencies between the features and configurations they
have in their network. However, new customers or customers that do not have
the same maturity in tuning the network will benefit from tuning expertise from
our R&D teams.”” — Interview D

11.5.4 Example D: Customer support experiments

Customer support units are often responsible for managing the feedback between
the mobile operator and the development unit. After the general availability of
the software, customers can still find unexpected behavior or metric degradation.
If the source of degradation can be traced, software patches are created. The
delivery of the software patch is often done with regression-driven experiments
using a crossover design experiment by the customer support units.

“ “We deliver corrections to customers on issues that they have but since
we are not able to fully verify the patch without the specific configurations,
profile of the network and customer KPIs, we do regression experiments”” —
Interview N

However, customer reports of degradation and faults might not be able to
specify the part of the system the failure was observed or even the version of
the software where the fault was introduced due to changes and the stochastic
behavior in the operational environment. In such cases, the customer support
unit conducts “customer support experiments” to identify the source of the
fault so the development unit can provide the appropriate software patch.
Customer support experiments are used to diagnose faults in the software and
configuration issues in the network.

“ “In troubleshooting, not everything we get is a software issue. Sometimes it
is a configuration fault. And we need to do changes and run experiments on
the live network to identify the source (of the fault/behavior)” ” — Interview
N

The customer provides specific requests to the R&D organization. The
customer unit acts as the direct customer feedback channel. The request is
studied to see if they are able to identify the source of the fault. If the fault can
be traced, the development unit provides software corrections experimented
in a regression experiment. Otherwise, the customer unit conducts direct
experiments with the customer. Customer experiments are usually quasi-
experiments, with a manual assignment and with software versions or feature
toggles. The use of software versions is to verify which version the fault was
introduced, while feature toggles help identify the features.

When the source of the fault is identified, and the development unit provides
a patch, regression experiments are conducted to verify the behavior of the
patch before full deployment to the whole network and other customers.

11.6 The HURRIER Continuous Experimenta-
tion Process

The deployment of new software in B2B and mission-critical systems, unlike
many web-facing applications, requires extensive verification, risk analysis, and

11.6. THE HURRIER CONTINUOUS EXPERIMENTATION PROCESS 201

customer approvals. The R&D organization must comply with specifications,
pre-established testing procedures, and service level agreements. In these
situations, field experiments must be planned and agreed upon in collaboration
with the customers to ensure that the R&D organization receives adequate
field feedback and minimize the risk imposed on the service provided by the
customer. In this section, and based on the empirical data, we present the
HURRIER process for conducting experimentation in mission-critical features
in the B2B domain. The HURRIER process was identified and formulated
based on the current experimentation process and practices of different teams
inside Ericsson, as discussed in sections 11.4 and 11.5. The process is used in
its entirety or just a subset of its activities, depending on the scope and area
of the development project.

The process is composed of a set of generic activities that can be organized
in four main areas around two feedback channels. The areas are: (1) the R&D
organization, (2) the internal validation, (3) single customer validation, and (4)
multiple customer validation. Next, we discuss each of these groups in detail,
the set of commonly found activities in these groups, and the feedback channel.
Figure 11.2 shows an overview of the HURRIER process. In this process, the
square boxes represent activities. The thin arrows indicate the sequence of
the activities inside an area. The thick arrows represent feedback data. At
any point in this process and based on the feedback data, an activity can be
interrupted and returned to the R&D organization, either in the form of new
requests and ideas, by adding new use-cases and providing additional data for
the pre-study activity, or providing continuous feedback for the incremental
development activity.

11.6.1 The R&D organization

The R&D organization is responsible for developing the feature or change that
will be deployed. The R&D starts after a development idea is generated. These
development ideas can come from different sources such as direct customer
request, market needs, competition, innovation, or to meet the internal goals
of the R&D organization.

11.6.1.1 Pre-study

The pre-study activity consists of scoping the project and planning its de-
velopment. Metrics and success criteria are determined, and the expected
improvement in both system internal metrics and customer level metrics. The
feature is divided into incremental steps that can be rapidly evaluated in the
field in collaboration with the customer. In this activity, potential customers
are selected to evaluate the first experiments. These customers usually have
a significant interest in the specific feature, either because of their request
or potential benefits. Customers in this step can have different degrees of
interaction, from an observer role to a more active role in the design of field
experiments.

“ “Some customers understand the need for field experiments in their network.
Because with experiments they can access earlier the latest functionalities and
improvements of our software.”” — Interview C

202 CHAPTER 11. PAPER G

Developm
ent

Pre-study

C
I

Internal
laboratory
evaluation

Sim
ulation

C
ustom

er
laboratory
evaluation

Passive
launch

Restricted
launch

O
ne-custom

er
gradual rollout

C
ustom

er
laboratory
evaluation

Internal Feedback channel

G
radual

rollout

C
ustom

er
request

M
arket

R&D goals

R&D organization

Internal validation

Single custom
er

 validation
M

ultiple custom
er

validation

Ideas

G
eneral

availability

C
ustom

er Feedback channel

A/B testing,
C

rossover exp.

A/B testing,
Q

uasi-
experim

ents,
C

rossover exp.

A/B testing,
C

rossover
experim

ents

N
ew

 features
Softw

are
corrections

N
ew

configurations

F
ig

u
re

1
1
.2

:
T

h
e

H
U

R
R

IE
R

P
ro

cess.
T

h
e

d
iff

eren
t

a
ctiv

ities
in

th
e

p
ro

cess
ca

n
b

e
o
rg

a
n
ized

in
to

fo
u
r

m
a
in

a
rea

s:
(1

)
th

e
R

&
D

organ
ization

(in
gray

),
(2)

in
tern

al
valid

ation
(in

oran
ge),

(3)
sin

gle
cu

stom
er

valid
ation

(in
green

),
an

d
(4)

m
u
ltip

le
cu

stom
er

valid
ation

(in
b
lu

e).
T

h
e

in
tern

al
feed

b
ack

ch
an

n
el

p
rov

id
es

con
tin

u
ou

s
feed

b
ack

from
th

e
q
u
ality

assu
ran

ce
activ

ities,
w

h
ile

th
e

cu
stom

er
feed

b
ack

ch
an

n
el

p
rov

id
es

feed
b

a
ck

from
fi

eld
ex

p
erim

en
ts

b
ack

to
th

e
R

&
D

o
rg

a
n

iza
tio

n
.

11.6. THE HURRIER CONTINUOUS EXPERIMENTATION PROCESS 203

11.6.1.2 Incremental development

After the pre-study, the development activities start. We divide the development
activities into three main groups, as discussed next.

New feature New features are intended to introduce new functionality in
the system. After the pre-studied, the feature is divided to be implemented
incrementally and with constant feedback validation from both the internal
procedures and feedback from the field in close collaboration with the customer.

New functionality is often designed as prototypes with a very limited scope
to have a first field validation before going through new iteration cycles.

“ “We always start with understanding the problem and trying to solve it in
the simplest possible way, and then before we start an expensive simulation
or a study how this interact with everything else to fully understand it, we
try to build a prototype and test it (in the field), the minimum scope, with
tremendous amount of limitations. Possibly, the prototype does not work with
this or that feature, but at least we can test if there is a gain or not... We are
not more efficient when it comes to building time, but we know in advance that
it works (in the real-world). That is the benefit of prototyping and real world
experimenting.”” — Interview I

New configurations New configurations consist of a larger category of
changes. It includes changes in existing static parameters of features, changes
in configuration parameters of features, or in proposing new configuration
parameters for the network. This type of activity usually does not require
extensive internal laboratory evaluation if these configuration parameters are
still in a predefined validated range. Some configuration proposals do not
require a new software build or even a new deployment since they can be
modified through existing interfaces in the software.

Software corrections Software corrections consist of bug fixes and other
modifications to address identified functionality faults or metric degradation.
If the fault is deterministic, then new test cases, simulation scenarios, and
laboratory procedures are introduced. However, as discussed in Section 11.5.4,
faults can present stochastic behavior or be specific to a particular network
configuration. In these cases, validation of the software correction is done in
collaboration with the customer.

11.6.2 The internal validation

The internal validation consists of quality assurance activities. These activities
are performed both before and in parallel with the customer validation and
the field experiments. Before the internal development reaches the customer
for a field experiment, the R&D organization conducts a series of internal
validation procedures to guarantee a minimum quality for first field deployment.
The internal validation before the customer field experiments is not aimed at
reaching a high degree of coverage as provided by a field evaluation. Instead,
this internal validation aims at capturing integration problems, interaction with
other features, and other common implementation errors. The first iterations of
the internal validation are considered a fast procedure. It targets guaranteeing

204 CHAPTER 11. PAPER G

an acceptable level of quality while minimizing the leading time to deploy
with the customer. In parallel to the customer validation activities, quality
assurance teams incrementally validate the development.

11.6.2.1 Continuous integration

Continuous integration (CI) is a mandatory internal validation activity. This
activity aims to identify integration problems and interaction of the feature
under development with a range of other features and many different hardware
configurations. This activity is part of all deployment processes at Ericsson,
regardless of the presence of field experiments or not. Continuous integration
at Ericsson has been discussed extensively in [243].

11.6.2.2 Simulation

The development of some features can be verified using simulators. Ericsson has
modeled several characteristics of its products and of the different environments
that the products can be deployed. The development of a simulator is an
intensive activity that requires extensive validation. Additionally, not all
conditions can be easily simulated or have a simulator available, and for those
conditions, an internal validation with simulation is not used.

11.6.2.3 Internal laboratory evaluation

Similar to the simulation activity, Ericsson has several laboratory testing envi-
ronments. The laboratory environments are designed to capture and verify a
large number of use cases, including software and hardware integration. These
cases give a good indication of how the deployed system will perform under
controlled circumstances. However, sometimes the feature under development
addresses corner cases or requires the complex interaction of live network
traffic. Those cases are often hard and expensive to recreate in an environ-
ment laboratory, and in those cases, the feature requires field experiments for
validation.

11.6.3 Single customer validation

The internal validation provides software with enough quality and verification
to be deployed in the field. However, as discussed previously, internal validation
activities cannot cover all the quality aspects of the system. Time and costs
constraints impose a limited number of scenarios that can be run in simulation
and laboratory evaluation. Additionally, controlled environments lack the
high complexity and variability seen in field deployments, such as in traffic
patterns, types, and a number of user equipment. They cannot assess customer-
specific KPIs (key performance indicators). The first field validation is done
in collaboration with a single customer, and it is usually the same one that
has been involved since the beginning in the pre-study phase. This customer
has a high interest in the development and success of the field experiment
and, therefore, collaborates to share field data in qualitative and quantitative
feedback.

11.6. THE HURRIER CONTINUOUS EXPERIMENTATION PROCESS 205

11.6.3.1 Customer laboratory evaluation

The first activity after the internal verification is the deployment of the software
for evaluation in the customer laboratory. The customer laboratory is run by
the customer and contains specific configurations to replicate its own network.
The customer can verify the software with its internal test procedures and Key
Performance Indicators (KPIs) in the laboratory. This step gives confidence
for the customer to deploy the software in its own network. This evaluation is
also considered a fast procedure since it does not cover all cases.

11.6.3.2 Passive launch

Passive launch, also known as a dark launch or a dark deployment [41, 244], is
a CE technique that consists of deploying the new feature or change in parallel
with the existing system. The new feature performs its task in the background,
and it is executed by the same traffic profile and inputs of the system. However,
its output and its main functionality are not exposed to the users. It is
used to provide an open loop verification of how the feature would behave in
production in systems where response parity is necessary, and the correctness
of the response can be evaluated. This activity is not mandatory, and it is often
seen as a time-consuming activity for smaller features and changes. However,
in mission-critical development, a passive launch can increase the confidence
level in the deployment, verify the system response, memory and CPU usage,
and the quality of the response with minimal to no risks for the end-users.

11.6.3.3 Restricted launch

Restricted launch corresponds to the deployment of the system in a low-risk
scenario that can help validate the development. The restricted scenario
can be the selection of systems so that if they fail, then the impact is small
on the final users (such as systems with high redundancy and safe fails).
Additionally, the restricted scenario can be a restriction in time. The new
feature is deployed only in low-risk periods, such as maintenance hours or low
traffic hours. If the deployed systems in the restricted launch are compared
to other equivalent systems, the customers and the R&D organization usually
follow a quasi-experimental design [33]. If the system metrics are compared
with the historical metrics or metrics after the restricted launch, the R&D
organization and customers plan for a cross-over experimental design [245].
If the tracked KPIs are end-user dependent, the R&D organization and the
customers can utilize A/B testing or another randomized factorial design to
evaluate the impact of the feature. In this last case, negative movements are
further investigated, while statistically non-significant and positive significant
movements give confidence for proceeding towards a larger experiment.

11.6.3.4 One customer gradual rollout

After a successful restricted launch, the customer has enough confidence to
make the gradual rollout of the feature to the whole network. This rollout can
be randomized, from lower to higher risk systems, or use another pre-established
procedure. Together with the manufacturer, the mobile operator can decide to

206 CHAPTER 11. PAPER G

run cross-over experiments or A/B experiments between each ramp-up or select
two previously known regions with high correlation to evaluate the deployment.
At the last stage of the gradual rollout, a full experiment is conducted to
evaluate the deployment. This evaluation can be used to verify the value of
the deployment and the quality aspects of the deployment. At this stage, the
R&D organization can decide to continually develop the feature towards its
full scope, running additional single and multiple customer experiments, or
abandon the idea and development and move to the next feature.

11.6.4 Multiple customer validation

After one customer validation, the R&D organization aims at iterating on the
feature to deliver values to multiple customers.

Suppose the field experiments with the first customer already provide
enough coverage and confidence in the solution regarding quality or value. In
that case, the R&D organization can decide to mark the feature for general
availability (GA), which means that the feature has the adequate quality and
therefore ready to be deployed by any customer. However, often a single
customer cannot cover all the necessary validation aspects of the feature, and
the R&D organization may select a number of additional customers that can
increase this coverage for more field experiments.

“ “We have some experiments with teams where they have the customer
involvement all the way (from early development). The problem with that is
that we develop features that are supposed to be globally and possible to use for
all our customers.”” — Interview B

Since the feature has already gone through field validation and has higher
confidence, some steps such as the passive and restricted launch are usually
not covered. The customer laboratory and the gradual rollout are similar to
the single customer validation. However, the R&D organization may focus on
identifying the corner cases to increase the feature coverage and the delivered
value by choosing different experimental designs. Additionally, due to the
significant differences between each customer network, these experiments are
analyzed individually and not combined.

After the multiple customer validation, the feature is fully documented
and marked for GA. At this stage, other customers can acquire or deploy the
feature in their networks fully or partially, gradually or at once. However, the
feedback to the R&D organization takes longer, as the development has moved
towards a new idea and other experiments.

11.6.5 The internal and the customer feedback channels

In the B2B context, the software manufacturer cannot always have direct access
to field data or user data. The HURRIER process centers all activities around
two main feedback channels to ensure the development team has access to all
necessary field data.

The internal feedback channel consists of reports and communication be-
tween the development teams and the operation teams. This feedback channel
provides quantitative data from the quality assurance teams, such as continuous
integration status, simulation reports, and laboratory test reports.

11.7. DISCUSSION 207

The customer feedback channel is an agreed communication channel between
customers and the R&D organization. It serves as a central source of feedback
that developers can get from the field validation activities with customers. The
provided feedback can be both quantitative and qualitative data. The customers
can control what information they provide, facilitating compliance with specific
regions’ regulations, such as GDPR, guaranteeing the anonymity and privacy
of their users, and controlling business-sensitive information. If a particular
development activity requires sensitive data from users, the customers can agree
to run analysis scripts on the data and only provide feedback. The customer
feedback channel can be implemented in several ways, from automated data
collection of instrumented software, direct contact between developers and
customers, or specialized customer units.

11.7 Discussion

This section discusses the research questions and the challenges and lessons
learned from retroactively applying the HURRIER process in the presented
examples.

11.7.1 RQ1:What are the types of experiments that are
conducted in Ericsson and that are relevant in the
development of mission-critical B2B systems?

In Section 11.4.1, we discussed four types of experiments that are commonly
conducted internally at Ericsson. All four types of experiments are conducted
in mission-critical B2B systems in close collaboration with the customers, as
exemplified by the examples in Section 11.5.

Business-driven experiments have been extensively researched in the context
of web-facing systems [2,7,32,72,227,232,246] and more recently in the context
of embedded and automotive systems [31, 64,67]. Business-driven experiments
are often used interchangeably with A/B testing in the web domain and often,
but not limited to, for changes in user interfaces.

The usage of regression-driven experiments has been discussed earlier by
Schermann et al. [41, 229]. They discuss the usage of regression-driven experi-
ments to detect functional problems that were not captured in internal testing,
performance regression, or testing the scalability of a feature. In our work,
we reinforce these aspects and present them as an integral part of the release
process in the HURRIER framework.

Tuning and optimization experiments are widely used in web-facing systems.
However, they are often categorized as business-driven experiments despite hav-
ing critical differences in the planning and conducting process. This distinction
becomes more evident when the customers have higher requirements in the
product configuration for their use, such as in mobile networks. In the telecom-
munication domain, optimization experiments are widely discussed, and [144]
and methods to automated this process is a current subject of research [30,234].

Customer support experiments have not been discussed in research lit-
erature before and present a new concept in experimentation. However, as
companies start to introduce computational intelligence features based on

208 CHAPTER 11. PAPER G

machine learning, the interdependence between the system, the data, and the
operational environment will increase and lead to more stochastic faults and
degradation that requires customer support experiments to identify the source
of the problem.

11.7.2 RQ2: What are the current continuous experi-
mentation practices used at Ericsson in the de-
velopment of mission-critical B2B systems?

In Section 11.4.1, we discussed several experimentation practices and techniques
identified in our data collection and contextualize them with existing research.
These practices and techniques were classified into experiment design and
analysis, variation assignment, implementation, and release techniques.

In the design of the experiment, research and web-facing companies have
often focused on controlled experiments (A/B testing or multi-variate testing)
due to the control over the deployed software version and the higher number
of users. However, as observed in the examples and the HURRIER process,
crossover and quasi-experiments have a significant role in experimentation in
B2B and mission-critical systems at Ericsson. In the B2B domain, experiments
need to be conducted with close collaboration with the customer. In these cases,
the customer often decides on the variation assignment and the sample size.
Additionally, features and metrics in the second experiment level (network) can
also have geographical restrictions. These restrictions limit the experimentation
design to crossover or quasi-experiments and the variation assignment to manual
and cluster-based assignment.

Although the variation assignment and release techniques are similar to what
is observed in other domains, there are some differences in B2B mission-critical
systems. For example, the automation of the release and rollback of software
is often undesired and restricted by the customer, that carefully monitors and
controls each modification.

The taxonomy presented by Auer et al. [233] describe characteristics of
A/B experiments and A/B experimentation platforms focusing on a specific
experiment iteration. In contrast, the activities and practices we discuss are
presented at a higher level of abstraction. For example, after a team in the
case company decides to run a business-driven controlled experiment with
complete randomization, with feature toggles in a gradual rollout, it is still
necessary to decide on the specific characteristics presented on the taxonomy
(variant id, duration, guardrail and success metrics etc.). It is also worth
noting that experimentation can be run and conducted ad-hoc, i.e., without
an experimentation platform [32]. While Ericsson has a tailored platform and
feature for conducting experiments in the first level (the user-level), ad-hoc
experiments are suitable for the second level, which requires a joint experimental
design with the customer since full randomization is often not possible. The
release might involve different techniques depending on the maturity of the
feature being experimented with.

11.7. DISCUSSION 209

11.7.3 RQ3: Can the HURRIER process can be used
to drive CE in mission-critical B2B systems at
Ericsson?

By observing the CE practices of different teams, we observed the key activities
that compose the experimentation process at Ericsson. The empirical data, the
set of practices, the concrete examples, documentation, and feature plans led
to the development of the HURRIER process model. The HURRIER process
represents a superset of the activities that are performed by these different
teams. A subset of the activities in the HURRIER framework was used in each
of the four types of experiments discussed in section 11.5. The requirements
and the availability of tools (such as simulators and test rigs) in both the
R&D organization and in the customers determine which set of activities are
instantiated.

The key aspects when deciding upon the activities and instantiating the
process are the time-length of the activity, the value it delivers when verifying
the system. Deployment activities, such as network optimization depend heavily
upon the existing conditions of the operator’s network. In those cases, extensive
laboratory testing and simulation activities deliver little value compared to
field experiments. The internal validation is kept to a minimum. The software
is validated only in terms of quality, guaranteeing that it does not influence or
deteriorate other features.

On the other hand, the development of mission or even safety-critical
features requires more extensive and lengthy internal validation, including
following specifications and legislation. In this case, simulations and labora-
tory evaluations play a major role in increasing confidence before the field
deployment. However, simulations and laboratory evaluations should be kept
to the minimum necessary to guarantee the safety and basic functionality of
the feature. Field experiments present a fast way to evaluate the feature and
increase coverage in the operating conditions, which is often not feasible, costly,
and time-consuming to implement in laboratory conditions. Deploying the
mission-critical feature in the field within maintenance hours where traffic
is minimal is another way to minimize the risk when the implementation is
deployed in the field for the first time. Therefore, it is not only that the feature
is deployed to a small subset of the network but also done at different times to
reduce the risk further.

The feature should be implemented incrementally, so its value can be
evaluated faster. Any evaluation of the delivered value should be left for the
field experiments. Suppose the feature’s minimum functionality does not deliver
the expected value. In that case, the feature can be abandoned without the
need to go through all the extensive work of developing, verifying, and even
certifying the full feature.

The HURRIER process differs from the already existing experimentation
process regarding the level of granularity and type of the activities. The
HURRIER adds and reinforces specific activities for deploying software that
needs to have high-quality assurance and in the B2B context. However, the
proposed HURRIER process does not contradict existing experimentation
processes since it is built on top of those models. For example, the execution
step of an experiment iteration in the RIGHT model is broken down into several

210 CHAPTER 11. PAPER G

activities such as customer laboratory evaluation, passive launch, restricted
launch, and one-customer gradual rollout. Although necessary for the context
of mission-critical systems and B2B context, these activities might not be
relevant for all startup experiments or web-facing companies that usually have
lower risks involved in the deployment and are more in control of the data
collection and deployment strategy than the customers. The HYPEX model
reinforces the iterative process to increase the value of the delivered software.
This is commonly seen in business-driven experiments. While the HURRIER
process supports this, it also supports customer support experiments involving
continuous iterations to add value.

The HURRIER process emphasizes that to continuously deliver high-quality
and validated solutions, two aspects are required. The first is the presence
of CI and CD. The second is the exposure of the system to live context and
collaboration with customers to obtain feedback. These two aspects provide
faster and more valuable feedback than focusing only on in-house validation
and predefined testing scenarios.

11.7.4 RQ4: What are the current CE challenges and
opportunities in mission-critical B2B systems ob-
served at Ericsson?

Running CE in the B2B domain and mission-critical features presents many
opportunities and challenges for both the company and the customers.

One of the challenges in CE at Ericsson is that any new deployment requires
explicit approval and consent of the customers. For that, the customer needs
to understand the need for the deployment, have a clear vision of how it can
impact the system, and the potential benefits. However, successful experiments
and transparency between the R&D company and the customer can help to
build a trust relationship. A high trust relationship can facilitate running field
experiments and evaluating new ideas for which the direct benefit is not yet
clear for the customer. CE in the B2B domain also requires close collaboration
between companies and customers since the field experiments are run in the
customer premises. The collaboration happens from the pre-study to the
gradual rollout phase.

Depending on the level of interaction, trust between the R&D team and the
customer, and the level of interest in the feature, customers can help shape the
development activities and even steer the development of the feature. While
this can bring benefits, it also creates some challenges when adapting the
feature for general availability, as seen in interview B section 11.6. For instance,
customers that have steered the feature since its conception might have some
sense of ownership and see some decrease in value when the feature is made to
work in conditions beyond their network.

CE practices allow higher coverage and confidence in the development solu-
tion in mission-critical features, reducing the number of problem reports after
general availability, and minimizing the costs of developing and maintaining
an extensive simulation and laboratory solution. However, the responsibility
for managing the risks of a field experiment in the B2B context relies on the
customers, which requires the company to have a close collaboration and build
a high-trust relationship.

11.8. CONCLUSION 211

CE is not seen only as positive for the case company but also the customers.
For the company, CE helps to reduce the time-to-market as features are
continuously validated with field data in terms of value and functionality. Other
perceived advantages are: (1) the reduced time for a problem report to be
addressed by the development team; (2) an increased sense of accomplishment,
as the functionality is seen in the field in a shorter period; and (3) the higher
sense of autonomy that comes with a higher trust from the customers, as the
development teams can propose and test new ideas in the field faster. For the
customer, CE has allowed them to test new functionalities, evaluate ideas and
understand the impact of those ahead of the release, give them a competitive
advantage on their corresponding markets.

11.8 Conclusion

In collaboration with Ericsson, we conducted a case study research method to
understand how CE is used in B2B mission-critical systems. The case study
investigated the continuous experimentation practices of multiple teams in
different locations and countries working on the 4G mission-critical product.

This paper provides four main contributions. First, we classify the different
types of experiments, practices, and techniques used in B2B mission-critical
systems. Then, these techniques are discussed in the context of existing research
in other domains. We identified four types of experiments that are conducted,
business-driven, regression-driven, optimization, and customer support experi-
ments. Second, we present and analyze each of the four types of experiments
with four examples. The examples show the general experimentation process fol-
lowed by the team as well as the usage of the different practices and techniques.
Third, based on the empirical data we inductively derived the HURRIER
process (High valUed softwaRe thRough contInuous ExpeRimentation), a
process that combines different experimentation techniques and practices to
deliver high-quality solutions that the customers value. At Ericsson, subsets
of the HURRIER process helped the R&D organization to validate feature
functionality, increase coverage, identify and trace stochastic faults and increase
the confidence in the developed solutions much faster than without the field
experiments. Finally, we discuss the challenges, opportunities, and lessons
learned from applying CE and the HURRIER process in B2B mission-critical
systems.

CE has the potential to deliver value and higher-quality solutions. However,
in the B2B domain, this can only be achieved with high trust and close collab-
oration with the customers. Therefore, we plan to introduce the HURRIER
process and evaluate it in industries in different domains in future work.

Acknowledgments

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation and by the Software Center. The authors would
also like to express their gratitude for all the support provided by Ericsson.

212 CHAPTER 11. PAPER G

Chapter 12

Discussion

We outline in this section how this thesis addresses the two objectives proposed
in section 3.1 and discuss each research question in detail.

12.1 Objective 1

Analyze how software companies can support and optimize their
systems with automated experiments.

In chapter 5, we have shown a software architecture capable of supporting
automated experiments. Architecture qualities considerations such as external
adaptation, performance reflection, and an explicit learning component were
central for the industrial validation of this architecture in collaboration with
Ericsson [30] and Sony Mobile [29]. The software industry aims to integrate
experimentation with their existing systems and technologies, and external
adaption through experiments is fundamental to keep control of the software
complexity and scale experimentation. Chapter 6, discussed the specific use
of the proposed architecture to optimize a Long-Term Evolution radio base
station. The complexity of the software validation, the use of custom and
operator-defined metrics, and other factors such as memory constraints demand
an external adaption mechanism for online optimization.

With reinforcement learning algorithms (such as multi-armed bandits) or
another heuristic optimization algorithm (such as an evolutionary algorithm),
online optimization is often associated with increased technical debt [104]. It
often requires explicit learning mechanisms to update the algorithms without
losing already learned solutions. Chapter 8 discussed other implementation
considerations, especially in the context of multi-armed bandits. For instance,
its use in long-term experiments requires thinking about user consistency,
time variation (non-stationary bandits), and the ability to perform a hot start
with a learning component when the algorithms are updated. Chapter 8 also
provides an extensive discussion of the misuse of multi-armed bandits in online
experimentation. While there are many valid and successful use cases, the
indiscriminate use of multi-armed bandits as a substitute for randomized field
experiments can lead to many undesirable consequences, such as reducing the
power of the analysis, increased error type I, or lack of tools to detect other
experimentation problems.

213

214 CHAPTER 12. DISCUSSION

One area of active development in online optimization is the development
of algorithms for searching the parameter space. When formulating the online
optimization problem, as a search-based black-box problem, [29, 51, 53], practi-
tioners are presented with a several algorithm families without any systematic
procedure to guide their choice. This situation is complicated by the lack of
statistical comparison between families of algorithms and by the low quality of
the statistical analysis. To address the specific problem of the statistical analy-
sis, we propose on chapter 9 several Bayesian statistical models can be used to
provide more interpretable analysis and move beyond the problems associated
with null hypothesis testing in the algorithm comparison domain [86–89,91].

Chapter 7 takes a more holistic view of the automated optimization problem
and analyzes the field experimentation process from the Experimentation and
Analysis team at Microsoft. We observe that multiple activities conducted
within a single experiment iteration can and should be automated to reduce the
costs of each iteration, allowing the organization to scale its experimentation.
In specific, automation is mostly done in the experiment execution and analysis
phases. For instance, pre-quality checks, alerting, post quality checks, ramp-up,
randomization, analysis etc. However, hypothesis generation and prioritization,
decisions, metric design and the feature coding are manually conducted and
there is seen as low return investment areas for automated experiments.

We discuss below the specific research questions regarding the first objective
and proposed in chapter 3.

12.1.1 RQ1: What are the characteristics of an auto-
mated experimentation architecture?

This research question is discussed in chapter 5. We focus on identifying
software architectural qualities from existing systems based on a literature
review in terms of the characteristics.

RQ1a: What architectural software qualities support automated ex-
perimentation? We identified the following software architectural qualities
in the research literature. These qualities are listed in terms of relative impor-
tance for the development of an automated experimentation system. External
adaptation control, data collection as an integral part of the architecture,
performance reflection, explicit representation of the learning component, de-
centralized adaptation, and knowledge exchange.

RQ1b: What are the existing software architectures that support
these qualities? We have identified 21 architectures that are based on 7
different approaches. These architectures are listed in the table 5.1. From those
architectures, the FUSION [103] implements the largest number of the qualities
according to the relative importance. The FUSION architecture served as
inspiration for developing the experimentation framework proposed in chapter
5 and also used and discussed in publications [29,30,66].

12.1. OBJECTIVE 1 215

12.1.2 RQ2: How can we utilize automated experimen-
tation to optimize an existing software-intensive
systems?

In chapter 6 we investigate the use of online optimization experiments in the
telecommunication domain. The optimization of a LTE radio base station
requires tuning a high number of calibration parameters, capturing operator
business goals and KPIs that might change. Additionally, since these radio base
stations are online and calibration can affect the final user, regret minimization
is also required.

By utilizing an implementation of the architecture framework proposed in
chapter 5 and the extension of the algorithm proposed in [29] (the mLG-HOO al-
gorithm), we demonstrated the viability of utilizing an external experimentation
system capable of regret minimization while calibrating multiple parameters.
The proposed approach optimized a common metric (random access success
ratio) up to 46.3 % compared to the default parameters in a testbed.

12.1.3 RQ3: What are the main components to run trust-
worthy online controlled experiments?

In chapter 7, we investigate the experimentation process used in the Analysis
and Experimentation team at Microsoft. The studied process focuses on how
to scale experimentation with a trustworthy foundation. This process involves
two main components, the experimentation activities and the evolution of the
metrics. While the experimentation activities allow non-experts to conduct
trustworthy experiments effectively, the role and evolution of metrics ensure
that the experiments do not suffer from construct validity problems and are
aligned with higher-level business goals.

RQ3a: What are the set of activities that are conducted in each ex-
periment iteration? The identified experimentation activity model divides
the experimentation process into three stages: development, execution, and
analysis. While the development and analysis stages are mostly human-driven
(developers, experimentation, and product owners), the execution stage in-
volves a high number of automated activities, from computing quality check,
ramp-up, randomization, computing metrics movements, and generating alerts
that require human intervention.

RQ3b: What is the role and lifecycle of metrics in the evolution of
experiments? Metrics have an important role in the evolution and impact
of experiments in software development. The use of company and team-wide
metrics capture business long-term goals and are often subject to constant
revision and revaluation. While not directly used for decisions, an experiment
also requires several additional metrics for verifying data quality, business con-
straints and supporting local and lower-level diagnostics. These metrics play an
important role in ensuring that an experiment is trustworthy. Experimentation
metrics follow a specific lifecycle: creation, evolution, maturity and phase-out.
New guardrails and overall evaluation metrics creation are often created in
parallel to existing ones. Due to the higher risk in influencing decisions, these

216 CHAPTER 12. DISCUSSION

metrics are first evaluated using historical data, to understand their impact
in well-understood experiments and later moved to the online evaluation. In
the maturity phase, metrics are updated periodically to ensure that definition,
computational time, sensitivity, and synchronization are correct and improved
and that they still capture more subjective business goals.

12.1.4 RQ4: How are multi-armed bandit (MAB) algo-
rithms used in online field experiments?

Chapter 8 explores how MAB algorithms are used in practice in online field
experiments. Practitioners often discuss MAB as an extension and a better
alternative to A/B testing as it minimizes potential regret losses and have a
high number of extensions. However, in practical implementations, MAB is also
associated with a number of pitfalls and restrictions that should be addressed to
lead to valid interpretations and results. The following sub-research questions
address these issues

RQ4a: What are the restrictions and pitfalls associated with MAB
algorithms applied to software online experiments? In the multiple
case study presented in Chapter 8, we identified several restrictions and pitfalls
associated with MAB experiments and potential strategies to address them.
We identified nine reasons that lead to three main restrictions and pitfalls. For
example, näive implementations, violation of assumptions, and MAB use in
exploration problems are associated with an increase in type I error. The lack of
sample ratio mismatch, the increased regret in the presence of Simpson Paradox
and the increased complexity in ramp-up are restrictions when detecting and
diagnosing experimentation problems. Finally, adaptive allocation based on a
single metric, user consistency, and communicating experiment results increases
the complexity of the design compared to traditional A/B experiments. These
points are summarized in table 8.2.

RQ4b: What are the decisions involved in the design of MAB-based
online experiment? The identified restrictions and pitfalls requires that
practitioners evaluate different aspects before choosing MAB-based experiment.
In chapter 8, we identified five different aspects to consider before choosing a
MAB experiment. The first aspect to consider is the goal of the experiment
(learning, innovation, or optimization). The second is the associated costs and
risks of making type I and type II errors. The third is how well understood is
the problem and well it matches the assumptions of the potential algorithms,
The fourth aspect refers to the chosen decision metrics and if they can be
grouped in a single metric. Finally, the last aspect refers to the duration of the
experiment in terms of time, if it is limited time or long-term experiments, and
how it affects user consistency for recurring users. These aspects as well as the
different decisions are summarized in table 8.3.

12.2. OBJECTIVE 2 217

12.1.5 RQ5: How can we improve the conclusion validity
on the analysis of optimization algorithms with
benchmark functions in different domain-specific
research questions?

The success of an automated experimentation system is highly dependant on the
availability of optimization algorithms that can be effectively used in industrial
and practical applications. With a large number of optimization algorithms
available, practitioners rely on research results from algorithm comparison
papers and competitions with artificial benchmark functions. One example is
the selection and evaluation of Google’s Vizier algorithm used for automated
experimentation [247]. The authors validate their choice of experimentation
algorithm based on the 24 Black-Box Optimization Benchmarking (BBOB)
functions [62]. However, algorithms are often poorly compared are subjected
to many conclusion validity considerations (as discussed in the data analysis
section 3.4.2).

In chapter 9, we provide five Bayesian statistical models to answer common
questions regarding the analysis of optimization algorithms as well as addressing
many of these conclusion validity threats that arise from misuse of frequentist
statistics. All the discussed models include random-effects terms to model the
intra-correlation introduced by repeated measures of the benchmark functions.
The proposed models are used to evaluate the probability of solving a problem
(a binomial model); to evaluate the relative improvement (a linear regression
model); to rank algorithms (a Bradley-Terry model), to estimate the number
of evaluations to converge to a solution (a Cox’s regression model); and to
compare multiple algorithms for CPU time (robust regression model). All
the data and models are reproducible and available in the online appendix at:
https://davidissamattos.github.io/statscomp/.

With the proposed models, researchers can ask questions that go beyond
differentiating statistical significance between algorithms and evaluate the
different impact benchmark functions can have on the obtained results [248].
We expect these models will increase the validity of the conclusions obtained
in algorithm comparison and algorithm competition.

12.2 Objective 2

Analyze how non web-facing companies can adopt continuous exper-
imentation as part of their development process.

While experimentation is rather well understood in the web-facing domain,
there are many specific challenges to embedded systems and business-to-business
systems. These challenges are leading companies to adopt different practices
for introducing and adopting experimentation as an integral part of their
development process.

In chapter 10, we have explored some of the perceived challenges and
proposed solutions in the embedded systems domain. It is interesting to
observe, that while many technical and business challenges are unique to these
domains, organization challenges share many common aspects with web-facing
companies.

218 CHAPTER 12. DISCUSSION

In chapter 11, we identified many experimentation techniques that are used
and address specific challenges of business-to-business mission-critical systems.
In addition, we have developed an experimentation process for these systems.
This process emphasizes that field with experiments can not only validate
business and development ideas but can also be used to increase software
quality, tune systems and identify stochastic failures.

In the context of this second objective, below we the specific research
questions proposed in chapter 3.

12.2.1 RQ6: How can the embedded systems industry
adopt continuous experimentation in their devel-
opment process?

To adopt experimentation, the embedded systems industry needs to better
understand the challenges that prevent and limits the use of experimentation
in the development process, and what are the existing and potential solutions
to address these challenges. This two-part process is investigated in detail in
the following sub-research questions.

RQ6a: What are the recognized challenges towards continuous ex-
perimentation faced by the embedded systems industry? Chapter 10
identifies twelve different challenges categorized in three perspectives, technical,
business, and organizational.

From the technical perspective, we identified four main challenges:

[a] Lack of over-the-air (OTA) updates and data collection. Embedded sys-
tems companies commonly develop and commercialize embedded systems
without integrating OTA data collection and updates. This prevents the
development organization to perform iterative experiments and evolve
the product after launch.

[b] Lack of experimentation tools that integrate with their existing tooling.
The existing tools for conducting experiments in software systems are
highly tailored for the web-facing domain. Companies often sell software
development kits based on web and mobile technologies (e.g. Javascript,
Android, or iOS), where common metrics are automatically collected and
ready to be used. However, for other domains, these tools and metrics
are not suitable and the lack of existing alternatives hinders the adoption
of experimentation.

[c] Expensive testing environments. For companies working in the mission
or safety-critical domain, software must be validated in a wide range of
testing scenarios, which has a time-associated cost to the development.
While the treatment software is not experimental software (as in terms
of validation), iterative experiments increase the burden and the costs in
testing environments especially if manual validation is mandatory.

[d] Experimentation constraints in real-time and safety-critical systems. The
presence of an experimentation system collecting and transmitting data
might be subjected to additional certification and regulatory constraints.

12.2. OBJECTIVE 2 219

Additionally, it can substantially decrease the performance of some sys-
tems to an unacceptable level for the product application.

From the business perspective, we identified five main challenges:

[a] Metric definition and validation. Due to the long tradition of conducting
experiments, the web-facing domain has already identified many metrics
that serve as a proxy for business decisions. Due to the lack of experimen-
tation expertise in the embedded systems domain, the existing metrics
are closer to system logs than connected to business goals. Metrics should
be evolved and validated, as discussed in chapter 7, to capture business
assumptions and goals.

[b] Privacy restrictions. Current regulations on collecting and sharing data
add an additional layer of complexity in planning and designing systems
that are able to conduct experiments. The granularity of the collected
data and the extent to which it can identify an individual affect the
design and type of experiments.

[c] Lack of sharing data in B2B solutions. With exceptions [249], most web-
facing software is designed by the company in a business-to-consumer
setting. The company has controlled of the software and the customer
and user are the same. However, it is common for embedded systems
companies to have hardware and software components from third parties.
In addition, in business-to-business contexts, ownership of the data is
distributed between multiple stakeholders. Without agreements, the lack
of sharing data can prevent companies from experimenting with parts of
the software and compute relevant metrics.

[d] Lack of insights into the collected data. Even though most companies
have data collection and instrumentation in place they were designed
mainly for troubleshooting purposes and not for understanding customer
behavior. Combining with the challenge on metric definition and valida-
tion, troubleshooting data lack insights on how to increase the delivered
value of the software and support business decisions.

[e] Long release cycles. The lack of OTA, the expensive testing environments,
and the number of software variants [31] (which hinders continuous
integration and deployment to a large extent) results in longer release
cycles. Long release cycles prevent results from experiments from being
applied, unsuccessful experiments from being stopped, existing metrics
from being validated, and new metrics from being introduced.

From the organizational perspective, we identified three main challenges:

[a] Managing multiple stakeholders during the experiments. While managing
multiple stakeholders is a challenge also in the web-facing domain, in the
embedded systems experiment owners also need to coordinate collabora-
tion with systems architects, electrical and mechanical engineers.

[b] HiPPO (Highest Paid Person Opinion). Development decisions are im-
posed top-down without considering existing evidence. These decisions
come in the form of requirements and specifications and are often hard
to modify in Waterfall and V-model based development processes.

220 CHAPTER 12. DISCUSSION

[c] Repetitive tuning experiments repetitive experiments with highly quali-
fied engineers. In one of the case companies, search-based optimization
experiments were conducted manually by highly qualified engineers. To-
gether with the lack of integrated tools this significantly increases the
cost of each experiment iteration.

The data from chapter 10 was collected in 2017. Since then, we have
researched with other companies and identified the set of additional challenges.
While specific challenges to the automotive domain are discussed in [31, 42]
below we list two additional general challenges.

• Number of variants. Most software companies that run experimentation
often design experiments that are hardware agnostic, i.e. changes in
the underlying hardware should not influence the experiment outcome.
Nevertheless, they still compute metrics specific to the hardware environ-
ment to identify faults that might arise. However, the embedded systems
domain utilizes a wide range of specialized software for each hardware
configuration that depends on the region, supplier, etc. In many cases,
such as the automotive [31] and telecommunication domain [69], the high
number of software variants creates a barrier to compare nearly equivalent
systems. In practice, results are difficult to generalize to other variants
and the number of effective samples for an experiment is also reduced.

• Available sample size. In connection to the number of variants and the
B2B domain, the embedded systems domain does not have the large user
base commonly seen in online field experiments. In these cases, it is
required to conduct experiments with higher control of external factors
(i.e. controlled experiments), compensate from known sources of variance
(to increase metric sensitivity), balance the experimental groups [250]
during design (to reduce sample imbalance), and alternative designs (such
as paired and crossover).

RQ6b: What are the recommended strategies to facilitate the use of
continuous experimentation in the embedded systems domain? The
identified solutions and potential strategies can be categorized as development
process changes, data handling changes, and architectural changes.

In terms of development process change strategies, continuous experimenta-
tion requires adopting agile software development to embrace the changes and
adjust to hypotheses that fail to deliver value to customers. Ethical guidelines
are also required and should be incorporated in the development process to
address both privacy concerns and mitigate experiments that can be prejudicial
or discriminatory to certain users. Both the EDAX model [26] as well as the
HURRIER model, discussed in chapter 11, provide a framework to address the
use of experiments in expensive testing environments and in mission-critical
systems.

Data handling strategies address challenges related to how to generate
insights from the collected data while complying with exiting data regulations.
In terms of data sharing, one solution proposed by companies is the creation
of ecosystems that facilitate collecting data and sharing it among partners in
different organizations. Companies are also investing and incorporating data

12.2. OBJECTIVE 2 221

scientists in teams to exploit the potential of machine learning applications
and increase the understanding of the existing and how to evolve them.

Finally, in terms of architectural change strategies, companies can benefit
from the architectural decoupling of the hardware design and the software
design. While some of the companies have used this strategy, this process
should be conducted with experimentation and data sharing in mind. It can
potentially lead to the challenge of the lack of sharing user data between
different components of the same application. The ability to perform OTA
updates and data collection infrastructure is seen as mandatory for most
companies. However, it is not clear for some systems and applications if the
potential benefits can be overcome the incurring costs of connectivity.

12.2.2 RQ7: How experimentation can be conducted in
mission-critical business-to-business systems?

This general research question and the relevant sub-research questions were
discussed in chapter 11.

RQ7a: What are the types of experiments that can be conducted
and that are relevant in mission-critical B2B systems? In the case
study provided in chapter 11, we have identified four types of experiments that
are conducted and relevant to the development of mission-critical B2B systems.
The types of experiments are:

[a] Business-driven experiments, which aim at validating business ideas and
the impact and value it delivers to customers.

[b] Regression-driven experiments, which aim at understanding functional
aspects that were/cannot be validated in internal testing. These experi-
ments are intended to increase the quality aspects of the software.

[c] Tuning and optimization experiments, these experiments aim at identify-
ing configuration aspects that can be tuned to increase the value delivered
by existing features, without a re-validation or deployment. This type
of experiment has been the focus of most automated experimentation
research such as the empirical evaluation described in chapter 6.

[d] Customer support experiments aim at identifying stochastic faults and
degradation that occurred in the customer operating environment. These
are often conducted by customer support in collaboration with the cus-
tomers.

RQ7b: What are the current continuous experimentation practices
used in mission-critical B2B systems? In chapter 11, we identified four
groups of practices and techniques in experimentation: experiment design and
analysis, variation assignment, implementation, and release.

While randomized experiments are one of the most used techniques due to
their simplicity, and higher internal validity (compared to the other practices),
embedded, mission-critical and B2B systems can have additional restrictions

222 CHAPTER 12. DISCUSSION

that prevent them to use randomized experiments. Besides randomized experi-
ments, we identified crossover, multi-armed bandits, quasi-experiments, and
optimization designs. In variation assignment, we identified manual assignment,
complete randomization, and cluster-based randomization. In terms of imple-
mentation techniques, although, software versions and traffic routing are used
techniques, they allow less flexibility in the design and scaling than feature
toggles. Canary release, passive deployment, gradual rollout and ring-based
releases are common techniques used in both the web and non-web domain.
In addition to these, we also identified the use of time-window releases, which
restricts the experimentation and release period in lower-risk time windows.

RQ7c: What process can be used to drive CE in mission-critical
B2B systems? Chapter 11 presents and describes the HURRIER process
model. This model represents a superset of the activities that a team can use
to run experiments in collaboration with customers. The HURRIER process is
built on top of the models discussed in section 2.5 and can be used for all four
types of experiments (business, regression, optimization, and customer support
experiments).

The HURRIER model emphasizes the integration of CI, CD, customer
feedback, and collaboration, and early exposure of the system to live contexts
are necessary to deliver high quality and validation solutions continuously.

RQ7d: What are the current CE challenges and opportunities in
mission-critical B2B systems? Among the challenges presented in chapter
10, we identified 11 additional challenges and opportunities for continuous
experimentation in mission-critical B2B systems. The major challenge is to
build a high-trust relationship with the customers. For CE to be successfully
implemented, there is a need if a high degree of collaboration and transparency
between the customers and R&D organization.

In terms of opportunities, CE allows the R&D organization to achieve
higher coverage and confidence in the developed solution. However, managing
the risks in the B2B context still falls in the customer’s hands. This emphasizes
again the need for a high-trust relationship. Despite the non-widespread use,
CE is seen as positive by customers as it reduces the time-to-market of features
that they understand and value from the early stages of development

Chapter 13

Conclusion

This thesis studies the topic of experimentation in software-intensive systems
from two main objectives.

In the first objective, we analyzed how software companies can support
and optimize their systems through automated through the perspectives of
the software architecture, the algorithms for the experiment execution, and
the experimentation process. We have presented a software architecture for
automated experiments in chapter 5 and used this architecture in an industrial
context for the automated optimization of a radio-base station in chapter 6. In
chapter 7, we identified the different activities of an experimentation process
and the lifecycle metrics and impact of metrics in the trustworthiness of an
experiment iteration. In chapter 8, we identified common pitfalls and solutions
in the adoption of multi-armed bandits in online experiments. MAB-based
experiments are one of the base algorithms for automating experiments with
regret bounds. Chapter 9 presents statistical models for the validation of
optimization algorithms. These models are intended to increase conclusion
validity in benchmarking algorithms used in automated experimentation.

In the second objective, we analyze how embedded systems companies
can adopt continuous experimentation to validate and deliver value to their
customers continuously. This is investigated from the perspectives of the
software development process and focuses on the experimentation aspects that
are distinct from web-facing companies. In chapter 10, we explore common
challenges and potential strategies for the adoption of experimentation in
embedded systems. These challenges and solutions were identified both in
industrial and research context. In chapter 11, we present different types
of experiments and practices used in mission-critical systems. In this last
chapter, we also introduce the HURRIER process. This process aims at
combining quality assurance techniques common in mission-critical systems
with experimentation practices to achieve higher quality, deliver value to
customers and final users, identify stochastic faults and optimize systems based
on field data.

In the remainder of this chapter, we present potential research and future
work in the area of experimentation.

223

224 CHAPTER 13. CONCLUSION

13.1 Future work on experimentation.

While we have contributed to many different aspects of experimentation, there
are still many open problems. In this section, we highlight a few possible
directions for research on experimentation.

13.1.1 Automating experiments.

While, in this thesis, we have mainly discussed the use of sequential optimization
experiments (chapters 5, 6, 8 and 9) and parts of the experimentation execution
that can be automated (chapter 7), there are multiple additional characteristics
of automating experiments that can be further investigated.

13.1.1.1 Experimentation ontology

Drawing inspiration from Soldatova et al. in biological systems [251,252], an
automated experimentation system refers to a system that is able to carry
out cycles of scientific controlled or field experiments. To conduct scientific
experiments a system, the system should be able to follow a domain-specific
instantiation of a ontology of scientific experiments. While there are no
guidelines or ontology for experiments, as there are in other areas, in software
systems the goals proposed by Soldatova et al. are applicable:

• to formalize the concepts involved in an experiment and identify the
essential metadata for the experiment description and repeatability.

• to provide a controlled vocabulary for the user of the system.

• to organize the information and knowledge in different meta-levels so
the system has the capability of updating the knowledge base, plan and
execute multiple experiments and access results of the experiments.

• to design a database for the storage of experimental data and track the
experiment execution.

While some of these goals have been applied in the design of experimentation
systems [21,22,65,66,161], research has still not provide a systematic framework
and an ontology for experiments.

13.1.1.2 Hypotheses generation

The current work on automated experimentation has focused on the gener-
ation of hypotheses in terms of parameters change. While this is valid and
appropriated for optimization of existing features, it has not been applied for
more general experiments. While, this hypotheses generation is one of the
core challenges for fully automated experiments, it does not necessarily has
a high return on investment for companies. The hypotheses for new features
usually come from competition and from users [27] and might require a few
development and experiment iterations to bring value to the product. The new
iterations are complemented with qualitative feedback and increase the number
of experimentation cycles. As discussed previously, most software companies
are looking at automating their experimentation pipeline to reduce the costs of
each experiment iteration in order to run more experiments simultaneous.

13.1. FUTURE WORK ON EXPERIMENTATION. 225

13.1.1.3 Counterfactual analysis

Currently, the R&D organization at companies can generate more hypotheses
than they can run experiments. While there isn’t a strong need for more
hypotheses generation there is a need for hypotheses prioritization and better
understanding of the potential impacts of a change before an experiment is
conducted.

In this scenario, an emerging topic in research is the application of coun-
terfactual analysis based on historical data. Counterfactual analysis aims to
answer questions like: “How would the system have performed if, when the data
was collected, we have replaced changed M by change M’ without incurring user
reactions” [110].

Analysis of counterfactual questions allows the R&D team to replay histori-
cal data of the users (the assumption that the user did not change its behavior
due to the system modification) on a modification of the system and observe
the potential impact. The results can be used to prioritize modifications that
can lead to higher return-on-investment.

To be able to replay historical data, the R&D organization needs to have a
model of how the user behaves with the system, such as a structure equation
model [253] or a Bayesian network model [110]. Counterfactual analysis are
currently used in the area of ad-placement and in search engines [110,254–256],
where companies already have good statistical click models [257], large amount
of experiment and historical data.

Research on experimentation can take results and methods used in search
engines and ad-placement to provide new tools for prioritization of experiments
in different applications.

13.1.2 Small-sample experiments

Experimentation in software systems has started and flourish mostly on the
web-domain for a number of reasons, such as the early adoption of an agile
mindset, continuous integration, and data collection. However, one of the
aspects that were decisive for its success, specially in large-scale companies is
the number of users available for conducting field experiments.

However, for many companies, in particular embedded systems companies,
the number of connected users is impractical and presents as a great barrier for
the adoption of experimentation. In diverse populations, random samples for
each experimental group can lead to random imbalance [161] and this problem
is augmented in small samples. Random imbalance consists of experimental
groups that are not comparable in respect to a set of metrics prior to conducting
the experiment. While A/A tests can help identify random imbalance and lead
to a new re-randomization, it essentially does not change the problem faced
and can significantly increase the time to conduct experiments. For large user
bases, online companies have relied in historical A/A tests to identify rash
seeds that generates more balanced groups [161].

However, research on different fields have already provided a number of tech-
niques to address group imbalance in experimental designs. These techniques
are broadly classified as minimization techniques [258–261]. With minimization,
experimental group allocation does not solely rely on chance but rather the

226 CHAPTER 13. CONCLUSION

groups are designed to reduce any difference in known or suspected covariates
that can influence the outcome.

Among these techniques, we can divide minimization in two groups: pre-
experiment group allocation and sequential allocation. Pre-experiment group
allocation utilizes information from the experimental subjects, such as the
known or suspected covariates that can influence the outcomes, and creates
two pre-determined groups that minimizes the impact of the covariates [106].
Pre-experiment group allocation is useful when a number of subjects are already
available and information on them is already collected.

Sequential allocation aims to achieve minimization as the subjects sequen-
tially come to the experiment. Therefore, instead of utilizing information of
the experimental subjects prior to the experiment to divide the groups, it
utilizes this information to create the best minimization allocation dynamically.
Sequential allocation is useful when we do not have information of which sub-
jects will be part of our experiment and information and group allocation is
conducted as new subjects participate [260].

Both minimization techniques can have a high impact on how experiments
are conducted within embedded systems. We have been exploring how the
Balance Match Weighted technique [106] can be used to generate pre-experiment
balanced groups in automotive A/B testings. This technique has been suggested
in our previous work [31] and is described in more detail in paper p [250].

13.1.3 Longitudinal experiments

Research on experimentation has mainly focused on how metrics in average are
affected by treatments. By focusing on statistical testing, companies inherently
assume that these metrics are invariant across time during to simplify the design
and analysis process. However, such assumption can lead to overestimating the
effects of treatments and which can lead to potential decision errors [38,262].
To address problems that come from failing to meet this assumption, companies
often consider experiments in the average of time periods know to affect the
business, e.g. over a week to compensate for the difference of weekdays and
weekends, or month to compensate the difference between when customers
receive their salary.

However, despite the availability of statistical methods to address such
time differences (such as panel data and time series analysis [263]), they
are not commonly used in the context of experimentation. Future work on
experimentation can benefit from addressing how to formulate dynamic effects
problems and incorporate them into experimentation systems. Incorporating
seasonality effects, trends and outliers in time events can improve the sensitivity
of experimentation metrics, increase the understanding of time-related effects
on the development and launch of new features.

13.1.4 Causal inference beyond experiments

Experimental designs are the goal of any organization aiming for causal software
development, there are many situations and decision points where we cannot
conduct experiments [264].

13.1. FUTURE WORK ON EXPERIMENTATION. 227

One of the basic assumptions for causality is the exchangeability assumption.
The exchangeability assumption refers to the conditions in which conditional
independence relationship between the treatments, potential outcomes and
the possible confounding variables [264,265]. While carefully designed experi-
ments designs fulfill the exchangeability assumption, it is possible to achieve
exchangeability and causal inference in observational studies.

Even in non experimental contexts, organizations can identify potential
confounds and utilize statistical model to infer causality. We see a poten-
tial to use of methods such as differences-in-differences [266] and regression
discontinuity [267] to improve causal software development.

228 CHAPTER 13. CONCLUSION

Bibliography

[1] CRediT, “CRediT (Contributor Roles Taxonomy).” [Online]. Available:
https://www.elsevier.com/authors/policies-and-guidelines/credit-auth
or-statement

[2] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Con-
trolled experiments on the web: survey and practical guide,” Data mining
and knowledge discovery, vol. 18, no. 1, pp. 140–181, 2009.

[3] A. Fabijan, H. H. Olsson, and J. Bosch, “Early value argumentation and
prediction: An iterative approach to quantifying feature value,” in Inter-
national Conference on Product-Focused Software Process Improvement.
Springer, 2015, pp. 16–23.

[4] R. Kohavi and S. Thomke, “The surprising power of online experiments,”
Harvard Business Review, vol. 95, no. 5, pp. 74–82, 2017.

[5] H. H. Olsson and J. Bosch, “The hypex model: from opinions to
data-driven software development,” in Continuous software engineer-
ing. Springer, 2014, pp. 155–164.

[6] A. Fabijan, H. H. Olsson, and J. Bosch, “Customer feedback and data col-
lection techniques in software r&d: a literature review,” in International
Conference of Software Business. Springer, 2015, pp. 139–153.

[7] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “The right
model for continuous experimentation,” Journal of Systems and Software,
vol. 123, pp. 292–305, 2017.

[8] ——, “Building blocks for continuous experimentation,” in Proceedings of
the 1st international workshop on rapid continuous software engineering,
2014, pp. 26–35.

[9] A. Fabijan, H. H. Olsson, and J. Bosch, “Time to say’good bye’: Feature
lifecycle,” in 2016 42th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 2016, pp. 9–16.

[10] A. F. Payne, K. Storbacka, and P. Frow, “Managing the co-creation of
value,” Journal of the academy of marketing science, vol. 36, no. 1, pp.
83–96, 2008.

229

230 BIBLIOGRAPHY

[11] J. Bosch, “Building products as innovation experiment systems,” in
International Conference of Software Business. Springer, 2012, pp.
27–39.

[12] P. Bosch-Sijtsema and J. Bosch, “User involvement throughout the inno-
vation process in high-tech industries,” Journal of Product Innovation
Management, vol. 32, no. 5, pp. 793–807, 2015.

[13] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and Y. Xu,
“Trustworthy online controlled experiments: Five puzzling outcomes ex-
plained,” in Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 2012, pp. 786–794.

[14] H. H. Olsson and J. Bosch, “Towards data-driven product development: A
multiple case study on post-deployment data usage in software-intensive
embedded systems,” in International Conference on Lean Enterprise
Software and Systems. Springer, 2013, pp. 152–164.

[15] ——, “Post-deployment data collection in software-intensive embedded
products,” in International Conference of Software Business. Springer,
2013, pp. 79–89.

[16] D. C. Montgomery, Design and analysis of experiments. John wiley &
sons, 2017.

[17] F. Auer, R. Ros, L. Kaltenbrunner, P. Runeson, and M. Felderer, “Con-
trolled experimentation in continuous experimentation: Knowledge and
challenges,” Information and Software Technology, p. 106551, 2021.

[18] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping experi-
ment infrastructure: More, better, faster experimentation,” in Proceedings
of the 16th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2010, pp. 17–26.

[19] E. Bakshy, D. Eckles, and M. S. Bernstein, “Designing and deploying on-
line field experiments,” in Proceedings of the 23rd international conference
on World wide web, 2014, pp. 283–292.

[20] H. Gui, Y. Xu, A. Bhasin, and J. Han, “Network a/b testing: From sam-
pling to estimation,” in Proceedings of the 24th International Conference
on World Wide Web, 2015, pp. 399–409.

[21] R. Lopez Kaufman, J. Pitchforth, and L. Vermeer, “Democratizing online
controlled experiments at booking. com,” arXiv e-prints, pp. arXiv–1710,
2017.

[22] N. Diamantopoulos, J. Wong, D. I. Mattos, I. Gerostathopoulos,
M. Wardrop, T. Mao, and C. McFarland, “Engineering for a science-
centric experimentation platform,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering
in Practice, 2020, pp. 191–200.

BIBLIOGRAPHY 231

[23] Y. Xu, W. Duan, and S. Huang, “Sqr: balancing speed, quality and
risk in online experiments.” Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2018,
pp. 895–904.

[24] F. Yang, A. Ramdas, K. Jamieson, and M. J. Wainwright, “A framework
for multi-a (rmed)/b (andit) testing with online fdr control,” arXiv
preprint arXiv:1706.05378, 2017.

[25] A. Datta, M. C. Tschantz, and A. Datta, “Automated experiments
on ad privacy settings: A tale of opacity, choice, and discrimination,”
Proceedings on privacy enhancing technologies, vol. 2015, no. 1, pp. 92–
112, 2015.

[26] J. Bosch and H. H. Olsson, “Data-driven continuous evolution of smart
systems,” in 2016 IEEE/ACM 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2016, pp. 28–34.

[27] D. I. Mattos, P. Dmitriev, A. Fabijan, J. Bosch, and H. H. Olsson, “An
activity and metric model for online controlled experiments,” in Inter-
national Conference on Product-Focused Software Process Improvement.
Springer, 2018, pp. 182–198.

[28] D. I. Mattos, J. Bosch, and H. H. Olsson, “Challenges and strategies for
undertaking continuous experimentation to embedded systems: Industry
and research perspectives.” 19th International Conference on Agile
Software Development, 2018.

[29] D. I. Mattos, E. Mårtensson, J. Bosch, and H. H. Olsson, “Optimization
experiments in the continuous space,” in International Symposium on
Search Based Software Engineering. Springer, 2018, pp. 293–308.

[30] D. I. Mattos, J. Bosch, H. H. Olsson, A. Dakkak, and K. Bergh, “Auto-
mated optimization of software parameters in a long term evolution radio
base station,” in 2019 IEEE International Systems Conference (SysCon).
IEEE, 2019, pp. 1–8.

[31] D. I. Mattos, J. Bosch, H. H. Olsson, A. M. Korshani, and J. Lantz,
“Automotive a/b testing: Challenges and lessons learned from practice.”
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2020, pp. 101–109.

[32] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The evolution
of continuous experimentation in software product development: from
data to a data-driven organization at scale,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 770–780.

[33] W. R. Shadish, T. D. Cook, D. T. Campbell et al., Experimental and
quasi-experimental designs for generalized causal inference/William R.
Shedish, Thomas D. Cook, Donald T. Campbell. Boston: Houghton
Mifflin,, 2002.

232 BIBLIOGRAPHY

[34] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N.-K. Liborg, and A. C. Rekdal, “A survey of controlled
experiments in software engineering,” IEEE transactions on software
engineering, vol. 31, no. 9, pp. 733–753, 2005.

[35] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 27, no. 3, pp. 1–51, 2018.

[36] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin, “From infras-
tructure to culture: A/b testing challenges in large scale social networks,”
in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015, pp. 2227–2236.

[37] Y. Xu and N. Chen, “Evaluating mobile apps with a/b and quasi a/b
tests.” Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2016, pp. 313–322.

[38] D. I. Mattos, J. Bosch, and H. H. Olsson, “Multi-armed bandits in the
wild: pitfalls and strategies in online experiments,” Information and
Software Technology, vol. 113, pp. 68–81, 2019.

[39] S. Soligon, M. Lixandrão, T. Biazon, V. Angleri, H. Roschel, and
C. Libardi, “Lower occlusion pressure during resistance exercise with
blood-flow restriction promotes lower pain and perception of exercise
compared to higher occlusion pressure when the total training volume is
equalized,” Physiology international, vol. 105, no. 3, pp. 276–284, 2018.

[40] S. G. Yaman, M. Munezero, J. Münch, F. Fagerholm, O. Syd, M. Aaltola,
C. Palmu, and T. Männistö, “Introducing continuous experimentation in
large software-intensive product and service organisations,” Journal of
Systems and Software, vol. 133, pp. 195–211, 2017.

[41] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. C. Gall, “We’re doing
it live: A multi-method empirical study on continuous experimentation,”
Information and Software Technology, vol. 99, pp. 41–57, 2018.

[42] F. Giaimo and C. Berger, “Continuous experimentation for automotive
software on the example of a heavy commercial vehicle in daily operation,”
arXiv preprint arXiv:2003.03799, 2020.

[43] P. Dmitriev, S. Gupta, D. W. Kim, and G. Vaz, “A dirty dozen: twelve
common metric interpretation pitfalls in online controlled experiments,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 1427–1436.

[44] A. Deng and X. Shi, “Data-driven metric development for online con-
trolled experiments: Seven lessons learned,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 77–86.

[45] K. Kevic, B. Murphy, L. Williams, and J. Beckmann, “Characterizing
experimentation in continuous deployment: a case study on bing,” in

BIBLIOGRAPHY 233

2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp.
123–132.

[46] E. Ries, The lean startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Business
Publishing, 2011.

[47] J. Bosch, H. H. Olsson, J. Björk, and J. Ljungblad, “The early stage
software startup development model: a framework for operationalizing
lean principles in software startups,” in International Conference on Lean
Enterprise Software and Systems. Springer, 2013, pp. 1–15.

[48] H. H. Olsson and J. Bosch, “Towards continuous customer validation: A
conceptual model for combining qualitative customer feedback with quan-
titative customer observation,” in International Conference of Software
Business. Springer, 2015, pp. 154–166.

[49] I. Gerostathopoulos, C. Prehofer, and T. Bures, “Adapting a system
with noisy outputs with statistical guarantees,” in Proceedings of the
13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems, 2018, pp. 58–68.

[50] I. Gerostathopoulos, C. Prehofer, L. Bulej, T. Bureš, V. Horkỳ, and
P. Tuma, “Cost-aware stage-based experimentation: challenges and
emerging results,” in 2018 IEEE International Conference on Software
Architecture Companion (ICSA-C). IEEE, 2018, pp. 72–75.

[51] G. Tamburrelli and A. Margara, “Towards automated a/b testing.” In-
ternational Symposium on Search Based Software Engineering, 2014, pp.
184–198.

[52] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “X-armed bandits.”
Journal of Machine Learning Research, vol. 12, no. 5, 2011.

[53] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[54] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and I. Fister Jr., “NiaPy:
Python microframework for building nature-inspired algorithms,” Journal
of Open Source Software, vol. 3, 2018.

[55] N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a New Evolutionary Computation. Springer, 2006, pp. 75–102.

[56] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
Properties of the Nelder–Mead Simplex Method in Low Dimensions,”
SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.

[57] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures,” 2013.

234 BIBLIOGRAPHY

[58] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyperpa-
rameter optimization at scale,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1437–1446.

[59] ML4AAD Group of the University of Freiburg, “HpBandSter’s package.”
[Online]. Available: https://automl.github.io/HpBandSter/build/html/i
ndex.html

[60] AutoML.org, “SMAC.” [Online]. Available: https://www.automl.org/a
utomated-algorithm-design/algorithm-configuration/smac/

[61] J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization
platform,” https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[62] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff,
“COCO: A platform for comparing continuous optimizers in a black-box
setting,” Optimization Methods and Software, pp. 1–31, 2020.

[63] T. Bartz-Beielstein, C. Doerr, J. Bossek, S. Chandrasekaran, T. Eftimov,
A. Fischbach, P. Kerschke, M. Lopez-Ibanez, K. M. Malan, J. H. Moore
et al., “Benchmarking in optimization: Best practice and open issues,”
arXiv preprint arXiv:2007.03488, 2020.

[64] J. Bosch and U. Eklund, “Eternal embedded software: Towards innova-
tion experiment systems,” in International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation. Springer,
2012, pp. 19–31.

[65] D. I. Mattos, J. Bosch, and H. H. Olsson, “Your system gets better
every day you use it: towards automated continuous experimentation,” in
2017 43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2017, pp. 256–265.

[66] ——, “More for less: automated experimentation in software-intensive
systems,” in International Conference on Product-Focused Software Pro-
cess Improvement. Springer, 2017, pp. 146–161.

[67] F. Giaimo and C. Berger, “Design criteria to architect continuous ex-
perimentation for self-driving vehicles,” in 2017 IEEE International
Conference on Software Architecture (ICSA). IEEE, 2017, pp. 203–210.

[68] F. Giaimo, H. Andrade, and C. Berger, “The automotive take on contin-
uous experimentation: a multiple case study,” in 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2019, pp. 126–130.

[69] D. I. Mattos, A. Dakkak, J. Bosch, and H. H. Olsson, “Experimentation
for business-to-business mission-critical systems: A case study.” Proceed-
ings of the International Conference on Software and System Processes,
2020, pp. 95–104.

[70] E. Lindgren and J. Münch, “Raising the odds of success: the current state
of experimentation in product development,” Information and Software
Technology, vol. 77, pp. 80–91, 2016.

BIBLIOGRAPHY 235

[71] O. Rissanen and J. Münch, “Continuous experimentation in the b2b
domain: a case study,” in 2015 IEEE/ACM 2nd International Workshop
on Rapid Continuous Software Engineering. IEEE, 2015, pp. 12–18.

[72] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The benefits of
controlled experimentation at scale,” in 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2017, pp. 18–26.

[73] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu, “Seven rules of thumb
for web site experimenters,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2014,
pp. 1857–1866.

[74] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research.” Springer, 2008,
pp. 285–311.

[75] J. A. Maxwell, Qualitative research design: An interactive approach.
Sage publications, 2012, vol. 41.

[76] G. Walsham, “Interpretive case studies in is research: nature and method,”
European Journal of information systems, vol. 4, no. 2, pp. 74–81, 1995.

[77] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[78] C. Wohlin, “Case study research in software engineering—it is a case,
and it is a study, but is it a case study?” Information and Software
Technology, vol. 133, p. 106514, 2021.

[79] R. K. Yin, Case study research and applications: Design and methods.
Sage publications, 2017.

[80] C. Robson and K. McCartan, Real world research. John Wiley & Sons,
2016.

[81] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:
Data collection techniques for software field studies,” Empirical software
engineering, vol. 10, no. 3, pp. 311–341, 2005.

[82] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Quali-
tative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[83] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[84] M. Ely, M. Anzul, R. Vinz, and M. Downing, On writing qualitative
research: Living by words. Psychology Press, 1997, no. 12.

[85] J. Wakefield, Bayesian and frequentist regression methods. Springer
Science & Business Media, 2013.

236 BIBLIOGRAPHY

[86] R. L. Wasserstein, A. L. Schirm, and N. A. Lazar, “Moving to a world
beyond “p <0.05”,” The American Statistician, vol. 73, no. sup1, pp.
1–19, 2019.

[87] A. Benavoli, G. Corani, J. Demšar, and M. Zaffalon, “Time for a change:
a tutorial for comparing multiple classifiers through Bayesian analysis,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 2653–2688,
2017.

[88] J. K. Kruschke and T. M. Liddell, “Bayesian data analysis for newcomers,”
Psychonomic Bulletin & Review, vol. 25, no. 1, pp. 155–177, Feb 2018.

[89] J. Gill, “The insignificance of null hypothesis significance testing,” Polit-
ical Research Quarterly, vol. 52, no. 3, pp. 647–674, 1999.

[90] H. Haller and S. Krauss, “Misinterpretations of significance: A problem
students share with their teachers,” Methods of Psychological Research,
vol. 7, no. 1, pp. 1–20, 2002.

[91] R. L. Wasserstein and N. A. Lazar, “The ASA Statement on p-values:
Context, Process, and Purpose,” The American Statistician, vol. 70,
no. 2, pp. 129–133, 2016.

[92] G. Cumming, Understanding the new statistics: Effect sizes, confidence
intervals, and meta-analysis. Routledge, 2013.

[93] C. A. Furia, R. Feldt, and R. Torkar, “Bayesian Data Analysis in Em-
pirical Software Engineering Research,” IEEE Transactions on Software
Engineering, 2019.

[94] R. Wilcox, Modern statistics for the social and behavioral sciences: A
practical introduction. CRC press, 2011.

[95] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin, Bayesian Data Analysis. CRC press, 2013.

[96] D. I. Mattos, J. Bosch, and H. H. Olsson, “Statistical models for the
analysis of optimization algorithms with benchmark functions,” arXiv
preprint arXiv:2010.03783, 2020.

[97] L. J. Cronbach and P. E. Meehl, “Construct validity in psychological
tests.” Psychological bulletin, vol. 52, no. 4, p. 281, 1955.

[98] D. T. Campbell, J. C. Stanley, and N. L. Gage, “Experimental and
quasi-experimental designs for research.” 1963.

[99] B. J. Calder, L. W. Phillips, and A. M. Tybout, “The concept of external
validity,” Journal of consumer research, vol. 9, no. 3, pp. 240–244, 1982.

[100] C. G. Victora, J.-P. Habicht, and J. Bryce, “Evidence-based public health:
moving beyond randomized trials,” American journal of public health,
vol. 94, no. 3, pp. 400–405, 2004.

[101] A. Steckler and K. R. McLeroy, “The importance of external validity,”
2008.

BIBLIOGRAPHY 237

[102] L. Bickman, Validity and social experimentation. Sage, 2000, vol. 1.

[103] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: a framework for
engineering self-tuning self-adaptive software systems,” in Proceedings of
the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, 2010, pp. 7–16.

[104] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, pp. 2503–2511, 2015.

[105] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05). IEEE, 2005, pp. 109–120.

[106] Z. Xu and J. D. Kalbfleisch, “Propensity score matching in randomized
clinical trials,” Biometrics, vol. 66, no. 3, pp. 813–823, 2010.

[107] H. H. Olsson and J. Bosch, “From opinions to data-driven software r&d:
A multi-case study on how to close the’open loop’problem,” in 2014
40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2014, pp. 9–16.

[108] T. H. Davenport, “How to design smart business experiments,” Strategic
Direction, 2009.

[109] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “What’s your ml
test score? a rubric for ml production systems,” 2016.

[110] L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles,
D. M. Chickering, E. Portugaly, D. Ray, P. Simard, and
E. Snelson, “Counterfactual reasoning and learning systems: The
example of computational advertising,” Journal of Machine Learning
Research, vol. 14, no. 65, pp. 3207–3260, 2013. [Online]. Available:
http://jmlr.org/papers/v14/bottou13a.html

[111] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive systems.
Springer, 2009, pp. 48–70.

[112] C. Gatti, “Reinforcement learning,” in Design of Experiments for Rein-
forcement Learning. Springer, 2015, pp. 7–52.

[113] R. S. Sutton, “Sutton & barto book: Reinforcement learning: An intro-
duction,” in A Bradford Book. MIT Press Cambridge, MA, 1998.

[114] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empirical
evaluation,” in European conference on machine learning. Springer, 2005,
pp. 437–448.

[115] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings of
the 19th international conference on World wide web, 2010, pp. 661–670.

238 BIBLIOGRAPHY

[116] L. Li, S. Chen, J. Kleban, and A. Gupta, “Counterfactual estimation
and optimization of click metrics in search engines: A case study,” in
Proceedings of the 24th International Conference on World Wide Web,
2015, pp. 929–934.

[117] S. L. Scott, “A modern bayesian look at the multi-armed bandit,” Applied
Stochastic Models in Business and Industry, vol. 26, no. 6, pp. 639–658,
2010.

[118] M. Salehie and L. Tahvildari, “Towards a goal-driven approach to action
selection in self-adaptive software,” Software: Practice and Experience,
vol. 42, no. 2, pp. 211–233, 2012.

[119] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[120] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[121] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM transactions on autonomous and adaptive
systems (TAAS), vol. 4, no. 2, pp. 1–42, 2009.

[122] I. A. Computing, ““white paper: An architectural blueprint for autonomic
computing,” 2005.

[123] J. Dowling and V. Cahill, “Self-managed decentralised systems using
k-components and collaborative reinforcement learning,” in Proceedings
of the 1st ACM SIGSOFT Workshop on Self-managed Systems, 2004, pp.
39–43.

[124] D. Fisch, E. Kalkowski, and B. Sick, “Collaborative learning by knowl-
edge exchange,” in Organic Computing—A Paradigm Shift for Complex
Systems. Springer, 2011, pp. 267–280.

[125] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[126] J. Kramer and J. Magee, “Self-managed systems: an architectural chal-
lenge,” in Future of Software Engineering (FOSE’07). IEEE, 2007, pp.
259–268.

[127] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” IEEE Intelligent
Systems and Their Applications, vol. 14, no. 3, pp. 54–62, 1999.

[128] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes, and R. H.
Campbell, “Monitoring, security, and dynamic configuration with the
dynamictao reflective orb,” in IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing. Springer,
2000, pp. 121–143.

BIBLIOGRAPHY 239

[129] L. Capra, W. Emmerich, and C. Mascolo, “Carisma: Context-aware
reflective middleware system for mobile applications,” IEEE Transactions
on software engineering, vol. 29, no. 10, pp. 929–945, 2003.

[130] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic survey
on the design of self-adaptive software systems using control engineering
approaches,” in 2012 7th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2012, pp.
33–42.

[131] D. Menasce, H. Gomaa, J. Sousa et al., “Sassy: A framework for self-
architecting service-oriented systems,” IEEE software, vol. 28, no. 6, pp.
78–85, 2011.

[132] G. Di Marzo Serugendo, J. Fitzgerald, and A. Romanovsky, “Metaself:
an architecture and a development method for dependable self-* systems,”
in Proceedings of the 2010 ACM Symposium on Applied Computing, 2010,
pp. 457–461.

[133] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, and
R. Mirandola, “Moses: A framework for qos driven runtime adaptation of
service-oriented systems,” IEEE Transactions on Software Engineering,
vol. 38, no. 5, pp. 1138–1159, 2011.

[134] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo,
A. Mamelli, and G. A. Papadopoulos, “A development framework and
methodology for self-adapting applications in ubiquitous computing envi-
ronments,” Journal of Systems and Software, vol. 85, no. 12, pp. 2840–
2859, 2012.

[135] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley,
J. O. Kephart, and S. R. White, “A multi-agent systems approach to
autonomic computing,” in Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 1.
Citeseer, 2004, pp. 464–471.

[136] C. Ballagny, N. Hameurlain, and F. Barbier, “Mocas: A state-based
component model for self-adaptation,” in 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems. IEEE, 2009,
pp. 206–215.

[137] M. Reichenbach, R. Seidler, D. Fey, and B. Pfundt, “Generic emergent
computing in chip architectures,” in Organic Computing—A Paradigm
Shift for Complex Systems. Springer, 2011, pp. 179–192.

[138] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. Cheng, and D. Hughes,
“Goal-based modeling of dynamically adaptive system requirements,” in
15Th annual IEEE international conference and workshop on the engi-
neering of computer based systems (ecbs 2008). IEEE, 2008, pp. 36–45.

[139] K. Angelopoulos, V. E. S. Souza, and J. Pimentel, “Requirements and
architectural approaches to adaptive software systems: A comparative
study,” in 2013 8th International Symposium on Software Engineering

240 BIBLIOGRAPHY

for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2013, pp.
23–32.

[140] T. van Oosterhout and A. Visser, “A visual method for robot proxemics
measurements,” in Proceedings of Metrics for Human-Robot Interac-
tion: A Workshop at the Third ACM/IEEE International Conference on
Human-Robot Interaction (HRI 2008). Citeseer, 2008, pp. 61–68.

[141] H. H. Olsson and J. Bosch, “Towards continuous validation of customer
value,” in Scientific Workshop Proceedings of the XP2015, 2015, pp. 1–4.

[142] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, pp. 42–52, 2009.

[143] G. Burtini, J. Loeppky, and R. Lawrence, “A survey of online exper-
iment design with the stochastic multi-armed bandit,” arXiv preprint
arXiv:1510.00757, 2015.

[144] X. Zhang, LTE optimization engineering handbook. John Wiley & Sons,
2018.

[145] A. Awada, B. Wegmann, I. Viering, and A. Klein, “Optimizing the radio
network parameters of the long term evolution system using taguchi’s
method,” IEEE Transactions on Vehicular Technology, vol. 60, no. 8, pp.
3825–3839, 2011.

[146] M. Dottling and I. Viering, “Challenges in mobile network operation: To-
wards self-optimizing networks,” in 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2009, pp. 3609–3612.

[147] S. Dastoor, U. Dalal, and J. Sarvaiya, “Comparative analysis of opti-
mization techniques for optimizing the radio network parameters of next
generation wireless mobile communication,” in 2017 Fourteenth Inter-
national Conference on Wireless and Optical Communications Networks
(WOCN). IEEE, 2017, pp. 1–6.

[148] K. Lieska, E. Laitinen, and J. Lahteenmaki, “Radio coverage optimization
with genetic algorithms,” in Ninth IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (Cat. No. 98TH8361),
vol. 1. IEEE, 1998, pp. 318–322.

[149] I. Cavdar and O. Akcay, “The optimization of cell sizes and base stations
power level in cell planning,” in IEEE VTS 53rd Vehicular Technology
Conference, Spring 2001. Proceedings (Cat. No. 01CH37202), vol. 4.
IEEE, 2001, pp. 2344–2348.

[150] H. Zhu and T. Buot, “Multi-parameter optimization in wcdma radio
networks,” in 2004 IEEE 59th Vehicular Technology Conference. VTC
2004-Spring (IEEE Cat. No. 04CH37514), vol. 4. IEEE, 2004, pp.
2370–2374.

[151] ETSI, “3GPP Technical Specification Release 14 - ETSI TS 136 300,”
ETSI, Valbonne, France, Tech. Rep. Release 14, 2017.

BIBLIOGRAPHY 241

[152] R. Munos, “From bandits to monte-carlo tree search: The optimistic
principle applied to optimization and planning,” 2014.

[153] J. Krettek, D. Schauten, F. Hoffmann, and T. Bertram, “Evolutionary
hardware-in-the-loop optimization of a controller for cascaded hydraulic
valves,” in 2007 IEEE/ASME international conference on advanced
intelligent mechatronics. IEEE, 2007, pp. 1–6.

[154] A. Krause and C. S. Ong, “Contextual gaussian process bandit optimiza-
tion.” in Nips, 2011, pp. 2447–2455.

[155] J. Ling, M. Hutchinson, E. Antono, S. Paradiso, and B. Meredig, “High-
dimensional materials and process optimization using data-driven exper-
imental design with well-calibrated uncertainty estimates,” Integrating
Materials and Manufacturing Innovation, vol. 6, no. 3, pp. 207–217, 2017.

[156] S. Huang, T. Han, and N. Ansari, “Big-data-driven network partition-
ing for ultra-dense radio access networks,” in 2017 IEEE International
Conference on Communications (ICC). IEEE, 2017, pp. 1–6.

[157] P. Dmitriev, B. Frasca, S. Gupta, R. Kohavi, and G. Vaz, “Pitfalls of
long-term online controlled experiments,” in 2016 IEEE international
conference on big data (big data). IEEE, 2016, pp. 1367–1376.

[158] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham, “Seven pitfalls to
avoid when running controlled experiments on the web,” in Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2009, pp. 1105–1114.

[159] T. Kluck and L. Vermeer, “Leaky abstraction in online experimentation
platforms: a conceptual framework to categorize common challenges,”
arXiv preprint arXiv:1710.00397, 2017.

[160] R. Chen, M. Chen, M. R. Jadav, J. Bae, and D. Matheson, “Faster online
experimentation by eliminating traditional a/a validation,” in 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2017, pp.
1635–1641.

[161] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff, and A. Fabijan,
“The anatomy of a large-scale experimentation platform,” in 2018 IEEE
International Conference on Software Architecture (ICSA). IEEE, 2018,
pp. 1–109.

[162] P. Dmitriev and X. Wu, “Measuring metrics,” in Proceedings of the
25th ACM international on conference on information and knowledge
management, 2016, pp. 429–437.

[163] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann,
“Online controlled experiments at large scale,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2013, pp. 1168–1176.

242 BIBLIOGRAPHY

[164] A. Deng, J. Lu, and J. Litz, “Trustworthy analysis of online a/b tests:
Pitfalls, challenges and solutions,” in Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, 2017, pp.
641–649.

[165] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads at
facebook,” in Proceedings of the Eighth International Workshop on Data
Mining for Online Advertising, 2014, pp. 1–9.

[166] A. Hern, “Why google has 200m reasons to put engineers over designers,”
The Guardian, vol. 5, 2014.

[167] S. L. Scott, “Multi-armed bandit experiments in the online service econ-
omy,” Applied Stochastic Models in Business and Industry, vol. 31, no. 1,
pp. 37–45, 2015.

[168] N. Juristo and A. M. Moreno, Basics of software engineering experimen-
tation. Springer Science & Business Media, 2013.

[169] S. L. Scott, “Google analytics help page,” 2017. [Online]. Available:
https://support.google.com/analytics/answer/2844870?hl=en&ref top
ic=1745207.

[170] J. W. Creswell, Educational research: Planning, conducting, and evaluat-
ing quantitative. Prentice Hall Upper Saddle River, NJ, 2002.

[171] C. Stucchio, “Saturday is not tuesday,” 2015. [Online]. Available:
https://www.chrisstucchio.com/blog/2015/dont use bandits.html.

[172] J. White, Bandit algorithms for website optimization. ” O’Reilly Media,
Inc.”, 2012.

[173] S. Guha, K. Munagala, and M. Pal, “Multiarmed bandit problems with
delayed feedback,” arXiv preprint arXiv:1011.1161, 2010.

[174] R. Kievit, W. E. Frankenhuis, L. Waldorp, and D. Borsboom, “Simp-
son’s paradox in psychological science: a practical guide,” Frontiers in
psychology, vol. 4, p. 513, 2013.

[175] L. Li, “Offline evaluation and optimization for interactive systems,”
ser. WSDM ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 413–414. [Online]. Available: https://doi.org/10.114
5/2684822.2697040

[176] M. M. Drugan and A. Nowe, “Designing multi-objective multi-armed
bandits algorithms: A study,” in The 2013 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2013, pp. 1–8.

[177] X. Wang, Y. Wang, D. Hsu, and Y. Wang, “Exploration in interactive
personalized music recommendation: a reinforcement learning approach,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 11, no. 1, pp. 1–22, 2014.

BIBLIOGRAPHY 243

[178] R. Féraud and T. Urvoy, “A stochastic bandit algorithm for scratch
games,” in Asian Conference on Machine Learning. PMLR, 2012, pp.
129–143.

[179] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased offline evaluation
of contextual-bandit-based news article recommendation algorithms,” in
Proceedings of the fourth ACM international conference on Web search
and data mining, 2011, pp. 297–306.

[180] K. Jamieson, “Fdr control with adaptive sequential experimental design,”
2017.

[181] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[182] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, and H. China, “Bench-
mark functions for the CEC 2013 special session and competition on
large-scale global optimization,” Tech. Rep., 2018.

[183] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimisation problems,” International Journal of Mathematical
Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013.

[184] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical programming, vol. 91, no. 2, pp.
201–213, 2002.

[185] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. Resende, and W. R. Stewart,
“Designing and reporting on computational experiments with heuristic
methods,” Journal of Heuristics, vol. 1, no. 1, pp. 9–32, 1995.

[186] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on the
use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 special session on real parameter
optimization,” Journal of Heuristics, vol. 15, no. 6, p. 617, 2009.

[187] A. Lacoste, F. Laviolette, and M. Marchand, “Bayesian comparison of
machine learning algorithms on single and multiple datasets,” in Artificial
Intelligence and Statistics, 2012, pp. 665–675.

[188] T. Eftimov and P. Korošec, “The Impact of Statistics for Benchmarking
in Evolutionary Computation Research,” in Proceedings of the Genetic
and Evolutionary Computation Conference Companion, ser. GECCO ’18.
ACM, 2018, p. 1329–1336.

[189] T. Eftimov and P. Korošec, “A novel statistical approach for comparing
meta-heuristic stochastic optimization algorithms according to the distri-
bution of solutions in the search space,” Information Sciences, vol. 489,
pp. 255–273, 2019.

[190] M. Gagliolo and C. Legrand, “Algorithm survival analysis,” in Experi-
mental methods for the analysis of optimization algorithms. Springer,
2010, pp. 161–184.

244 BIBLIOGRAPHY

[191] M. Chiarandini and Y. Goegebeur, “Mixed models for the analysis of
optimization algorithms,” in Experimental Methods for the Analysis of
Optimization Algorithms. Springer, 2010, pp. 225–264.

[192] B. Calvo, O. M. Shir, J. Ceberio, C. Doerr, H. Wang, T. Bäck, and
J. A. Lozano, “Bayesian Performance Analysis for Black-Box Optimiza-
tion Benchmarking,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, ser. GECCO ’19. ACM, 2019, p.
1789–1797.

[193] J. Carrasco, S. Garćıa, M. del Mar Rueda, and F. Herrera, “rnpbst:
An R package covering non-parametric and Bayesian statistical tests,”
in International Conference on Hybrid Artificial Intelligence Systems.
Springer, 2017, pp. 281–292.

[194] G. Corani and A. Benavoli, “ Bayesian approach for comparing cross-
validated algorithms on multiple data sets,” Machine Learning, vol. 100,
no. 2-3, pp. 285–304, 2015.

[195] A. Benavoli, G. Corani, F. Mangili, M. Zaffalon, and F. Ruggeri, “A
Bayesian Wilcoxon signed-rank test based on the Dirichlet process,” in
International conference on machine learning, 2014, pp. 1026–1034.

[196] R. McElreath, Statistical rethinking: A Bayesian course with examples
in R and Stan. CRC press, 2020.

[197] J. K. Kruschke, “Bayesian estimation supersedes the t-test,” Journal of
Experimental Psychology: General, vol. 142, no. 2, p. 573, 2013.

[198] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betan-
court, M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A Probabilistic
Programming Language,” Journal of Statistical Software, Articles, vol. 76,
no. 1, pp. 1–32, 2017.

[199] M. D. Hoffman and A. Gelman, “The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo,” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1593–1623, 2014.

[200] A. Gelman and D. B. Rubin, “Inference from Iterative Simulation Using
Multiple Sequences,” Statistical Science, vol. 7, no. 4, pp. 457 – 472, 1992.

[201] A. Gelman, J. Hwang, and A. Vehtari, “Understanding predictive infor-
mation criteria for Bayesian models,” Statistics and Computing, vol. 24,
no. 6, pp. 997–1016, 2014.

[202] J. Miller, “What is the probability of replicating a statistically significant
effect?” Psychonomic Bulletin & Review, vol. 16, no. 4, pp. 617–640,
2009.

[203] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4,
1995, pp. 1942–1948 vol.4.

BIBLIOGRAPHY 245

[204] X.-S. Yang and S. Deb, “Cuckoo Search via Lévy flights,” in 2009 World
congress on nature & biologically inspired computing (NaBIC). IEEE,
2009, pp. 210–214.

[205] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simu-
lated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[206] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[207] N. Hansen, Y. Akimoto, and P. Baudis, “CMA-ES/pycma on Github,”
Zenodo, DOI:10.5281/zenodo.2559634, Feb. 2019.

[208] S. Finck and R. Ros, “Real-Parameter Black-Box Optimization Bench-
marking 2010: Noiseless Functions Definitions,” Tech. Rep. RR-6829,
2009.

[209] T. A. Snijders and R. J. Bosker, Multilevel analysis: An introduction to
basic and advanced multilevel modeling. Sage, 2011.

[210] A. Agresti, Categorical data analysis. John Wiley & Sons, 2003.

[211] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block
designs: I. The method of paired comparisons,” Biometrika, vol. 39, no.
3/4, pp. 324–345, 1952.

[212] D. I. Mattos and E. M. S. Ramos, “Bayesian Paired-Comparison with
the bpcs Package,” arXiv preprint arXiv:2101.11227, 2021.

[213] F. Caron and A. Doucet, “Efficient Bayesian Inference for Generalized
Bradley–Terry Models,” Journal of Computational and Graphical Statis-
tics, vol. 21, no. 1, pp. 174–196, 2012.

[214] H. Turner and D. Firth, “Bradley-Terry Models in R: The BradleyTerry2
Package,” Journal of Statistical Software, Articles, vol. 48, no. 9, pp.
1–21, 2012.

[215] M. Cattelan, “Models for Paired Comparison Data: A Review with
Emphasis on Dependent Data,” Statistical Science, vol. 27, no. 3, pp. 412
– 433, 2012.

[216] H. L. Turner, J. van Etten, D. Firth, and I. Kosmidis, “Modelling rankings
in R: the PlackettLuce package,” Computational Statistics, vol. 35, no. 3,
pp. 1027–1057, Sep 2020.

[217] R. R. Davidson, “On extending the Bradley-Terry model to accommo-
date ties in paired comparison experiments,” Journal of the American
Statistical Association, vol. 65, no. 329, pp. 317–328, 1970.

[218] T. G. Clark, M. J. Bradburn, S. B. Love, and D. G. Altman, “Survival
analysis part I: basic concepts and first analyses,” British journal of
cancer, vol. 89, no. 2, pp. 232–238, 2003.

246 BIBLIOGRAPHY

[219] R. Kelter, “Bayesian survival analysis in Stan for improved measuring
of uncertainty in parameter estimates,” Measurement: Interdisciplinary
Research and Perspectives, vol. 18, no. 2, pp. 101–109, 2020.

[220] U. Eliasson, R. Heldal, E. Knauss, and P. Pelliccione, “The need of
complementing plan-driven requirements engineering with emerging com-
munication: Experiences from volvo car group,” in 2015 IEEE 23rd
International Requirements Engineering Conference (RE). IEEE, 2015,
pp. 372–381.

[221] H. H. Olsson and J. Bosch, “Climbing the “stairway to heaven”: evolv-
ing from agile development to continuous deployment of software,” in
Continuous software engineering. Springer, 2014, pp. 15–27.

[222] A. Fabijan, H. H. Olsson, and J. Bosch, “The lack of sharing of customer
data in large software organizations: challenges and implications,” in
International Conference on Agile Software Development. Springer, 2016,
pp. 39–52.

[223] H. Olsson Holmström, “So much data-so little value: A multi-case study
on improving the impact of data-driven development practices.” 20th
Iberoamerican Conference on Software Engineering (CIbSE 2017);, 2017.

[224] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, “Systematic literature reviews,” in Experimentation in soft-
ware engineering. Springer, 2012, pp. 45–54.

[225] B. Zhang, N. Wang, and H. Jin, “Privacy concerns in online recommender
systems: influences of control and user data input,” in 10th Symposium
On Usable Privacy and Security ({SOUPS} 2014), 2014, pp. 159–173.

[226] H. H. Olsson and J. Bosch, “From ad hoc to strategic ecosystem manage-
ment: the “three-layer ecosystem strategy model”(telesm),” Journal of
Software: Evolution and Process, vol. 29, no. 7, p. e1876, 2017.

[227] F. Auer and M. Felderer, “Current state of research on continuous
experimentation: a systematic mapping study,” in 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2018, pp. 335–344.

[228] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[229] G. Schermann, J. Cito, and P. Leitner, “Continuous experimentation:
challenges, implementation techniques, and current research,” Ieee Soft-
ware, vol. 35, no. 2, pp. 26–31, 2018.

[230] S. G. Yaman, F. Fagerholm, M. Munezero, J. Münch, M. Aaltola,
C. Palmu, and T. Männistö, “Transitioning towards continuous experimen-
tation in a large software product and service development organisation–a
case study,” in International Conference on Product-Focused Software
Process Improvement. Springer, 2016, pp. 344–359.

BIBLIOGRAPHY 247

[231] K. Fowler, “Mission-critical and safety-critical development,” IEEE In-
strumentation & Measurement Magazine, vol. 7, no. 4, pp. 52–59, 2004.

[232] A. Fabijan, P. Dmitriev, C. McFarland, L. Vermeer, H. Holmström Olsson,
and J. Bosch, “Experimentation growth: Evolving trustworthy a/b testing
capabilities in online software companies,” Journal of Software: Evolution
and Process, vol. 30, no. 12, p. e2113, 2018.

[233] F. Auer, C. S. Lee, and M. Felderer, “Continuous experiment defini-
tion characteristics.” 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2020, pp. 186–190.

[234] A. S. M. Zain, M. F. A. Malek, M. Elshaikh, and N. Omar, “Optimization
of resource allocation using taguchi’s method for lte-advanced network,”
in 2014 2nd International Conference on Electronic Design (ICED).
IEEE, 2014, pp. 281–286.

[235] S. K. Karna, R. Sahai et al., “An overview on taguchi method,” Interna-
tional journal of engineering and mathematical sciences, vol. 1, no. 1, pp.
1–7, 2012.

[236] J. A. Middleton and P. M. Aronow, “Unbiased estimation of the average
treatment effect in cluster-randomized experiments,” Statistics, Politics
and Policy, vol. 6, no. 1-2, pp. 39–75, 2015.

[237] S. W. Raudenbush, “Statistical analysis and optimal design for cluster
randomized trials.” Psychological methods, vol. 2, no. 2, p. 173, 1997.

[238] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature
toggles: practitioner practices and a case study.” Proceedings of the
13th International Conference on Mining Software Repositories, 2016, pp.
201–211.

[239] S. Neely and S. Stolt, “Continuous delivery? easy! just change everything
(well, maybe it is not that easy).” 2013 Agile Conference, 2013, pp.
121–128.

[240] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8–17, 2013.

[241] E. Pakarinen, T. Harakkamäki, and T. Mikkonen, “Gradual deployment
in practice: Experiences from an industrial case study.” 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications
(SEAA), 2020, pp. 237–241.

[242] T. Xia, S. Bhardwaj, P. Dmitriev, and A. Fabijan, “Safe velocity: a
practical guide to software deployment at scale using controlled rollout,”
2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 11–20.

[243] D. St̊ahl and J. Bosch, “Cinders: The continuous integration and delivery
architecture framework,” Information and Software Technology, vol. 83,
pp. 76–93, 2017.

248 BIBLIOGRAPHY

[244] P. Rodŕıguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suo-
malainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and M. Oivo,
“Continuous deployment of software intensive products and services: A
systematic mapping study,” Journal of Systems and Software, vol. 123,
pp. 263–291, 2017.

[245] D. E. Johnson, “Crossover experiments,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 2, no. 5, pp. 620–625, 2010.

[246] A. Fabijan, P. Dmitriev, H. H. Olsson, J. Bosch, L. Vermeer, and D. Lewis,
“Three key checklists and remedies for trustworthy analysis of online
controlled experiments at scale,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2019, pp. 1–10.

[247] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining, 2017, pp. 1487–1495.

[248] D. I. Mattos, L. Ruud, J. Bosch, and H. H. Olsson, “On the assess-
ment of benchmark suites for algorithm comparison,” arXiv preprint
arXiv:2104.07381, 2021.

[249] R. Sveningson, D. I. Mattos, and J. Bosch, “Continuous experimentation
for software organizations with low control of roadmap and a large
distance to users: an exploratory case study,” in International Conference
on Product-Focused Software Process Improvement. Springer, 2019, pp.
528–544.

[250] Y. Liu, D. I. Mattos, J. Bosch, H. H. Olsson, and J. Lantz, “Online a/b
experiments design with limited sample,” in in submission, 2021, pp.
1–10.

[251] L. N. Soldatova, A. Clare, A. Sparkes, and R. D. King, “An ontology for
a robot scientist,” Bioinformatics, vol. 22, no. 14, pp. e464–e471, 2006.

[252] L. N. Soldatova and R. D. King, “An ontology of scientific experiments,”
Journal of the Royal Society Interface, vol. 3, no. 11, pp. 795–803, 2006.

[253] R. H. Hoyle, Handbook of structural equation modeling. Guilford press,
2012.

[254] T. Joachims and A. Swaminathan, “Counterfactual evaluation and learn-
ing for search, recommendation and ad placement,” in Proceedings of the
39th International ACM SIGIR conference on Research and Development
in Information Retrieval, 2016, pp. 1199–1201.

[255] A. Swaminathan and T. Joachims, “Counterfactual risk minimization:
Learning from logged bandit feedback,” in International Conference on
Machine Learning. PMLR, 2015, pp. 814–823.

BIBLIOGRAPHY 249

[256] ——, “The self-normalized estimator for counterfactual learning,” in
advances in neural information processing systems. Citeseer, 2015, pp.
3231–3239.

[257] A. Chuklin, I. Markov, and M. d. Rijke, “Click models for web search,”
Synthesis lectures on information concepts, retrieval, and services, vol. 7,
no. 3, pp. 1–115, 2015.

[258] T. Treasure and K. D. MacRae, “Minimisation: the platinum standard
for trials?: randomisation doesn’t guarantee similarity of groups; minimi-
sation does,” 1998.

[259] D. R. Taves, “Minimization: a new method of assigning patients to
treatment and control groups,” Clinical Pharmacology & Therapeutics,
vol. 15, no. 5, pp. 443–453, 1974.

[260] S. J. Pocock and R. Simon, “Sequential treatment assignment with
balancing for prognostic factors in the controlled clinical trial,” Biometrics,
pp. 103–115, 1975.

[261] L. Freedman and S. J. White, “On the use of pocock and simon’s method
for balancing treatment numbers over prognostic factors in the controlled
clinical trial,” Biometrics, pp. 691–694, 1976.

[262] E. Forsell, J. Beckley, S. Ejdemyr, V. Hannan, A. Rhines, M. Tingley,
M. Wardrop, and J. Wong, “Success stories from a democratized experi-
mentation platform,” arXiv preprint arXiv:2012.10403, 2020.

[263] S. J. Taylor and B. Letham, “Forecasting at scale,” The American
Statistician, vol. 72, no. 1, pp. 37–45, 2018.

[264] M. A. Hernán, “Beyond exchangeability: the other conditions for causal
inference in medical research,” 2012.

[265] O. Saarela, D. A. Stephens, and E. E. Moodie, “The role of exchangeability
in causal inference,” arXiv preprint arXiv:2006.01799, 2020.

[266] M. Lechner et al., The estimation of causal effects by difference-in-
difference methods. Now, 2011.

[267] D. L. Thistlethwaite and D. T. Campbell, “Regression-discontinuity
analysis: An alternative to the ex post facto experiment.” Journal of
Educational psychology, vol. 51, no. 6, p. 309, 1960.

