2,205 research outputs found

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Forum Bildverarbeitung 2022

    Get PDF
    Bildverarbeitung verknüpft das Fachgebiet die Sensorik von Kameras – bildgebender Sensorik – mit der Verarbeitung der Sensordaten – den Bildern. Daraus resultiert der besondere Reiz dieser Disziplin. Der vorliegende Tagungsband des „Forums Bildverarbeitung“, das am 24. und 25.11.2022 in Karlsruhe als Veranstaltung des Karlsruher Instituts für Technologie und des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung stattfand, enthält die Aufsätze der eingegangenen Beiträge

    Deep learning technology for weld defects classification based on transfer learning and activation features

    Get PDF
    Weld defects detection using X-ray images is an effective method of nondestructive testing. Conventionally, this work is based on qualified human experts, although it requires their personal intervention for the extraction and classification of heterogeneity. Many approaches have been done using machine learning (ML) and image processing tools to solve those tasks. Although the detection and classification have been enhanced with regard to the problems of low contrast and poor quality, their result is still unsatisfying. Unlike the previous research based on ML, this paper proposes a novel classification method based on deep learning network. In this work, an original approach based on the use of the pretrained network AlexNet architecture aims at the classification of the shortcomings of welds and the increase of the correct recognition in our dataset. Transfer learning is used as methodology with the pretrained AlexNet model. For deep learning applications, a large amount of X-ray images is required, but there are few datasets of pipeline welding defects. For this, we have enhanced our dataset focusing on two types of defects and augmented using data augmentation (random image transformations over data such as translation and reflection). Finally, a fine-tuning technique is applied to classify the welding images and is compared to the deep convolutional activation features (DCFA) and several pretrained DCNN models, namely, VGG-16, VGG-19, ResNet50, ResNet101, and GoogLeNet. The main objective of this work is to explore the capacity of AlexNet and different pretrained architecture with transfer learning for the classification of X-ray images. The accuracy achieved with our model is thoroughly presented. The experimental results obtained on the weld dataset with our proposed model are validated using GDXray database. The results obtained also in the validation test set are compared to the others offered by DCNN models, which show a best performance in less time. This can be seen as evidence of the strength of our proposed classification model.This work has been partially funded by the Spanish Government through Project RTI2018-097088-B-C33 (MINECO/FEDER, UE)

    Data Analysis and Modeling Techniques of Welding Processes: The State-of-the-Art

    Get PDF
    Information contributes to the improvement of decision-making, process improvement, error detection, and prevention. The new requirements of the coming Industry 4.0 will make these new information technologies help in the improvement and decision-making of industrial processes. In case of the welding processes, several techniques have been used. Welding processes can be analyzed as a stochastic system with several inputs and outputs. This allows a study with a data analysis perspective. Data mining processes, machine learning, deep learning, and reinforcement learning techniques have had good results in the analysis and control of systems as complex as the welding process. The increase of information acquisition and information quality by sensors developed at present, allows a large volume of data that benefits the analysis of these techniques. This research aims to make a bibliographic analysis of the techniques used in the welding area, the advantages that these new techniques can provide, and how some researchers are already using them. The chapter is organized according to some stages of the data mining process. This was defined with the objective of highlighting evolution and potential for each stage for welding processes

    A Laser-Based Vision System for Weld Quality Inspection

    Get PDF
    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved

    Forum Bildverarbeitung 2022

    Get PDF
    • …
    corecore