9 research outputs found

    UG-based research and development of 3D pipe layout system of the aircraft engine

    Get PDF
    AbstractStandardized design method is important for the airworthiness certification. Based on the principles and features of the aircraft engine external pipe system, in this paper, the research on the theory of automation of pipe layout has been done. We also put forward the process of automatic and mixed generation of pipe layout, the design of pipe layout system and the resolution of arbitrariness of pipe layout. In order to improve the efficiency of the system, a parameterized component library has been built, on the basis of the secondary development of UG. Therefore, the automation pipe layout and the real-time modification have been achieved. According to the predefined rules, constraint test and result output of the system can be conducted

    Network Flow based approaches for the Pipelines Routing Problem in Naval Design

    Get PDF
    The authors of this research acknowledge financial support by the Spanish Ministerio de Ciencia y Tecnologia, Agencia Estatal de Investigacion and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21. The authors also acknowledge partial support from projects FEDER-US-1256951, Junta de Andalucda P18-FR-1422, CEI-3-FQM331, B-FQM-322-UGR20, Netmeet-Data: Ayudas Fundacin BBVA a equipos de investigacin cientifica 2019, and Contratacion de Personal Investigador Doctor (Convocatoria 2019) 43 Contratos Capital Humano Linea 2. Paidi 2020, supported by the European Social Fund and Junta de Andalucia. The first author was also partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033.In this paper we propose a general methodology for the optimal automatic routing of spatial pipelines motivated by a recent collaboration with Ghenova, a leading Naval Engineering company. We provide a minimum cost multicommodity network flow based model for the problem incorporating all the tech-nical requirements for a feasible pipeline routing. A branch-and-cut approach is designed and different matheuristic algorithms are derived for solving efficiently the problem. We report the results of a battery of computational experiments to assess the problem performance as well as a case study of a real-world naval instance provided by our partner company.Spanish GovernmentEuropean CommissionAgencia Estatal de InvestigacionEuropean Commission PID2020-114594GB-C21Junta de Andalucda P18-FR-1422 CEI-3-FQM331 B-FQM-322-UGR20Netmeet-Data: Ayudas Fundacin BBVA a equipos de investigacin cientifica 2019European Social Fund (ESF)Junta de AndaluciaIMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033FEDER-US-125695

    Network flow based approaches for the pipelines routing problem in naval design

    Get PDF
    In this paper we propose a general methodology for the optimal automatic routing of spatial pipelines motivated by a recent collaboration with Ghenova, a leading Naval Engineering company. We provide a minimum cost multicommodity network flow based model for the problem incorporating all the tech- nical requirements for a feasible pipeline routing. A branch-and-cut approach is designed and different matheuristic algorithms are derived for solving efficiently the problem. We report the results of a battery of computational experiments to assess the problem performance as well as a case study of a real-world naval instance provided by our partner company.Ministerio de Ciencia Y Tecnología (MCYT). España PID2020-114594GB-C21European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) US-1256951Junta de Andalucía P18-FR-1422Junta de Andalucía CEI-3-FQM331Junta de Andalucía B-FQM-322-UGR2

    Ant colony optimization based simulation of 3d automatic hose/pipe routing

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This thesis focuses on applying one of the rapidly growing non-deterministic optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe routing with several conflicting objectives. Within the thesis, methods have been developed and applied to single objective hose routing, multi-objective hose routing and multi-hose routing. The use of simulation and optimization in engineering design has been widely applied in all fields of engineering as the computational capabilities of computers has increased and improved. As a result of this, the application of non-deterministic optimization techniques such as genetic algorithms, simulated annealing algorithms, ant colony algorithms, etc. has increased dramatically resulting in vast improvements in the design process. Initially, two versions of ant colony algorithms have been developed based on, respectively, a random network and a grid network for a single objective (minimizing the length of the hoses) and avoiding obstacles in the CAD model. While applying ant colony algorithms for the simulation of hose routing, two modifications have been proposed for reducing the size of the search space and avoiding the stagnation problem. Hose routing problems often consist of several conflicting or trade-off objectives. In classical approaches, in many cases, multiple objectives are aggregated into one single objective function and optimization is then treated as a single-objective optimization problem. In this thesis two versions of ant colony algorithms are presented for multihose routing with two conflicting objectives: minimizing the total length of the hoses and maximizing the total shared length (bundle length). In this case the two objectives are aggregated into a single objective. The current state-of-the-art approach for handling multi-objective design problems is to employ the concept of Pareto optimality. Within this thesis a new Pareto-based general purpose ant colony algorithm (PSACO) is proposed and applied to a multi-objective hose routing problem that consists of the following objectives: total length of the hoses between the start and the end locations, number of bends, and angles of bends. The proposed method is capable of handling any number of objectives and uses a single pheromone matrix for all the objectives. The domination concept is used for updating the pheromone matrix. Among the currently available multi-objective ant colony optimization (MOACO) algorithms, P-ACO generates very good solutions in the central part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A new term is added to the random proportional rule of both of the algorithms (PSACO and P-ACO) to attract ants towards edges that make angles close to the pre-specified angles of bends. A refinement algorithm is also suggested for searching an acceptable solution after the completion of searching the entire search space. For all of the simulations, the STL format (tessellated format) for the obstacles is used in the algorithm instead of the original shapes of the obstacles. This STL format is passed to the C++ library RAPID for collision detection. As a result of using this format, the algorithms can handle freeform obstacles and the algorithms are not restricted to a particular software package

    Optimal System Design with Geometric Considerations.

    Full text link
    System design is tied to both functionality and geometric realization. The former is pertinent to system performance, and the latter is related to packaging. Packaging is an optimization process that finds a desirable placement for the system components within a given space. When the components do not fit into the allocated space at the packaging stage, the design engineers must make modifications that can affect the performance of the system. The modification of a component can also affect the geometry and positions of other components in the system. These changes might lead to an infeasible layout. Therefore, optimizing the system performance considering packaging is desirable. Packaging problems and solution methods have been studied in many applications, such as electrical circuit layout, glass or metal cutting, truck loading, trunk packing, rapid prototyping (RP), architectural floor plan layout, routing, and mechanical component layout. Packaging problems in a mechanical system design are more challenging than 2D applications such as circuit layout and the metal cutting problem; this is due to a larger design space and increased complexity of geometry. Complex 3D geometry leads to increased computational time for interference checking, which is inevitable for finding a feasible layout. Detailed 3D CAD models, however, are not required or not available at the preliminary design stage. Therefore, abstract representation of the components is necessary during the layout process. Abstract models should balance accuracy of geometry representation and rapid computation capturing designers’ intent. This dissertation presents a computational environment for addressing the combined packaging and optimal system design. The packaging problem also includes pipe generation because pipe routing is also important problems in mechanical system design. The simulation model of a thermal management system for heavy duty series hybrid electric vehicles is used to demonstrate the usefulness of the proposed framework.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108865/1/kwangjae_1.pd

    Ant colony optimization based simulation of 3d automatic hose/pipe routing

    Get PDF
    This thesis focuses on applying one of the rapidly growing non-deterministic optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe routing with several conflicting objectives. Within the thesis, methods have been developed and applied to single objective hose routing, multi-objective hose routing and multi-hose routing. The use of simulation and optimization in engineering design has been widely applied in all fields of engineering as the computational capabilities of computers has increased and improved. As a result of this, the application of non-deterministic optimization techniques such as genetic algorithms, simulated annealing algorithms, ant colony algorithms, etc. has increased dramatically resulting in vast improvements in the design process. Initially, two versions of ant colony algorithms have been developed based on, respectively, a random network and a grid network for a single objective (minimizing the length of the hoses) and avoiding obstacles in the CAD model. While applying ant colony algorithms for the simulation of hose routing, two modifications have been proposed for reducing the size of the search space and avoiding the stagnation problem. Hose routing problems often consist of several conflicting or trade-off objectives. In classical approaches, in many cases, multiple objectives are aggregated into one single objective function and optimization is then treated as a single-objective optimization problem. In this thesis two versions of ant colony algorithms are presented for multihose routing with two conflicting objectives: minimizing the total length of the hoses and maximizing the total shared length (bundle length). In this case the two objectives are aggregated into a single objective. The current state-of-the-art approach for handling multi-objective design problems is to employ the concept of Pareto optimality. Within this thesis a new Pareto-based general purpose ant colony algorithm (PSACO) is proposed and applied to a multi-objective hose routing problem that consists of the following objectives: total length of the hoses between the start and the end locations, number of bends, and angles of bends. The proposed method is capable of handling any number of objectives and uses a single pheromone matrix for all the objectives. The domination concept is used for updating the pheromone matrix. Among the currently available multi-objective ant colony optimization (MOACO) algorithms, P-ACO generates very good solutions in the central part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A new term is added to the random proportional rule of both of the algorithms (PSACO and P-ACO) to attract ants towards edges that make angles close to the pre-specified angles of bends. A refinement algorithm is also suggested for searching an acceptable solution after the completion of searching the entire search space. For all of the simulations, the STL format (tessellated format) for the obstacles is used in the algorithm instead of the original shapes of the obstacles. This STL format is passed to the C++ library RAPID for collision detection. As a result of using this format, the algorithms can handle freeform obstacles and the algorithms are not restricted to a particular software package.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore