Network flow based approaches for the pipelines routing problem in naval design ${ }^{\text {T}}$

Víctor Blanco ${ }^{\text {a,b }}$, Gabriel González ${ }^{\text {c }}$, Yolanda Hinojosa ${ }^{\text {c,d }}$, Diego Ponce ${ }^{\text {c,e, }, \text { Miguel A. Pozo }}{ }^{\text {c,e,*, }}$ Justo Puerto ${ }^{\text {c,e }}$
${ }^{\text {a }}$ Institute of Mathematics (IMAG), Universidad de Granada, Spain
${ }^{\mathrm{b}}$ Dpt. Quant. Methods for Economics \& Business, Universidad de Granada, Spain
${ }^{\text {c }}$ Institute of Mathematics (IMUS), Universidad de Sevilla, Spain
${ }^{\text {d }}$ Dpt. Applied Economics I, Universidad de Sevilla, Spain
${ }^{e}$ Dpt. Stats \& OR, Universidad de Sevilla, Spain

A R T I C L E I N F O

Article history:

Received 24 July 2021
Accepted 6 April 2022
Available online 10 April 2022

2010 MSC:

46N10
65K05
90B10
90C35
Keywords:
Pipeline routing
Network design
Branch-and-Cut
Matheuristics
Naval engineering

Abstract

In this paper we propose a general methodology for the optimal automatic routing of spatial pipelines motivated by a recent collaboration with Ghenova, a leading Naval Engineering company. We provide a minimum cost multicommodity network flow based model for the problem incorporating all the technical requirements for a feasible pipeline routing. A branch-and-cut approach is designed and different matheuristic algorithms are derived for solving efficiently the problem. We report the results of a battery of computational experiments to assess the problem performance as well as a case study of a real-world naval instance provided by our partner company.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The design and construction of ships is a complex procedure that starts with a concept design phase. In the concept design, all the necessary ship construction requirements are determined, in order to meet the client needs. Next, in the basic design phase of the ship structure, piping and electrical circuits are defined and all the different equipment are adequately selected. In this phase, one of the most difficult tasks is to determine the pipeline route design in which one has to determine the paths of the different services attending to a series of technical requirements. Pipeline routing requires the coordination of different elements of the ship, as the routing of electrical circuits, water pipes and optical fiber, the prevention of traversing forbidden obstacles, the assuredness

[^0]of the adequate space for handling the machinery, among many others, all of them having to guarantee the compatibility and the manufacturability technical requirements. Although there are some available tools to help the designers on this task, the difficulty of the problem makes that an expert is still necessary to guide the design to a desired final product. Usually, there are some specifications regarding the number of main lines, branches to be connected to the main lines, valves, etcetera that have to be considered (see, e.g., $[5,32]$). Once the initial technical requirements are determined, the pipeline routing problem must be solved following these specifications. The main limitations of the pipeline routing problem on a ship can be classified in three types (see, [1,22,24]):

Physical Constraints: The path followed by the pipelines must avoid physical obstacles and connect with the adequate equipment.
Operational Constraints: The routes must consider accessibility for handling equipment and valves slackness for security. In addition, some zones in the decision space are more desirable than others, as bottom spaces in a cabin that may be used for storing other types of materials.

Economic Constraints: There is a limited budget both for the material and workforce cost. Thus, it is necessary to reduce the pipe lengths, as well as the use of elbows in the design.

Some of the above mentioned requirements must be imposed to design feasible routes, while others can be quantified and reflected in a cost function in order to evaluate the different feasible alternatives and decide the most favorable. Nevertheless, defining adequately such a function implies including elements of different nature as material and workforce costs, use of elbows, routes passing through preference zones and holes, etc.

There exist a few software tools (as AVEVA, FORAN or SMART3D, among others) that may help industrial designers for the development of this work. However, even those tools that incorporate some automatic routing functionality are still limited to consider all the technical requirements of this real-world problem being them more adequate for industrial plants. Furthermore, the underlying algorithms of these modules do not allow to incorporate the different specificities for the design of a ship, and then, in most cases the solution is not valid for the naval designer. In other cases, the decision aid tools are extremely specialized, not being flexible enough for the design of networks of different characteristics.

The goal of this paper is to derive an efficient mathematical programming based methodology for the automatic design of pipeline routes that take into account the different technical specificities of a naval design, but still flexible enough to be adapted to different situations and constructibility criteria that appear in realworld situations as the one that motivated this study.

Automatic pipeline routing has been already addressed in the literature (see for instance, [9,14,18,20,23,29]) One of the most crucial steps in this problem is the description of the set of feasible routes for the pipes. Although the problem is initially stated in a continuous framework, with routes that are allowed to be traced in a continuous three-dimensional region, the mathematical problem is intractable in this form (one would need to locate a set of complex three-dimensional paths on a continuous space). Thus, a discretization of the whole space into a finite set of feasible routes is needed also because the tractability of the problem and the simplicity of the obtained routes. One of the possible options is to discretize the space by cell decomposition. In [16] the author proposed to subdivide the region into squared cells and those containing obstacles are removed. Several authors have used that scheme to derive algorithms for solving shortest path problems in continuous regions [$10,17,19,25,27$]. This approach has been also adapted to solve the pipeline routing problem [1,3,4,13,33]. However, this method requires a high number of cells in the subdivision to get accurate solutions of the problem. To overcome this situation, one may also discretize the space by means of a graph structure [9,21,28]. Both approaches, cell subdivision and graph generation can be also adequately combined to derive efficient approaches in pipeline routing [23].

Once the space is adequately discretized, there are several heuristic approaches that have been proposed to solve the pipeline routing problem. Most of them are genetic algorithms [11,12,14] or ant colony algorithms [30,31].

In this paper we will consider a graph-based discretization of the space that allows us to use Combinatorial Optimization tools for efficiently solving the problem. The graph is generated taking into account the shape of the region and obstacles, the positions of the source and destination points of the pipes, the size of the pipelines, the preferred zones and penetrable zones (holes through which some obstacles can be traversed), and other characteristics of the pipes to route. Firstly, we generate the nodes of the graph using highlighted points (source and destination points, corners, holes, ...) and also intermediate points by means of a grid with a
desired width. Secondly, we define the edges of the graph by linking the close-enough nodes. Finally, each edge is provided with a set of weights (one for each pipeline to route) representing the different costs of using it in a path.

On the basis of this idea our main contributions are:

1. We discretize the continuous three-dimensional space by using a graph-based framework that allows searching for pipeline routes taking into account the obstacles and the use of elbows in the routes.
2. We propose a multicommodity network flow based model for the problem that incorporates the different physical and operational limitations of the routing. In particular, the minimum allowed distances between consecutive elbows and separation between services. We provide a particular branch-and-cut approach for the problem.
3. We propose a flexible assessment function to evaluate feasible routes that take into account the different specificities that appear in real-world naval design: length of the paths, preference zones, closeness to ceilings/floors, use of elbows, crossing penetrable zones, etc.
4. We develop different matheuristic algorithms able to solve realistic instances of the problem in reasonable CPU times.

To present our contribution we have organized the paper in six sections. Section 2 describes the main elements involved in the pipeline routing problem and their mathematical representation. Section 3 is devoted to present the mathematical programming model that we propose for solving the pipeline routing problem imposing naval design technical requirements. In Section 3.1 a branch-and-cut method is proposed in order to incorporate complicating constraints as they are required, instead of considering, initially, all of them. Two families of matheuristic algorithms are provided in Section 4 to solve large-sized instances. In Section 5 we report the results of our computational experiments. There, we also include a case study based on real data provided by our industrial partner. Finally, we derive some conclusions and future lines of research is Section 6. We have included an Appendix to gather all the pseudocodes that describe the details of our algorithms.

2. The pipeline routing problem in naval design

The goal of this paper is to model and solve the problem of how to route different pipelines on a ship competing for a reduced space taking into account the adequate technical requirements. In what follows we describe the main elements of the problem: input data, feasible actions and assessment of a particular solution.

We assume that the underlined region where the pipelines are to be routed is represented by a bounded polyhedron, \mathcal{P}_{0}, in \mathbb{R}^{3}. In real-world situations, the polyhedron is usually a cuboid in the form $\mathcal{P}_{0}=\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$, representing a cabin in the ship. We are also given a finite set of regions $O_{1}, \ldots, O_{0} \subseteq \mathcal{P}_{0}$ that represents o obstacles that cannot be traversed by a pipeline route. For the sake of simplicity, these regions will be also identified with cuboids. Thus, the three-dimensional region where the pipelines are allowed to be traced is $\mathcal{P}=\mathcal{P}_{0} \backslash \cup_{\ell=1}^{0} O_{\ell}$. In addition, we are given a finite set of services (cylindrical pipelines) each of them represented by the coordinates of a source and a destination point (both in \mathcal{P}), a radius (of the cylindrical pipeline), and a safety minimum allowed distance with respect to other services. Our approach can be easily adapted to other shapes of pipelines, as parallelepipeds (with rectangular sections).

The main decision to be taken in this problem is to determine the set of (dimensional) paths in \mathcal{P} that each one of the services must follow. Initially, a feasible path for a service will be a continuous union of segments in \mathcal{P} starting off from its source point and

 to colour in this figure legend, the reader is referred to the web version of this article.)
reaching its destination point. In addition, a minimum required distance must be ensured between two consecutive breakpoints (elbows) by constructibility reasons. Furthermore, once a feasible path for each service is traced, and once a dimensional pipeline is traced around the path, one has to ensure that a minimum required distance between the different services is respected. In particular, the pipelines are not allowed to cross or to overlap in a solution.

The quality of a suitable solution of the problem, given by a set of feasible paths, is evaluated with respect to different criteria. Apart from the length, which is proportional to costs, one also looks for paths with small number of elbows, close to the ceiling of the region or traversing pre-specified preference zones.

In what follows we describe the mathematical representation of the elements involved in the Pipeline Routing Problem in a Ship (PRPS) that we analyze.

In order to discretize the continuous space \mathcal{P}, first, an orthogonal 3D grid is built on the big parallelepiped \mathcal{P}_{0}, assuring that source and destination points of each service are nodes of the grid and that they are connected with other nodes of the grid. This grid defines a baseline undirected graph to which nodes and edges intersecting regions O_{ℓ}, for $\ell=1, \ldots, o$, are removed. In Example 1 we show a simple instace for the problem.

Example 1. In order to illustrate the procedure described in the paper we include an example of a scenario with an obstacle and three services (see Fig. 1 (left)). The scenario is a box with dimensions $6 \times 6 \times 4$ with an interior obstacle (box) of dimensions $2 \times 2 \times 4$ located in the center of the box representing a pillar. The discretized space of solutions is given by a three-dimensional orthogonal grid from which the corresponding portion that is within the obstacle has been removed (see Fig. 1 (right)).

However, when tracing a path in such a graph, one is not able to detect or penalize the use of elbows. Elbows in a pipeline must be adequately identified in its route both because constructibility and also because routes with a smaller number of elbows are preferred. The goal is to obtain a mathematical programming model
for the problem that avoids non-linearities. In order to consider elbows in a linear objective function in our model, we modify the initial graph by exploiting the nodes of the graph as follows:

1. Each physical node v in the initial graph is replaced by an $e x$ ploited node, i.e., a set of three virtual nodes, v_{X}, v_{Y}, v_{Z} with the same 3D coordinates than v, one for each direction of the canonical basis of $\mathbb{R}^{3}(X, Y$ and $Z)$.
2. Virtual nodes associated to the same physical node are linked through the so-called virtual edges. Their lengths are zero (since they link nodes with the same coordinates), but they will have a positive cost representing the usage of an elbow in the route.
3. Each physical edge in the initial graph is replaced by another edge with the same length as the physical one, where instead of joining two physical nodes, it connects two virtual nodes (associated to the same physical end nodes of the original edge). Specifically, each edge is linked to the virtual nodes identified with its direction. In this way, edges parallel to the X-axis link X-virtual nodes, edges parallel to the Y-axis link Y-virtual nodes, and edges parallel to the Z-axis link Z-virtual nodes.

In Fig. 2 we show an illustration of this explosion of nodes. In the left picture we show a crossing node, v, which is linked in the graph to other six nodes. In the right picture we show the three exploited nodes, v_{X}, v_{Y} and v_{Z}, of node v. Node v_{X} (resp. v_{Y}, v_{Z}) is linked only to the two adjacent nodes which are linked with edges parallel to the X-axis (resp. Y-axis, Z-axis) and with the others two virtual nodes associated with the same physical node. As we can see, the three virtual edges linking v_{X} with v_{Y}, v_{X} with v_{Z} and v_{Y} with v_{Z} are drawn with dashed lines in this picture.

In Fig. 3 we illustrate the use of this graph to model different types of turns in a path. In the left picture, to go from a to b no elbows are used and a single exploited node (v_{Y}) is used. On the other hand, in the center (resp. right) picture, turning from an edge parallel to Y-axis towards an edge parallel to Z-axis (resp. X-axis) requires traversing the virtual edge (v_{Y}, v_{Z}) (resp. (v_{Y}, v_{X})) incurring in a cost for using that elbow. The result is a graph representing the feasible space where routing the pipelines.

Fig. 2. Illustration of exploited nodes and virtual edges.

Fig. 3. Illustration of the use of exploited nodes and virtual edges to model different types of turns in a path from node a to node b.

We denote by $\widetilde{G}=(V, E)$ the graph constructed as described above where V is the set of (virtual) nodes and E the set of edges. Set E includes the set of virtual edges, denoted by E^{v}, and the replicas of the physical initial edges. Since \widetilde{G} is embedded in \mathbb{R}^{3}, each node $v \in V$ is also identified with its $3 D$ coordinates, $\left(x_{v}, y_{v}, z_{v}\right) \in \mathbb{R}^{3}$. We denote by $d_{v v^{\prime}}=d\left(\left(x_{v}, y_{v}, z_{v}\right),\left(x_{v^{\prime}}, y_{v^{\prime}}, z_{\nu^{\prime}}\right)\right)$ the Euclidean distance between nodes $v, v^{\prime} \in V$ and by $d_{e e^{\prime}}$ the Euclidean distance between the edges $e, e^{\prime} \in E$ (representing either, a point in \mathbb{R}^{3} if $e \in E^{v}$ or a segment in \mathbb{R}^{3} if $e \in E \backslash E^{v}$).

We assume that we are given a finite set of commodities, K, each of them requiring its own pipeline to determine the design of its route. Each commodity $k \in K$ is defined by a pair $\left(s^{k}, t^{k}\right)$ where $s^{k} \in V$ is the source of the commodity and $t^{k} \in V$ is the destination of the commodity. Depending on the commodity $k \in K$, a cost structure, $c_{e}^{k} \geq 0$ for each $e \in E$, is defined over the edges of the graph. These costs depend on many factors as for instance, the length of the edges, the elbow costs, the preferences of the designer when routing the pipelines, etc. A detailed cost structure will be described in Section 5.2 for the case study we deal with in this work.

3. A multicommodity network flow based model

In this section we describe the mathematical programming model that we propose for solving the PRPS imposing naval design technical requirements. In a first approximation, one can model the problem as a minimum cost multicommodity network flow problem (MCMNFP, for short). See, e.g., $[2,8]$ for some other applications of multicommodity flow models. Let us denote by $G=(V, A)$ (where $A=\{(i, j) \cup(j, i): e=\{i, j\} \in E\}$ is the arc set) the directed version of the graph \widetilde{G} described in the previous section. Similar to the non-directed version, we assume that set A includes the set of virtual arcs, denoted by A^{v}, and the replicas of the physical arcs. We also denote by $d_{a a^{\prime}}$ the Euclidean distance between the arcs $a, a^{\prime} \in A$ (notice that $d_{a a^{\prime}}=0$ if a and a^{\prime} are the arcs corresponding to the two opposite directions of the same edge). In addition,
we assume that, for each commodity $k \in K$, the cost of each arc $(i, j) \in A$ is $c_{i j}^{k}=c_{j i}^{k}=c_{e}^{k}$, where $e=\{i, j\}$.

The goal of MCMNFP is to route jointly all the commodities in K from their respective sources, s^{k}, to their destinations, t^{k}, through the network G at minimum cost. This model has been widely studied in the literature (the interested reader is referred to [26] and the references therein for further details on the MCMNFP).

In order to describe the mathematical programming model for the MCMNFP, we use the following set of binary decision variables:
$x_{i j}^{k}= \begin{cases}1 & \text { if arc }(i, j) \text { is used by the route of commodity } k, \\ 0 & \text { otherwise. }\end{cases}$
With this set of variables, the overall cost of routing the commodities through the network can be expressed as:

$$
\sum_{(i, j) \in A} \sum_{k \in K} c_{i j}^{k} x_{i j}^{k} .
$$

The following set of linear constraints ensures the correct representation of the problem:

$$
\begin{array}{lrl}
\sum_{k \in K} \sum_{j \in V:(i, j) \in A} x_{i j}^{k} \leq 1, & \forall i \in V, & \left(\mathrm{MCMNFP}_{1}\right) \\
\sum_{j \in V:(i, j) \in A} x_{i j}^{k}-\sum_{j \in V:(i, j) \in A} x_{j i}^{k}=0, & \forall k \in K, i \in V\left(i \neq s^{k}, t^{k}\right), & \left(\mathrm{MCMNFP}_{2}\right) \\
\sum_{j \in V:\left(s^{k}, j\right) \in A} x_{s^{k} j}^{k}=1, & \forall k \in K, & \left(\mathrm{MCMNFP}_{3}\right) \\
\sum_{\substack{j \in V:\left(j, t^{k}\right) \in A \\
x_{i j}^{k} \in\{0,1\},}} x_{j t^{k}}^{k}=1, & \forall k \in K, & \left(\mathrm{MCMNFP}_{4}\right) \\
& \forall(i, j) \in A, k \in K . & \left(\mathrm{MCMNFP}_{5}\right)
\end{array}
$$

where $\left(\mathrm{MCMNFP}_{1}\right)$ assures that only one commodity is routed through a node and in particular, through an arc, $\left(\mathrm{MCMNFP}_{2}\right)$ $\left(\mathrm{MCMNFP}_{4}\right)$ are the flow conservation constraints and $\left(\mathrm{MCMNFP}_{5}\right)$ is the domain of the variables.

The solution of MCMNFP is a set of paths (one for each commodity) connecting sources with destinations that do not overlap on the graph G. The reader may observe that in the graph G

Fig. 4. Solution of a MCMNFP in the underlined graph without additional modelling constraints (left) and the final solution after adding the additional constraints on distances between services and elbow test (right).
each physical node has been replaced by three virtual nodes on the same coordinates. This explains that in Fig. 4 (left) some paths occupy the same space although they do not actually overlap on G.

This problem is known to be $\mathcal{N} \mathcal{P}$-hard, even for the case of two commodities (see [7]). Additionally, in pipeline routing there are two main technical requirement that must be considered in order to construct feasible designs: a minimum distance between the pipelines and a minimum distance between consecutive elbows in a single pipeline. The first requirement allows to adequately separate the different services to be used by the pipelines (and such that, when they are enlarged to represent dimensional pipes, they fit on the space) as well as to keep space for the manipulation of machinery in the ship cabins. The second one, is a physical limitation of pipeline routing since there is not enough space for a pipe to turn twice in case consecutive elbows are positioned too close. Note that solutions consists of segments in \mathbb{R}^{3} with no dimensionality and therefore, these considerations are not taken into account in the MCMNFP. Thus, to impose those technical requirements the following constraints must be added to the problem in order to adequately model the PRPS:

1. Distance between Services: Given an (non-virtual) active edge for a service k, a minimum distance with respect to other services is required. Let R^{k} be the radius of the cylinder of pipeline $k \in K$ and let Δ^{k} be the minimum security distance from k to any other element. Then, the minimum distance allowed between services k and k^{\prime} is $R^{k k^{\prime}}=R^{k}+R^{k^{\prime}}+\max \left\{\Delta^{k}, \Delta^{k^{\prime}}\right\}$.
This requirement is assured imposing the following set of constraints:

$$
\begin{equation*}
\sum_{k^{\prime} \in K: k^{\prime} \neq k} \sum_{\substack{a^{\prime} \in A \\ d_{a a^{\prime}}<R^{k k^{\prime}}}} x_{a^{\prime}}^{k^{\prime}} \leq M_{a}^{k}\left(1-x_{a}^{k}\right), \quad \forall a \in A \backslash A^{v}, k \in K, \tag{Dist}
\end{equation*}
$$

that is, if a is an active arc in the path of service k, then, no arc in the path of any other service $k^{\prime} \neq k$ can be activated at a distance smaller than the minimum required. Here, fixed $a \in A \backslash A^{\nu}$ and $k \in K, M_{a}^{k}$ is a big enough constant (greater than $2(|K|-1)$ times the number of the grid edges contained in the cuboid centered at midpoint of arc a and with edge length length $\left.(a)+2 \max _{k^{\prime} \neq k} R^{k k^{\prime}}\right)$.
2. Elbow Test: A feasible path for a service, $k \in K$, is required to verify a minimum distance between consecutive elbows, $D^{k} \geq 0$, of this single service. Since elbows are identified in the nondirected graph with virtual edges and then, with virtual arcs in the directed graph, this requirement can be incorporated to the model as follows:
$x_{a}^{k}+x_{a^{\prime}}^{k} \leq 1, \forall a, a^{\prime} \in A^{\nu}: d_{a a^{\prime}} \leq D^{k}, a \neq a^{\prime}, k \in K$,
(Elbow)
that is, if two different virtual arcs (elbows) of the same service $k \in K$ are at a distance smaller than or equal to D^{k}, then only one of them is allowed to be active.
Example 2 shows the effects of considering constraints (Dist) and (Elbow).

Example 2 (Example 1 - continuation). Let (N, E) be the grid depicted in Fig. 1 (right). Grid (N, E) is a simplification of the actual graph $G=(V, A)$ used to solve the problem because in the final graph a directed version is considered and each of the nodes in the grid is replaced by its explosion as explained in Section 2.
We have solved the Example 1 scenario with the multicommodity model with and without the additional modelling constraints (Dist) and (Elbow). Observe that the paths without additional modelling constraints do not respect the conditions about distances and thus a much shorter solution is provided (see Fig. 4 (left)) than in the case in which the technical requirements imposed by means of constraints (Dist) and (Elbow) have to be fulfilled (see Fig. 4 (right)).
Fig. 5 shows the final solution with dimensional pipelines of the given pre-specified radii.

In order to tighten the LP relaxation of the problem (and thus leading to a more efficient solution method), constraints (Elbow) can be equivalently formulated as follows. Given a virtual arc $a \in A^{v}$, we denote by $R E(a)=\left\{\tilde{a} \in A^{v}\right.$: \tilde{a} has the same coordinates as $a\}$, namely the set of arcs linking virtual nodes associated to the same physical node as the one linked by a. Clearly, if $d_{a a^{\prime}} \leq D^{k}$, all the arcs in $R E(a)$ and $R E\left(a^{\prime}\right)$ are incompatible and then cannot take simultaneously a

Fig. 5. A graphical display of the solution of Example 1 with the final pipelines of the three services and their actual radii
value of 1 . Thus,

$$
\sum_{\tilde{a} \in R E(a)} x_{\tilde{a}}^{k}+\sum_{\bar{a} \in R E\left(a^{\prime}\right)} x_{\bar{a}}^{k} \leq 1, \quad \forall a, a^{\prime} \in A^{v}: d_{a a^{\prime}} \leq D^{k}, a \neq a^{\prime}, k \in K .
$$

(Elbow - R)

With the above considerations, the PRPS can be formulated as:

$$
\begin{equation*}
\min \sum_{(i, j) \in A} \sum_{k \in K} c_{i j}^{k} x_{i j}^{k} \tag{PRPS}
\end{equation*}
$$

s.t. $\left(\mathrm{MCMNFP}_{1}\right)-\left(\mathrm{MCMNFP}_{5}\right)$,
(Dist), (Elbow -R).
Problem (PRPS) is a minimum cost multicommodity network flow problem with additional constraints that enforce the fulfillment of the technical requirements for the pipelines in the solution. Although the problem is modeled as an Integer Linear Programming Problem, in real-world situations it has a large number of variables $(\mathcal{O}(|A||K|))$ and a large number of constraints. In particular, the technical constraints (Dist) and (Elbow -R) place a considerably load leading to a model with complexity $\left(\mathcal{O}\left(|A|^{2}|K|\right)\right)$.

3.1. An exact solution method for (PRPS)

The large dimensions of our model makes the straightforward approach of putting it into a MIP solver not possible even for small-sized instances. We overcome this drawback using a branch-and-cut method that incorporates the constraints as they are required, instead of considering initially all of them. This strategy allows an efficient exact solution approach of the problem by means of solving an incomplete (relaxed) formulation with only some of the constraints in the model, while the remaining constraints, required to assure the feasibility of the solutions, are incorporated on-the-fly as needed. Although in the worst case situation, the procedure may need all the constraints not initially included, in practice, only a small number of them are added, reducing considerably the size of the problem.

Specifically, we consider, in the beginning, the relaxed master problem (MCMNFP):
$\min \sum_{(i, j) \in A} \sum_{k \in K} c_{i j}^{k} x_{i j}^{k}$
(MCMNFP)
s.t. $\left(\mathrm{MCMNFP}_{1}\right)-\left(\mathrm{MCMNFP}_{5}\right)$.

The above problem is nothing but the multicommodity network flow model that does not consider the two families of technical constraints that are required for a feasible solution of our problem. Thus, when solving (MCMNFP), one may obtain solutions which do not satisfy constraints (Dist) and/or (Elbow - R). Therefore, each obtained solution must be checked for feasibility. To separate the violated constraints, we apply an enumerative procedure and those which are violated are added to the pool so that the problem is solved again (cutting off the previously obtained solution).

More specifically, for a given solution of the relaxed master problem, we check whether it violates (Dist) and/or (Elbow - R) as follows:

- To check the violation of any of the constraints in (Dist) we proceed by measuring the distance between two arcs from different commodities in the solution or the distance between an arc from a commodity in the solution and obstacles' edges. If the distance measured is smaller than the sum of the radius of both commodities plus the security distance between them, the constraint is violated. In case it is violated for a service $k \in K$ and $a \in A \backslash A^{v}$, the constraint is added to the constraint pool of the master problem.
- The violation of the constraints (Elbow -R) is tested by first ordering virtual arcs within each commodity in the path given by the current solution and then measuring the distance between two consecutive virtual arcs in the path. If the distance measured is smaller than the minimum required distance between elbows for this commodity then the constraint is violated. In this case, this particular constraint (Elbow -R) is introduced as a feasibility cut to the set of constraints of the problem.
For a more efficient implementation of the procedure, it is embedded in the branch-and-bound tree relaxing constraints (Dist) and (Elbow-R). This procedure, which in solvers is applied by defining those constraints as lazy cuts, results in a constraints relaxation to solve the problem by means of a row generation approach.

4. Two matheuristic algorithms for the PRPS

In order to solve the pipeline routing model PRPS presented in Section 3 one has to solve a MILP problem. However, in most cases of real-world situations, due to their large number of variables and constraints, the corresponding problem cannot be solved by a commercial solver (and in many cases it cannot be even loaded). For this reason, we provide in this section two families of matheuristic algorithms for the problem based on two different paradigms: reducing the dimension of the MILP model and decomposing the problem into simpler problems. The pseudocode of both algorithms is included in Appendix A.

4.1. Dimensionality reduction

Recall that we assume that the underlined region where the pipelines are to be routed is represented by a bounded polyhedron in \mathbb{R}^{3}, and that in real-world situations, the polyhedron is usually a cuboid representing a cabin in the ship where some other smaller cuboids (obstacles) have been removed. In addition, there are zones of such a region that are rarely used by the paths in the solutions (by all or some of the services). We exploit this fact in order to reduce the number of variables of our model.

Fig. 6. Illustration of the initial region used in the dimensionality reduction algorithm.

We propose an iterative procedure that starts by considering some tentative areas as candidate zones for searching for the solution (called in the pseudocode Init-Sol) and then solving the multicommodity flow problem with additional (Elbow-R) constraints for each single commodity to determine the best solution for each service independently of the remainder services. Then, for each commodity we consider a parallelepiped of a given initial dimension around the obtained path and instead of solving (PRPS) in the whole graph, we solve the problem in the union of these parallelepipeds together with the initial candidate zones (see Fig. 6 (right)). We do this by fixing to zero the variables indicating arcs outside the above mentioned regions. In case the problem is feasible, it provides a solution of (PRPS). Otherwise, the dimension of the parallelepipeds is increased and the procedure is repeated until feasibility is obtained. Although in the worst case situation the algorithm requires solving the original instance of the problem (the whole graph), in practice, it allows to solve the problem with a considerably smaller number of variables. Algorithm 1 in Appendix A. 1 provides a pseudocode for this procedure.

4.2. Decomposition-based algorithms

Note that when removing the capacity constraints, (MCMNFP_{1}), from MCMNFP, the problem can be decomposed in $|K|$ singlecommodity network flow problems with unitary demands which are equivalent to solve $|K|$ shortest path problems on the undirected graph \widetilde{G}, and then, solvable in $\mathcal{O}\left(|V|^{2}+|E|\right)$ time by the classical Dijkstra algorithm [6]. Based on this idea, we propose an algorithm that exploits the use of this decomposition for solving fast and accurately the PRPS. Algorithm 2 in Appendix A. 2 shows the pseudocode of this algorithm.

First, the algorithm considers a sorted list of all the commodities (pipelines to route), K_{0}, and a maximum number of iterations to perform, maxit. The iterations are grouped in three different classes: parallel iterations (I_par), sequential iterations (I_seq) and cluster iterations (I_cluster), such that the three sets define a partition of $\{1, \ldots$, maxit $\}$.

The main scheme for all the iterations is similar. At each iteration it $\in\{1, \ldots$, maxit $\}$, a shortest path is built for each commodity included in the sorted list $K_{i t}$ trying to pass the elbow test, i.e., the minimum required distance between consecutive elbows in the paths (constraints (Elbow)). This path is constructed using the pro-
cedure SPP_ETest (Algorithm 3 in Appendix A.2). In this procedure, for each commodity $k \in K_{i t}$, a shortest path from the source node s^{k} to the destination node t^{k} is initially built on the undirected graph \widetilde{G} using Dijkstra algorithm $\left(\operatorname{SPP}\left(s^{k} \rightarrow t^{k}\right)\right.$). In case the elbow test is passed, SPP_ETest returns that path. Otherwise, the part of the path that passes the test is kept, the cost of the first elbow that does not pass the test is increased and Dijkstra algorithm is run again (with the new costs) from the last elbow passing the test to the destination node (updating the source node for SPP). The process is repeated every time we find an elbow that does not pass the test. If we identify the process is cycling we initialize it maintaining the increased costs and taking the source node of the commodity as destination node and viceversa. This last step is repeated until the elbow test is passed or until a maximum number of iterations (of the elbow test) is reached and then, the elbow test has not been passed.

The second step consists of avoiding overlapping of paths in the solution. This phase is different for each of the types of iterations that we consider. In the sequential iterations paths for commodities are solved one by one in the sorted order and therefore, the sorting of the commodities affects the solution. In these iterations, once the path for commodity k is solved, this path is kept, commodity k is removed from the list of sorted commodities and overlapping is avoided by increasing for the remaining services $k^{\prime} \neq k$ in the list, the cost of the edges in conflict, that is, the edges at a distance lower or equal than $R^{k}+\Delta^{k}$ from the edges used in the path of service k. They can be tested using Algorithm 4 described in Appendix A.2.

In the parallel iterations the paths for commodities are solved independently and the overlapping phase is addressed once all the paths are constructed by increasing the cost of the edges in conflict. This strategy is similar to the Touch-and-Cross method proposed in [15]. In the cluster iterations, paths for all the commodities are solved initially in parallel. The commodities that do not overlap with any other are removed from the set of commodities $K_{i t}$ and their paths are kept. The remainder commodities $k \in K_{i t}$ are organized in clusters of services with edges in conflict and they are sorted by some prefixed measure, as for instance, increasing length of their paths. The first sorted commodity of each cluster is removed for the set of commodities $K_{i t}$ and their path is kept. The cost of the edges in conflict with the paths that are kept is in-

Fig. 7. Flowchart of the decomposition-based approach.
creased for the commodities remaining in $K_{i t}$ and these commodities are solved in parallel. The process is repeated until $K_{i t}=\emptyset$ or until the maximum number of iterations is reached.

Note that, for all types of iterations, each iteration is performed with a new set of costs for the edges, trying to avoid the use of conflicting edges in the solutions for the next iteration.

In Fig. 7 we sketch with a flowchart the decomposition approach. There, we denote by SPP_ETest(k) and CovList(k) the results of Algorithms 3 and 4, respectively. $\operatorname{Cov}\left(\mathrm{k}, \mathrm{k}^{\prime}\right)$ denotes the set of edges in conflict for services k, and k^{\prime}, i.e $\operatorname{Cov}\left(\mathrm{k}, \mathrm{k}^{\prime}\right)=\operatorname{CovList}(k) \cap \operatorname{CovList}\left(k^{\prime}\right)$.

5. Computational experience

Next, we report on the results of some computational experiments that we have First, we compare empirically the proposed exact and heuristic approaches in a set of 90 random instances that vary the grid density, the number of services and a number of obstacles within the instance to test the performance, applicability and flexibility of the proposed algorithms for solving different instances. Second, a case study on one realistic instance provided by our partner Ghenova further illustrates the applicability and performance of the proposed algorithms.

5.1. Random instances

The set of random instances are generated as follows. We choose \mathcal{P}_{0} as a cube of edge length equal to 128 units. An orthogonal 3D grid of $d \times d \times d$ physical nodes, with $d \in\{17,33\}$ is built
on this cube, being the distance between adjacent nodes fixed to $\frac{128}{d-1}$ units. This means a spacing of 8 and 4 units for $d=17$ and $d=33$, respectively. We will call d the density of the grid.

Five different groups of 15 obstacles each are generated with cube shape and edge length $l=10$ units. Each coordinate of the center of an obstacle is placed in $\left[\varepsilon+\frac{l}{2}, 128-\varepsilon-\frac{l}{2}\right]$ where ε stands for the width of an obstacles-free layer along the facets of \mathcal{P}_{0} that ensures some feasible origin-destination paths in case too many obstacles are placed. This grid defines a baseline for the undirected graph \widetilde{G} described in Section 2 and the directed version G described in Section 3.

Five different groups of 12 services are generated with equal radius of 4 units and establishing a safety minimum allowed distance of 1 unit with respect to other srun.ervices. For each service, a source and a destination have been randomly generated belonging to planes $y=0$ (for the source) and $y=128$ (for the destination) assuring that both points are nodes of the grid for $d=17$ and therefore, for $d=33$.

Several details on real-life cost functions for our problem are given in Section 5.2. However, for this preliminary study on random instances, we choose the cost function coefficients for an edge e as:
$c_{e}^{k}=\alpha_{1}^{k}\left(d_{e}+10 E l_{e}+2 C h_{e}\right)$,
where:

- α_{1}^{k} takes random integer values in [1,9].
- d_{e} is the physical distance between the two end-nodes i and j of the edge $e=\{i, j\}$ (length of the edge).

Table 1

Computational results for random instances.

d	s	0	Vars	Cons	Solved	GAP			Time		
						Ex	H1	H2	Ex	H1	H2
17	5	5	228,232	73,572	5	0.00	0.10	0.00	11.15	6.26	1.28
		10	227,421	73,386	5	0.00	0.32	0.00	11.51	7.80	1.48
		15	226,736	73,230	5	0.00	2.01	0.00	12.21	9.73	1.40
	8	5	399,406	117,761	5	0.00	0.31	0.64	400.17	396.38	2.24
		10	397,986	117,463	5	0.00	1.96	0.22	339.85	240.53	4.37
		15	396,788	117,214	5	0.00	5.73	0.34	347.41	482.09	4.59
	12	5	627,638	176,735	5	0.00	0.61	1.59	4216.11	1824.99	3.78
		10	625,407	176,289	5	0.00	2.64	1.17	3367.94	2159.86	7.20
		15	623,524	175,914	5	0.00	4.93	1.26	2596.96	2215.58	7.55
17			417,015	122,396	45	0.00	2.07	0.58	1225.45	1149.25	3.77
33	5	5	1,694,166	537,852	5	0.00	0.10	0.00	163.20	3.31	98.08
		10	1,689,282	536,568	5	0.00	0.16	0.00	152.31	5.43	90.72
		15	1,684,880	535,407	5	0.00	0.69	0.00	176.34	9.82	98.66
	8	5	2,964,791	860,609	3	0.06	0.24	0.64	5100.74	62.58	183.93
		10	2,956,243	858,554	4	0.16	1.26	0.15	4393.18	247.27	181.27
		15	2,948,540	856,697	4	0.16	3.07	0.32	3484.85	1546.39	184.73
	12	5	4,658,958	1,291,007	0	1.26	0.45	1.59	7200.05	236.02	315.66
		10	4,645,524	1,287,926	0	1.48	1.32	1.17	7200.05	1214.57	311.04
		15	4,633,420	1,285,139	0	1.38	3.68	1.26	7200.05	4278.22	308.63
33			3,097,312	894,418	26	0.50	1.22	0.57	3896.75	844.85	196.97
Total			1,757,163	508,407	71	0.25	1.64	0.57	2576.11	997.05	100.37

- $E l_{e}$ takes value 1 if edge e represents an elbow and 0 otherwise.
- $C h_{e}$ takes value 1 if edge e is a vertical edge (in the Z-axis) and 0 otherwise.

Observe that the cost function considers the distance of the paths, the number of elbows introduced as well as changes in height. This cost system is a simplified version of the general cost function described in Section 5.2 for our case study.

We denote by (d, s, o, g) the instance of density $d \in\{17,33\}$, services $\{1,2, \ldots, s\}$ with $s \in\{5,8,12\}$, obstacles $\{1,2, \ldots, o\}$ with $o \in$ $\{5,10,15\}$ and creating five instances, $g \in\{1, \ldots, 5\}$, for each combination of services and obstacles. Therefore 90 different benchmark instances are generated.

All instances were solved with the Gurobi 7.7 optimizer, under a Windows 10 environment in an Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 16 GB RAM. Default values were initially used for all parameters of Gurobi solver and a CPU time limit of 7200 seconds was set. We have also tested different combinations of parameters for the solver cut strategy and dimensionality reduction heuristic but, unless it is specified, the best results were obtained with the parameters of the solver set to the default values. An initial solution was given to the problem by solving the multicommodity flow problem with additional (Elbow - R) constraints for each service independently of the remainder services.

For the decomposition based heuristic, we fix the maximum number of iterations to 20 , the first 10% of them of type I_par, the next 80% of type I_{-}cluster and the last 10% of type I_{-}seq. In case a feasible solution is not found with the maximum number of iterations (which only happens for some of the $d=33$ instances), we generate the solution for the same instance by reducing the density to $d=17$, which is indeed, a feasible solution of the instance.

In Table 1 we report the average results of our computational experiments. The first three columns indicate the parameters identifying the instances, d (density), s (number of services) and o (number of obstacles). For each of the combinations of these parameters we report the average results of the five generated instances. Column Vars indicates the number of variables of the (MCMNFP) problem and column Cons the number of constraints. Column Solved reports the number of instances out of five solved
to optimality by the Exact method (Ex). In the block of columns denoted by GAP we report the gap obtained with the three proposed procedures, the Exact (Ex) model, the dimensionality reduction algorithm (H1), based on trimming down instances, and the one based on decomposing the problem (H2). The GAP reported for the exact approach indicates the MIP gap obtained at the end of the time limit in case the problem has not been optimally solved, while the gap for the heuristic procedures gives the percent deviation of the heuristic solution with respect to the best solution obtained with the exact approach. Finally, in the block of columns Time we report the CPU time required by each one of the approaches.

A first analysis of the results shows that the exact algorithm solves all instances with $d=17$ and any number of services and obstacles, whereas for $d=33$ we could solve to optimality almost all the instances for number of services $s=5$ and 8 but not for $s=12$ services. Actually, for $s=12$ services none of the instances could be solved to optimality within the time limit although the final MIP gap is always very small and less than or equal to 1.48%.

On the other hand, the results reported for the heuristic algorithms are rather good. For all the instances our two heuristic approaches (H1) and (H2) always find feasible solutions and the gaps with respect to the best solution found by the exact method (Ex) are less than or equal to 5.73%. Actually, heuristic (H2) reports even better gaps being always less than or equal to 1.59%.

Concerning running times, as expected, the methods based on solving mathematical programming models, i.e., the exact method (Ex) and the matheuristic (H1), require more time to get to their solutions. Clearly, (H1) is less time consuming than (Ex) since it solves trimmed instances which results in programs with much less variables and constraints so that the computing time is also smaller. On the other hand, the decomposition heuristic (H2) which is based on iteratively solving shortest path problems with modified weights is much lighter and the running times are considerably smaller.

5.2. Case study

This section is devoted to present the application of the proposed methodology to one of the realistic instances provided by

Fig. 8. Scenario of the case study .
our partner Ghenova in order to show the actual applicability of our solution methods to solve scenarios that appear in naval design.

In what follows we describe the elements involved in the instance analyzed in this section, which is drawn in Fig. 8:

- The space to design the pipelines systems consists of the threedimensional parallelepiped with widths 5732, 2836 and 2013 units (in the X, Y and Z axis, respectively) which represent a ship cabin.
- A grid was generated for the cabin by subdividing each axis in segments of width 100 , producing an initial grid of $58 \times 29 \times 21$ nodes. The graph $\tilde{G}=(V, E)$ is generated by introducing virtual nodes and edges, with $|V|=73,407$ and $|E|=282,202$.
- Ten services are to be routed in such a cabin, each of then identified with a number from 0 to 9 . The sources and destinations of the services are located as needed by the designer through the whole cabin (red and blue numbers/services in the figure, respectively).
- Five obstacles (walls) obstructing the routes are given (light blue shapes in the figure). They consist of metal slices of 10 units width and can be traversed through 8 holes/windows (light orange squares in the figure).
- The minimum distance between consecutive elbows is assumed to be 50 units, as required by the designer.
- The radii of the cylindrical pipes are 50,75 and 100 units and the minimal security distance among two pipelines is 50 units.

As already mentioned, each edge in the generated grid for the instance, has an associated cost that allows to evaluate the feasible routes to be traced in the network. The cost system incorporates the preferences of the designer when routing the pipelines. We consider an additive cost structure for the objective function to model the use of edges and elbows in the route of each commodity with the following shape:
$c_{e}^{k}=\left(\alpha_{1}^{k}+\alpha_{5}^{k} P r_{e}\right) d_{e}+\alpha_{2}^{k} E l_{e}+\alpha_{3}^{k} H_{e}+\alpha_{4}^{k} C h_{e}+\alpha_{6}^{k} P c_{e}+\alpha_{7}^{k} C l_{e}$,
for each edge e and each service k. In this function there are some α-parameters affected by the characteristics of the edge. The criteria and parameters that define the cost system are detailed in Table 2. This cost structure is flexible enough to reflect most the preferences of naval designers, and was determined in view of the criteria exposed by our partner company for the selection of implementable solutions.

Fig. 9. Graph used to illustrate the cost function in Example 3.

Example 3. In order to illustrate the above cost function, we use the part of the graph drawn in Fig. 9.

In this graph, Π_{1} is the plane $\{(x, y, z): z=1\}$ while $\Pi_{2}=$ $\{(x, y, z): z=0\}$ and then, plane Π_{1} is closer to the ceiling than plane Π_{2}. We denote by v_{1} and v_{2} the nodes which are virtualized in the figure (for each of the hyperplanes). We assume that there is a preference zone using Π_{1} but there are no preference zones using Π_{2}. Furthermore, v_{2} is assumed to be close to the source or destination point of some service and also that the black edge in Π_{2} crosses a penetrable zone for the service. In this situation, we have:

- The criteria d and $E l$ coincide for all the edges that belong to the planes Π_{1} and Π_{2}, being the part of their costs affected by parameters α_{1} and α_{2}, the same.
- The height of the edges in Π_{1} is larger than height of the edges in Π_{2}, being the term $\alpha_{3} H$ smaller for the edges in Π_{1}.
- The criterion Pr affects the edges in Π_{1} but not those in Π_{2}.
- The criteria Pc and Cl affect some of the edges in Π_{2} but none of those in Π_{1}.
- The edges linking nodes in Π_{1} with nodes in Π_{2} (parallel to the Z-axis) are only affected by criteria d and $C h$.

In Table 3 we summarize the cost function for edges in the different planes depicted in Fig. 9.

In the actual instance considered in the case study, each edge in the graph \widetilde{G} has the same cost for all services, i.e., $c_{e}^{k}=c_{e}^{k^{\prime}}$, for all $k, k^{\prime} \in K$, as required by our partner company. The parameters provided for this instance were:

α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
1	2800	700	200	-0.7	4000	3000

and the preference zones were defined as the following parallelepipeds: $[154241,158844] \times[535,1419] \times[24249,25221]$ and $[152013,154241] \times[535,3371] \times[24249,25221]$.

We run our model for this instance with the exact and the different heuristic approaches. A time limit of 12 hours was fixed for all the procedures. The exact branch-and-cut approach was not able to find a feasible solution of the problem within the time limit. Note that the number of variables for this problem is $2,819,480$ and the (initial) number of constraints is $31,014,280$ (constraints (Dist) and (Elbow - R) that are added as lazy constraints in the branch-and-cut approach are not counted here). The

Table 2
Criteria and parameters involved in the cost function of the case study.

Criteria	Description
d_{e}	physical distance between end-nodes i and j of edge $e=\{i, j\}$ (length of the edge).
$E l_{e}$	1 if edge e represents an elbow and 0 otherwise.
$H_{e}=M H-h_{e}$	being MH the maximum height of the ship cabin and h_{e} the height of edge e in case it is in a plane parallel to the XY-plane and 0 otherwise.
Ch_{e}	1 if edge e is a vertical edge (in the Z-axis) and 0 otherwise.
Pre	1 if edge e belongs to a preference zone and 0 otherwise.
$P C_{e}$	1 if edge e crosses a penetrable zone and 0 otherwise.
Cl_{e}	1 if edge e represents an elbow and it is close to a source or a destination point and 0 otherwise.
Parameters	Description
α_{1}^{k}	Cost per unit length.
α_{2}^{k}	Cost of an elbow.
α_{3}^{k}	Cost of moving away from the ceiling.
α_{4}^{k}	Cost of changing in z-coordinates (height). Therefore, moving to a different height is penalized.
α_{5}^{k}	Bonus per routing the pipeline in a preference zone ($\alpha_{5}^{k}<0 ; \alpha_{1}^{k}+\alpha_{5}^{k}>0$).
α_{6}^{k}	Cost of crossing a penetrable zone.
α_{7}^{k}	Cost of locating an elbow close to the source or destination point of a pipeline.

Table 3
Illustration of the cost function.

	Virtual Arcs (Elbows)	Non Virtual Arcs (Straight Pipes)
$e \in \Pi_{1}$	α_{2}^{k}	$\left(\alpha_{1}^{k}+\alpha_{5}^{k}\right) d_{e}+\alpha_{3}^{k} H_{e}$
$e \in \Pi_{2}$	$\alpha_{2}^{k}+\alpha_{7}^{k}$	$\alpha_{1}^{k} d_{e}+\alpha_{3}^{k} H_{e}$
		$\alpha_{1}^{k} d_{e}+\alpha_{3}^{k} H_{e}+\alpha_{6}^{k}$ (penetrable edges)
e parallel to Z-axis		$\alpha_{1}^{k} d_{e}+\alpha_{4}^{k}$

Fig. 10. Graphical display of the solution for the case study with 10 services. In the left it is shown the solution without showing the obstacles. The figure on the right shows the same solution integrated within the set of obstacles in the scenario.
number of explored nodes after 12 hours was 1804, which gives an idea of the high computational load required to solve the problem at each node of the branch-and-bound tree.

For the dimensionality reduction matheuristic (H1), we first solve, independently, the multicommodity flow problem with additional (Elbow -R) constraints for each single service, and restrict the search region of our problem to the region induced by these paths enlarged by a parallelepiped of dimension $\delta_{k}=\max \left\{R^{k^{\prime}}+\right.$ $\left.\Delta^{k^{\prime}}: k^{\prime} \in K\right\}$ around the paths. The value of δ_{k} is sequentially enlarged by 0.1 units until a feasible solution is obtained. This procedure obtains a solution in 132.37 seconds, and the last problem explored 18,041 nodes in the branch-and-bound tree. The number of variables of this problem was 473,292 (16.78% of the variables of the exact approach) and the initial number of constraints was $807,657(2.6 \%$ of the number of constraints required in the exact approach). The number of lazy constraints added in the branch-
and-cut approach was 40,800 (12 of them of type (Elbow - R)). The objective value of the solution was $448,690.78$.

For the decomposition based heuristic (H2) we fix to 10 the maximum number of iterations with the first 10% of them of type I_par, the next 20% of type I_cluster and the last 70% of type I_seq. This configuration was adequately tuned using a simplified instance for the problem as a training sample. This heuristic computed a solution in 94.54 seconds after 6 iterations and the obtained objective value was $433,387.86$. Observe that the deviation between the solutions obtained with the two heuristics was 3.41\%.

We draw in Fig. 10 the obtained solution (with heuristic H1) as paths in the graph. In the picture we represent the obtained paths without (left) and with obstacles and holes (right). The obtained solution as actual pipelines is drawn in Fig. 11. One can observe from the picture that real-world instances require routing intricate

Fig. 11. Graphical display of the solution for the case study with 10 services actual pipelines. In the left it is shown the set of pipelines without showing the obstacles. The figure on the right shows the same solution integrated within the set of obstacles in the scenario.
pipelines avoiding obstacles and respecting the space between the pipes what really makes difficult to locate them in the cabin. The heuristic approaches produce, in view of the results obtained with the synthetic instances, good quality solutions in reasonable CPU times, providing the naval designer with a powerful decision-aid tool for this task.

6. Conclusions

This paper develops a general methodology for the optimal automatic network design of different commodities incorporating real-world constructability conditions. This methodology was originated by an actual problem consisting of the design of spatial pipelines with ships cabins motivated by a recent collaboration with the company Ghenova, a leading naval engineering company. Our proposal is to adapt an 'ad hoc' minimum cost multicommodity network flow model to the problem that includes all the technical requirements of feasible pipelines routing. The large number of variables and constraints of real-sized instances makes it inappropriate (impossible in real-world instances) to load into the solver the complete model so that we implemented a branch-and-cut algorithm, where, initially only the standard multicommodity flow model is considered and additional technical constraints are separated within the branch-and-bound tree as lazy constraints. On top of that, we also develop two heuristic algorithms that provide rather good feasible solutions. The first one is a matheuristic based on solving trimmed instances and the second one is a decomposition heuristic that iteratively solves shortest path problems with modified edges weights. Our computational results on randomly generated instances are rather promising showing that we can solve to optimality medium-sized instances. We also report a case study based on a realistic naval instance of a ship cabin provided by our partner company to our research group to test the methodology.

Future work on this topic includes the consideration of more general underline networks including non-orthogonal designs which are conceptually easy to handle once the admissible solutions graphs are generated whereas the generation of these graphs is still a challenging question that will be the focus of a follow up paper.

We will also explore the use of Machine Learning tools to determine, in advance, the parameters of the cost function, that are assumed in this paper to be given by the designer. The study of the
subregions of α-parameters inducing the same routes will allow us to provide the designers different options of reasonable parameters to explore in the decision making process.

Credit Author Statement

All authors have evenly contributed to all aspect of the research and writing of the manuscript: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing - original draft, writing - review \& editing.

Acknowledgements

The authors of this research acknowledge financial support by the Spanish Ministerio de Ciencia y Tecnologia, Agencia Estatal de Investigacion and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21. The authors also acknowledge partial support from projects FEDER-US-1256951, Junta de Andalucda P18-FR-1422, CEI-3-FQM331, B-FQM-322-UGR20, NetmeetData: Ayudas Fundacin BBVA a equipos de investigacin científica 2019, and Contratación de Personal Investigador Doctor (Convocatoria 2019) 43 Contratos Capital Humano Línea 2. Paidi 2020, supported by the European Social Fund and Junta de Andalucía. The first author was also partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033.

Appendix A. Pseudocode of the algorithms described in Section 4

We gather in this section the pseudocode of the different algorithms described in Section 4 devoted to our matheuristic algorithms.

A1. Pseudocode for the dimensionality reduction algorithm in Section 4.1

In Algorithm 1, we include the pseudocode of the dimensionality reduction algorithm.

A2. Pseudocode for the decomposition-based algorithm described in section 4.2

In Algorithms 2, 3 and 4 we describe the different modules of the decomposition-based matheuristic.

```
Algorithm 1: Dimensionality reduction algorithm.
    input : Initial set of candidate zones provided by user
            \(\{\text { Init-sol }\}_{k \in K}\).
            \(\left\{\delta_{k}=R^{k}+\Delta^{k}\right\}_{k \in K}\) initial dimension of the
    parallelepiped around the best path for commodity \(k\).
            it \(=1 . s t o p=0\).
    for \(k \in K\) do
        Solve the Multicommodity Flow Problem with additional
        (Elbow - R) constraints for the single commodity \(k\) in the
        whole graph \(G\) : \(\left\{\text { path }_{k}\right\}_{k \in K}\)
    while stop \(=0\) do
        Solve (PRPS)(it), where all variables \(x_{i j}^{k}\) for a given service
        \(k\), that are outside Init - sol \(_{k}\) union with the
        parallelepiped of dimension \(\delta_{k}\) around path \(_{k}\), are fixed to
        zero.if (PRPS)(it) is feasible then
            stop \(=1\)
        else
            Increase \(\delta_{k}\) for all \(k\) in \(K\)
        it = it +1
    output: Solution of (PRPS)(it)
```

```
Algorithm 2: Decomposition-based Algorithm.
    input : stop :=0 (termination criterion); it=0 (iterations
        counter); \(\{1, \ldots\), maxit \(\}=\) I_par \(\cup\) I_seq \(\cup\) I_cluster
        (Index ser for iterations); \(K_{0}\) (sorted set of all
        services in \(K\) ).
    while stop \(=0\) and \(i t \leq\) maxit do
        if \(i t \in I_{-}\)seq then
            \(K_{i t}=K_{0}\) and \(\bar{K}=K_{0}\).
        for \(k \in K_{i t}\) do
            Apply the SPP_ETest to \(k\). (Algorithm 3)
            Update CovList ( \(k\) ). (Algorithm 4)
            if \(i t \in I_{-}\)seq then
                    \(\bar{K}=\bar{K} \backslash\{k\}\).For all \(k^{\prime} \in \bar{K}\), slightly increase the cost
            of edges linking vertices in CovList \((k)\).
        for \(k \in K_{i t}\) and \(k^{\prime} \in K\) do
        Compute \(\operatorname{Cov}\left(k, k^{\prime}\right):=\operatorname{CovList}(k) \cap \operatorname{CovList}\left(k^{\prime}\right)\).
        if \(\operatorname{Cov}\left(k, k^{\prime}\right) \neq \emptyset\) for some pair \(\left(k, k^{\prime}\right), k \in K_{i t}, k^{\prime} \in K\) then
            stop \(=0\).
            if \(i t \in I_{-} p a r\) then
            For all service \(k \in K_{i t}\), increase the cost (to the most
            costly service) of edges linking vertices in
            \(\bigcup_{k^{\prime} \in K} \operatorname{Cov}\left(k, k^{\prime}\right)\).
            if \(i t \in I_{-}\)cluster then
                    \(K_{i t+1}=\emptyset ;\)
            Sort the services, \(k_{1} \succ k_{2} \succ \cdots \succ k_{\ell}\) (by priority);
            if \(\operatorname{Cov}\left(k_{i}, k_{j}\right) \neq \emptyset\) and \(k_{i} \succ k_{j}\) then
                    \(K_{i t+1}=K_{i t+1} \cup\left\{k_{j}\right\}\).
                    For all service \(k \in K_{i t+1}\), increase the cost (to the
                    most costly service) of edges linking vertices in
                    \(\bigcup_{k^{\prime} \in K \backslash K_{i t+1}} \operatorname{Cov}\left(k, k^{\prime}\right)\).
            it \(=i t+1\)
        else
            stop \(=1\)
```

```
Algorithm 3: SPP_ETest(k).
    input \(: N^{0}:=s^{k}\) (source node for service \(k\) ); \(N^{f}:=t^{k}\)
            (destination node for service \(k\) ); \(P_{k}=\emptyset\) (initial path
            for service \(k\) ); test \(:=1\) (initial infeasibility test).
    1 while (test \(=1\) ) do
        \(P_{k}:=P_{k} \cup \operatorname{SPP}\left(N^{0} \rightarrow N^{f}\right) ;\)
        if (Elbow) is verified by \(P_{k}\) then
            test \(:=0\) andreturn \(P_{k}\)
        else
            Identify previous node that has passed the elbow test:
            \(i_{0}\);
            \(N^{0}:=i_{0} ;\)
            \(P_{k}:=P_{k} \backslash \operatorname{SPP}\left(i_{0} \rightarrow N^{f}\right)\);
            Increase the cost of the elbow not verifying the elbow
            test;
```

```
Algorithm 4: CovList(k).
```

Algorithm 4: CovList(k).
input : $P_{k}=$ path connecting source node s^{k} and destination
input : $P_{k}=$ path connecting source node s^{k} and destination
node $t^{k} ; L_{k}=P_{k}$ and $\delta_{k}=R^{k}+\Delta^{k}$ (covering of the
node $t^{k} ; L_{k}=P_{k}$ and $\delta_{k}=R^{k}+\Delta^{k}$ (covering of the
pipeline).
pipeline).
for $v_{0} \in P_{k}$ do
for $v_{0} \in P_{k}$ do
for $v \in L_{k}$ do
for $v \in L_{k}$ do
while there exists a vertex v^{\prime} adjacent to v such that
while there exists a vertex v^{\prime} adjacent to v such that
$d_{v^{\prime} v_{0}}<\delta_{k}$ and $v^{\prime} \notin L_{k}$ do
$d_{v^{\prime} v_{0}}<\delta_{k}$ and $v^{\prime} \notin L_{k}$ do
$L_{k}=L_{k} \cup\left\{v^{\prime}\right\}$;
$L_{k}=L_{k} \cup\left\{v^{\prime}\right\}$;
go to line 2.
go to line 2.
output: L_{k}.

```
    output: \(L_{k}\).
```


References

[1] Ando Y, Kimura H. An automatic piping algorithm including elbows and bends. In: International conference on computer applications in shipbuilding (ICCAS), Triestre, Italy; 2011. p. 153-8.
[2] Arslan O, Archetti C, Jabali O, Laporte G, Grazia Speranza M. Minimum cost network design in strategic alliances. Omega 2020;96:102079.
[3] Asmara A. Pipe routing framework for detailed ship design. Delft University of Technology, Netherlands; 2013. Phd thesis.
[4] Asmara A, Nienhuis U. Automatic piping system in ship. In: International conference on computer and it applications (COMPIT), Delft, Netherlands; 2006.
[5] Cuervas F, Tordera A, Fontán A, Brenes P, Alejo C, Tovar A, Puerto J, Conde E, Ortega F, Hinojosa Y. Ariadna: sistema automático de trazado de tuberías y canalizaciones en ingeniería. Ingeniería Naval 2017;963:75-84.
[6] Dijkstra EW. A note on two problems in connexion with graphs. Numer Math 1959;1(1):269-71.
[7] Even S, Itai A, Shamir A. On the complexity of time table and multi-commodity flow problems. In: 16th Annual symposium on foundations of computer science (SFCS 1975). IEEE; 1975. p. 184-93.
[8] Garg M, Smith J. Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios. Omega 2008;36:1057-71.
[9] Guiradello R, Swaney RS. Optimization of process plant layout with pipe routing. Comput Chem Eng 2005;30:99-114.
[10] Hightower D. A solution to line routing problems on the continuous plane. In: Proceedings of sixth annual design automation conference, IEEE; 1969. p. 1-24.
[11] Ikehira S, Kimura H, Kajiwara H. Automatic design for pipe arrangement using multi-objective genetic algorithms. In: International conference on computer applications in shipbuilding (ICCAS), Busan, Korea, 23-26 August; 2005. p. 97-110.
[12] Ito T. A genetic algorithm approach to piping route planning. J Intell Manuf 1999:103-14.
[13] Kim SH, Ruy WS, Jang BS. The development of a practical pipe auto-routing system in a shipbuilding cad environment using network optimization. Int J Naval Archit Ocean Eng 2013;5:468-77.
[14] Kimura H. Automatic designing system for piping and instruments arrangement including branches of pipes. In: International conference on computer applications in shipbuilding (ICCAS2011), 3; 2011. p. 93-9.
[15] Kimura H. Automatic piping arrangement design considering piping supports and curved surfaces of building blocks. In: International conference on computer applications in shipbuilding, ICCAS 2017, vol. 3; 2017. p. 107-14.
[16] Lee CY. An algorithm for path connections and its applications. IEEE Trans Electron Comput 1961;10(3):346-65.
[17] Li X, Lin S, Tian P, Aneja Y. Models and column generation approach for the resource-constrained minimum cost path problem with relays. Omega 2017;66:79-90.
[18] Min J, Ruy W, Park C. Faster pipe auto-routing using improved jump point search. Int J Nav ArchOcean Eng 2020:596-604.
[19] Mitsuta T, Kobayashi Y, Wada Y, Kiguchi T, Yoshinaga T. A knowledge-based approach to routing problems in industrial plant design. In: Proceedings of the sixth international workshop expert system and their applications, Avignon, France, March; 1986. p. 237-56.
[20] Mostafaei H, Castro PM, Relvas S, Harjunkoski I. A holistic MILP model for scheduling and inventory management of a multiproduct oil distribution system. Omega 2021;98:102-10.
[21] Newell RG. Algorithms for the design of chemical plant layout and pipe routing. Imperial College, London, England; 1973. Phd thesis.
[22] Park J. Pipe-routing algorithm development for a ship engine room design. Washington University; 2002. Ph.D. thesis.
[23] Park JH, Storch RL. Pipe-routing algorithm development: case study of a ship engine room design. Expert Syst Appl 2002;23:299-309.
[24] Qian X, Ren T, Wang C. A survey of pipe routing design. In: Control and decision conference, Chinese IEEE, Yantai, Shandong, China, 2-4 July; 2008. p. 3994-8.
[25] Rourke PW. Development of a three-dimensional pipe routing algorithm. Lehigh University; 1975. Phd thesis.
[26] Salimifard K, Bigharaz S. The multicommodity network flow problem: state of the art classification, applications, and solution methods. Oper Res 2020.
[27] Schmidt-Traub H, Holtkötter T, Lederhose M, Leuders P. An approach to plant layout optimization. Chem Eng Technol 1999;22(2):105-9.
[28] Shing MT, Hu TC. Computational complexity of layout problems. In: Layout design and verification. North Holland: Elsevier Science Publishers B.V.; 1986. p. 267-94.
[29] Singh J, Cheng J. Automating the generation of 3d multiple pipe layout design using BIM and heuristic search methods. In: 18th International conference on computing in civil and building engineering, ICCCBE 2020, vol. 98; 2021. p. 54-72.
[30] Xiaoning F, Yan L, Zhuoshang J. The ant colony optimization for ship pipe route design in 3D space. In: World congress on intelligent control and automation (WCICA), Dalian, China, 21-23 June; 2006. p. 3103-8.
[31] Xiaoning F, Yan L, Zhuoshang J. Ship pipe routing design using the ACO with iterative pheromone updating. J Ship Prod 2007;23(1):36-45.
[32] Yeates C, Schmidt-Hattenberger C, Weinzierl W, Bruhn D. Heuristic methods for minimum-cost pipeline network design: a node valency transfer metaheuristic. Netw Spatial Econ 2021;21:839-71.
[33] Zhu D, Latombe J. Pipe routing-path planning (with many constraints). In: IEEE International conference on robotics and automation (ICCAS), Sacramento, California; 1991. p. 1940-7.

[^0]: Area: Production Management, Scheduling and Logistics. This manuscript was processed by Associate Editor Leitner.

 * Corresponding author at: Dpt. Stats \& OR, Universidad de Sevilla, Spain.

 E-mail addresses: vblanco@ugr.es (V. Blanco), emaildegabri@gmail.com (G. González), yhinojos@us.es (Y. Hinojosa), dponce@us.es (D. Ponce), miguelpozo@us.es (M.A. Pozo), puerto@us.es (J. Puerto).

