178 research outputs found

    Drive network to a desired orbit by pinning control

    Get PDF
    summary:The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays the different influences and contributions of the various nodes in synchronization seeking processes of the dynamical network. Furthermore, it is shown that in order to drive a complex network to a desired synchronization state, the coupling strength should vary according to the controller. In addition, the theoretical results about the time-invariant network is extended to the time-varying network, and the result on synchronization problem can also be extended to the consensus problem of networked multi-agent systems. Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network. Numerical simulations with three kinds of the homogenous solutions, including an equilibrium point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness of the proposed control methodology

    Pinning Lur’e Complex Networks via Output Feedback Control

    Get PDF
    Without requiring the full-state information of network nodes, this paper studies the pinning synchronization in a network of Lur’e dynamical systems based on the output feedback control strategy. Some simple pinning conditions are established for both undirected and directed Lur’e networks by using M-matrix theory and S-procedure technique. With the derived stability criteria, the pinning synchronization problem of large-scale Lur’e networks can be transformed to the test of a low-dimensional linear matrix inequality. Some remarks are further given to address the selection of pinned nodes and the design of pinning feedback gains. Numerical results are provided to demonstrate the effectiveness of the theoretical analysis

    Mean-Square Exponential Synchronization of Markovian Switching Stochastic Complex Networks with Time-Varying Delays by Pinning Control

    Get PDF
    This paper investigates the mean-square exponential synchronization of stochastic complex networks with Markovian switching and time-varying delays by using the pinning control method. The switching parameters are modeled by a continuous-time, finite-state Markov chain, and the complex network is subject to noise perturbations, Markovian switching, and internal and outer time-varying delays. Sufficient conditions for mean-square exponential synchronization are obtained by using the Lyapunov-Krasovskii functional, Itö’s formula, and the linear matrix inequality (LMI), and numerical examples are given to demonstrate the validity of the theoretical results

    Synchronization and Pinning Control in Complex Networks with Interval Time-Varying Delay

    Get PDF
    The problems on synchronization and pinning control for complex dynamical networks with interval time-varying delay are investigated and two less conservative criteria are established based on reciprocal convex technique. Pinning control strategies are designed to make the complex networks synchronized. Moreover, the problem of designing controllers can be converted into solving a series of NMIs (nonlinear matrix inequalities) and LMIs (linear matrix inequalities), which reduces the computation complexity when comparing with those present results. Finally, numerical simulations can verify the effectiveness of the derived methods

    Stability and Control in Complex Networks of Dynamical Systems

    Get PDF
    Stability analysis of networked dynamical systems has been of interest in many disciplines such as biology and physics and chemistry with applications such as LASER cooling and plasma stability. These large networks are often modeled to have a completely random (Erdös-Rényi) or semi-random (Small-World) topologies. The former model is often used due to mathematical tractability while the latter has been shown to be a better model for most real life networks. The recent emergence of cyber physical systems, and in particular the smart grid, has given rise to a number of engineering questions regarding the control and optimization of such networks. Some of the these questions are: How can the stability of a random network be characterized in probabilistic terms? Can the effects of network topology and system dynamics be separated? What does it take to control a large random network? Can decentralized (pinning) control be effective? If not, how large does the control network needs to be? How can decentralized or distributed controllers be designed? How the size of control network would scale with the size of networked system? Motivated by these questions, we began by studying the probability of stability of synchronization in random networks of oscillators. We developed a stability condition separating the effects of topology and node dynamics and evaluated bounds on the probability of stability for both Erdös-Rényi (ER) and Small-World (SW) network topology models. We then turned our attention to the more realistic scenario where the dynamics of the nodes and couplings are mismatched. Utilizing the concept of ε-synchronization, we have studied the probability of synchronization and showed that the synchronization error, ε, can be arbitrarily reduced using linear controllers. We have also considered the decentralized approach of pinning control to ensure stability in such complex networks. In the pinning method, decentralized controllers are used to control a fraction of the nodes in the network. This is different from traditional decentralized approaches where all the nodes have their own controllers. While the problem of selecting the minimum number of pinning nodes is known to be NP-hard and grows exponentially with the number of nodes in the network we have devised a suboptimal algorithm to select the pinning nodes which converges linearly with network size. We have also analyzed the effectiveness of the pinning approach for the synchronization of oscillators in the networks with fast switching, where the network links disconnect and reconnect quickly relative to the node dynamics. To address the scaling problem in the design of distributed control networks, we have employed a random control network to stabilize a random plant network. Our results show that for an ER plant network, the control network needs to grow linearly with the size of the plant network

    New synchronization criteria for an array of neural networks with hybrid coupling and time-varying delays

    Get PDF
    This paper is concerned with the global exponential synchronization for an array of hybrid coupled neural networks with time-varying leakage delay, discrete and distributed delays. Applying a novel Lyapunov functional and the property of outer coupling matrices of the neural networks, sufficient conditions are obtained for the global exponential synchronization of the system. The derived synchronization criteria are closely related with the time-varying delays and the coupling structure of the networks. The maximal allowable upper bounds of the time-varying delays can be obtained guaranteeing the global synchronization for the neural networks. The method we adopt in this paper is different from the commonly used linear matrix inequality (LMI) technique, and our synchronization conditions are new, which are easy to check in comparison with the previously reported LMI-based ones. Some examples are given to show the effectiveness of the obtained theoretical results

    Cluster synchronization of nonlinearly coupled complex networks via pinning control

    Get PDF
    Author name used in this publication: Francis AustinVersion of RecordPublishe

    Cluster Synchronization of Nonlinearly Coupled Complex Networks via Pinning Control

    Get PDF
    We consider a method for driving general complex networks into prescribed cluster synchronization patterns by using pinning control. The coupling between the vertices of the network is nonlinear, and sufficient conditions are derived analytically for the attainment of cluster synchronization. We also propose an effective way of adapting the coupling strengths of complex networks. In addition, the critical combination of the control strength, the number of pinned nodes and coupling strength in each cluster are given by detailed analysis cluster synchronization of a special topological structure complex network. Our theoretical results are illustrated by numerical simulations
    corecore