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ABSTRACT

Stability analysis of networked dynamical systems has been of interest in many disciplines

such as biology and physics and chemistry with applications such as LASER cooling and

plasma stability. These large networks are often modeled to have a completely random

(Erdös-Rényi) or semi-random (Small-World) topologies. The former model is often used

due to mathematical tractability while the latter has been shown to be a better model for

most real life networks.

The recent emergence of cyber physical systems, and in particular the smart grid, has given

rise to a number of engineering questions regarding the control and optimization of such

networks. Some of the these questions are: How can the stability of a random network be

characterized in probabilistic terms? Can the effects of network topology and system dynamics

be separated? What does it take to control a large random network? Can decentralized

(pinning) control be effective? If not, how large does the control network needs to be? How

can decentralized or distributed controllers be designed? How the size of control network

would scale with the size of networked system?

Motivated by these questions, we began by studying the probability of stability of synchro-

nization in random networks of oscillators. We developed a stability condition separating the

effects of topology and node dynamics and evaluated bounds on the probability of stability

for both Erdös-Rényi (ER) and Small-World (SW) network topology models. We then turned

our attention to the more realistic scenario where the dynamics of the nodes and couplings

are mismatched. Utilizing the concept of ε-synchronization, we have studied the probability

of synchronization and showed that the synchronization error, ε, can be arbitrarily reduced

using linear controllers.
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We have also considered the decentralized approach of pinning control to ensure stability in

such complex networks. In the pinning method, decentralized controllers are used to control

a fraction of the nodes in the network. This is different from traditional decentralized

approaches where all the nodes have their own controllers. While the problem of selecting

the minimum number of pinning nodes is known to be NP-hard and grows exponentially

with the number of nodes in the network we have devised a suboptimal algorithm to select

the pinning nodes which converges linearly with network size. We have also analyzed the

effectiveness of the pinning approach for the synchronization of oscillators in the networks

with fast switching, where the network links disconnect and reconnect quickly relative to the

node dynamics.

To address the scaling problem in the design of distributed control networks, we have em-

ployed a random control network to stabilize a random plant network. Our results show

that for an ER plant network, the control network needs to grow linearly with the size of

the plant network.
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CHAPTER 1: LITERATURE REVIEW

The study of collective dynamics of networked systems has found significant interest and

applications in a variety of disciplines including but not limited to social sciences (random

gossip), biology (nervous system), physical sciences (plasma, laser cooling) and engineering

(autonomous agents, communications networks and smart grids) [3–16].

Recently as the study of collective behavior of dynamical systems has reached some level of

maturity [3], the stabilization and control of these complex networks have started to receive

a great deal of attention by engineers and scientists [17–19].

In this chapter, we will introduce the basic concepts and review the significant contributions

and literature relevant to the study of the collective behavior of these large complex networks

as well as stabilization and control of these dynamics.

Background and Basic Concepts

There are two important aspects to the study of the collective dynamics in the networked

systems. The first feature of networked systems is the dynamics of isolated systems, referred

to as nodes. The second feature is the particular structure in which these nodes interact

with each other. A brief introduction of the concepts related to these features is given below.

Dynamical Systems

Since systems which can be expressed with ordinary differential equations (ODE) constitutes

a large class of dynamical systems, this introduction is limited to this class of systems. This

1



class of systems can be denoted as

ẋ = f(x, t), x(t0) = x0. (1.1)

In particular we study an autonomous system where the function f does not depend explicitly

on t

ẋ = f(x). (1.2)

f : Rn → Rn. We note that the study of autonomous systems can be generalized to non-

autonomous systems via defining y = [xT , t]T and f′(y) = [fT (x), 1]T .

One important concept in the study of dynamical systems is the concept of an equilibrium

point, also called a fixed point.

Definition 1. A point x = x? is a fixed point of (1.2), if the state of the system starts at

x? and remains at x? for all future time [20].

Since for all future time the trajectory starting at x? stays there, f(x?) = 0. Therefore, fixed

points are the solution of f(x) = 0.

Based on the behavior of the trajectories of the system in the neighborhood of x?, fixed

points are categorized as [2]:

1. Attractors (sinks): fixed points which attract all the nearby trajectories.

2. Repellors (sources): fixed points which repel all the nearby trajectories.

3. Saddle points: fixed points that attract trajectories on one side but repel them on

the other.

2
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Figure 1.1: Behavior of trajectories near attracting (left) and repelling (right) fixed points,
c = 1.

Definition 2. The basin of attraction for a particular attractor is the set of initial points

{x0} such that the trajectories starting from each of these points approach the attractor as

t→∞ [2].

Theorem 1. Let x? be a fixed point of ẋ = f(x), i.e., f(x?) = 0, and

F =
∂

∂x
f(x)

∣∣∣∣
x=x?

,

then the fixed point, x?, is exponentially stable if F ≺ 0 [2].

The maximum eigenvalue of F is called the characteristic value of x?.

Example 1. Let  ẋ1

ẋ2

 =

 x2
1 − c2

x1 − x2

 ,
then x?1 = (−|c|,−|c|) and x?2 = (|c|, |c|) are two equilibrium points of the system with

3



respective characteristic values of max(−|c|,−1) and 2|c|. Hence, x?1 is an attracting/stable

fixed point and x?2 is repelling/unstable fixed points of the system. Fig. 1.1 illustrates the

behavior of the trajectories near these fixed points.

Oscillation or periodic behavior is another feature of dynamical systems.

Definition 3. A system is said to have a nontrivial periodic solution or limit cycle, if

∃T > 0 3 x(t+ T ) = x(t).

One example of such behavior can be found in van der Pol oscillator

 ẋ1

ẋ2

 =

 −x2

−x1 − γ(x2
1 − 1)x2


Fig. 1.2 shows the oscillatory behavior of two trajectories in van der Pol system.

Another interesting behavior of nonlinear dynamical systems is order determined random-

ness, called chaotic behavior [2]. This order determinism comes from the fact that given

the set of equations and initial conditions the evolution of the trajectories determines the

subsequent behavior for future time [2]. One example of such systems is Rössler oscillator,


ẋ1

ẋ2

ẋ3

 =


0 −1 −1

1 α 0

0 0 −β



x1

x2

x3

+


0

0

γ + x1x3

 ,

where [α, β, γ] ∈ R3 are the set of known parameters. It is known that for certain ranges

of these parameters, the system undergoes chaos [2].

Sample trajectories of Rössler oscillator are shown in Fig. 1.3.

4
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Figure 1.2: The van der Pol limit cycle, γ = 1.
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Figure 1.3: Sample trajectories of Rössler oscillator with chaotic behavior, [α, β, γ] =
[0.165, 10, 0.2].
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Stability

Here we will briefly review a central concept of systems theory known as stability theory.

Definition 4. [20] The equilibrium point x = 0 of system (1.2)

• is stable, if ∀ε > 0, there exists δ > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0,

and otherwise it is unstable.

• is asymptotically stable, if the system is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

• is exponentially stable, if the system is stable and there exists c, α > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ ≤ c‖x(0)‖e−αt, ∀t ≥ 0.

Lyapunov Exponent

As linearization is proven to be a useful tool in the study of nonlinear dynamical systems,

it is often used to determine the behavior of the trajectories near a certain set of points

in the state space [2] [20]. Of course, one should be wary of the conditions under which

linearization results in correct predictions. For instance, some of the justifications of using

linearization are based on checking the regularity of the dynamics, Lipschitz condition [21].
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By linearization of an autonomous system in (1.2), we have

ẋ = F x, x(t0) = x0, (1.3)

where F = ∂f/∂x is the Jacobian of the function f calculated on the set of points which

the behavior is sought to be determined. In general, F is time varying, but for brevity of

notation, argument t is omitted.

One measure to determine the behavior of trajectories in (1.3) is to calculate what is called

Lyapunov exponents [2]. To calculate these exponents, one should first calculate the state

transition matrix1, Φ(t, t0), for (1.3), then the ith Lyapunov exponent is

σi = lim sup
t→∞

1

2t
Real

{
ln
(
λi
(
Φ(t, t0)TΦ(t, t0

))}
, i ∈ {1, · · · , n} (1.4)

where λi(·) returns the ith eigenvalue of the argument, and Real(·) returns the real part of

its argument.

Based on this measure, it is known that for a system to undergo chaos, at least one of the

Lyapunov exponents should be positive. The set {σi, i = 1, · · · , n} is called Lyapunov spec-

trum. Based on signs and values of the Lyapunov exponents expected behavior of the system

can be determined. Table 1.1 gives the possible behaviors expected for three dimensional

systems based on the Lyapunov exponents.

Note that if all the Lyapunov exponents of an equilibrium point are negative then the

equilibrium point is exponentially stable [2].

1The state transition matrix can be computed by Peano-Baker series [2].
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Table 1.1: Spectra of Lyapunov exponents and the associated attractors for 3D state space [2].

signs of σ’s Types of attractors

(−,−,−) Fixed points

( 0,−,−) Limit cycle

( 0, 0 ,−) Quasi-periodic Torus

(+, 0,−) Chaotic attractor

Theorem 2. [2] If the maximum Lyapunov exponent of (1.3) is negative, then x = 0 is

exponentially stable.

Lyapunov Direct Method

Another method of investigating the behavior of dynamical systems is known as Lyapunov

direct method.

Theorem 3. [20] Let x = 0 be an equilibrium point for (1.2). Let V : Ω → R, be a

continuously differentiable function on a neighborhood Ω of x = 0, such that

V (0) = 0 and V (x) > 0 : ∀x ∈ D − {0},

V̇ (x) ≤ 0, ∀x ∈ D.

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0, ∀x ∈ D − {0}

then x = 0 is asymptotically stable.
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V (x) in Theorem 3 is called Lyapunov function. One unique feature of Lyapunov direct

method is that no differential equation is needed to be solved. Also, it is noteworthy that

Theorem 3 only provides sufficient condition on the stability [20].

As it can be seen the Lyapunov theorem is only applicable to equilibrium points. To extend

the theorem to study of limit cycles and/or chaotic attractors, LaSalle invariant principle

has been introduced [22]. The following is the definition of an invariant set which is used in

the principle.

Definition 5. [20] The set M is called invariant set with respect to (1.2) if

x(0) ∈M ⇒ x(t) ∈M, ∀t ∈ R (1.5)

This means that if a solution belongs to M at some time instant, it belongs to M for all

past and future time.

Theorem 4. [20, LaSalle Invariance Principle] Let Ω be a compact (closed and bounded)

set with the property that every solution of (1.2) which starts in Ω stays in Ω for all future

time. Let V : Ω → R be a continuously differentiable function such that V̇ (x) ≤ 0,∀x ∈ Ω.

Let E be the set of all points in Ω where V̇ (x) = 0. Let M be the invariant set in E. Then

every solution starting in Ω approaches M as t→∞.

Complex Networks

The mathematical notion of a complex network is a graph G consisting of a set of N nodes

connected by a set of M links. This graph is uniquely represented by the adjacency matrix

A = [aij], where entries aij = 1 if a directed link from j to i exists, and 0 otherwise. In

the general case of a weighted network, aij represents the weight of the link from node j to
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node i [23] [24]. The number of the links which connects node i to other nodes is called the

degree of node i and is denoted by di.

Investigating the statistical properties of many real-world and artificial complex networks

reveals that despite different network representations, some categorizations of these proper-

ties are possible. The most representative statistical property is the degree distribution P (d)

which indicates the probability of a node having degree d. While historically, the degree

distribution has been the first measure for studying the complex networks, several other

measures are found to be more useful and effective [4]. Two of these prominent measures are

the average shortest path length, `2, and the clustering coefficient, C. The average shortest

path length is defined as

` =
1

(N − 1)2

N∑
i,j=1

qij,

where qij is the length of the shortest path3 between node i and node j. The clustering

coefficient is defined as “the fraction of actual triangles (three vertices forming a loop) over

possible triangles in the graph”. One way to calculate C is

C =
1

N

N∑
i=1

Ci =
1

N

N∑
i=1

2ni
di(di − 1)

,

where ni is the number of links between nearest neighbors of node i and di is its degree [3].

Another important property of a given network is its spectra, which refers to the eigenvalues

2Also known as characteristic path length.

3In case of the weighted networks, and this is minimal sum of the weights belonging to a path from node
i to node j.
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of the Laplacian matrix4. The Laplacian matrix of a network, L = [lij], is defined as

lij ,


∑N

m=1 ami i = j

−aij i 6= j
. (1.6)

Per definition, the Laplacian matrix is positive semidefinite. Since the entries on each row

add up to zero, zero is an eigenvalue of the Laplacian matrix, with the all-one vector as its

right eigenvector [24]. It has been shown that if the network is connected, i.e., there exists a

path from each node to any other arbitrary node in the network, zero is a simple eigenvalue

of the Laplacian matrix [24]. The second smallest eigenvalue of the Laplacian matrix is a

measure of network’s connectivity and is referred to as its algebraic connectivity [24] [25].

That is, a bigger algebraic connectivity implies a stronger connected network.

Classifying complex networks based on the degree distribution, P (d), separates the networks

to homogenous or heterogenous classes [3]. Homogeneity of the network is determined by

the tail of the degree distribution. If the tail of the degree distribution rolls off exponentially

with the degree, the network is referred to as homogeneous, otherwise, the network is called

heterogeneous [3].

This classification can be improved upon by additionally taking the average shortest path

length of the network into account. This parameter can be used as a measure of smallness

of the network. That is, a smaller ` implies that the nodes in the network can be reached

in smaller number of hops. This parameter is also referred to as small-world property [3].

Clustering coefficient, C, is another useful parameter in classification of the networks, where

larger C values imply the existence of redundant paths and smaller C values imply otherwise.

4Also known as gradient matrix.
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p=0 p=1

Figure 1.4: The transition from regular network to SW and random network.

Network Models

Here, three common structures of mathematical interest for the networks are briefly reviewed.

Regular network or lattice: a connected network which has the property of di = d is called a

regular network or lattice [4]. This is also known as d-regular networks. Fig. 1.4-left shows

a lattice with d = 4. A regular network is homogeneous and its characteristic path length

scales as ` ∼ N1/d and its clustering coefficient is

C =
3(d− 2)

4(d− 1)
.

Erdös-Rényi or random network: if the link between two arbitrary nodes exists with proba-

bility p, and otherwise nonexistent, the resulted network is called Erdös-Réyni network, and

is denoted by G(N, p). Fig. 1.4-right shows an example of random network. An Erdös-Rényi

network is also homogenous. . Its characteristic path length scales with logarithm of net-
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work size given a constant average degree, ` ∼ ln(N)/ ln(d̄), where d̄ is the average degree

of the network, hence even when the network is large the average shortest path length is

small [3] [23].

Small-worlds: one of the seminal works on the modeling of the networks has been done

by Watts and Strogatz [4]5. This work was intended to create a comprehensive model to

understand the effect of substrate networks on the synchronization phenomena in real-world

networks. The model predicts the highly correlated connections between the nodes as if

there are invisible long range links between distant nodes in the network. This property in

the real-world networks is known as small-world (SW) effect [3] [4] [6]. This model shows

that if we start from a regular network and remove one end of a small number of links with

probability p and reattach the free-end of these links with equal probability (in random)

to other nodes, for p ≥ pc, the average distances between the nodes, `, will be reduced

drastically in the resulted network. As the number of rewired links increases the network

becomes more and more random where for p = 1 the network is completely random. Fig.

1.4 shows this transition from regular networks to small-worlds and random networks.

A revision to the model came shortly after. In the revised model, instead of rewiring the

existing connections, a small number of connections (with respect to the network order, M)

is established in random to acquire the small-world [6]. This revision simplifies the original

model, thus rendering it more suitable for analytical approaches [6]. In addition to having

a small characteristic path length which scales logarithmically with the network size (like

random networks), small-worlds also have the property of preserving the large clustering

coefficients of the substrate regular network [6].

5Of course there were some experimental studies before this work, where small-world property was re-
ported. Two instances of such studies are S. Milgram ’s experiment of 1969 and “six degree of separation”
concept by F. Karinthy in 1929 [3] [26, 27].
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Even though the small-world models bridge the gap between regular and random networks,

real-world networks prove to be more complex. Since the new model failed to give a com-

prehensive understanding of the behavior of the substrate network, a pragmatic model was

introduced by Barbási and Albert [7]. In this model, the inherent nature for the formation

of the real-world networks, such as preferential attachment and connectivity saturation6,

was also taken into account [3] [7] [25]. The real-world networks are usually a result of

mechanism, whereby in the evolution of the network, new comers prefer to attach to the

existing nodes with a higher number of links, also called hubs. The resultant networks have

power-law degree distribution, P (d) = d−γ where γ is a positive constant. It has been shown

that many real-world networks such as World Wide Web (WWW), electrical grids, etc. bear

this property [7]. As it can be seen the degree distribution of power-law is independent of

the network size, hence it does not scale with N and consequently, these networks are called

“scale-free” (SF). Since the degree distribution is power-law, these networks have a small

number of highly connected nodes, referred to as hubs, and a large number of nodes have

very small number of links [7]. Since the degree distribution in scale-free networks has a

heavy tail, these networks are classified as heterogeneous networks.

Synchronization in Complex Networks

One of the most intriguing collective behaviors found in complex network of dynamical

systems is the phenomenon of synchronized states.

One of the earliest reports of the synchronization or “odd kind of sympathy” was reported by

C. Huygens in 1665 where it was observed that two pendulum clocks with shared supporting

6That is, each node can handle/allow certain number/weight of connections, also called capacity con-
straint.
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frame, swung with the same frequency in 180 degree phase difference [3]. The reported

behavior would be also restored in case that the pendula were disturbed [3].

The problem formalization evolved with time and was first expressed in its current form

by Wiener in his book, Cybernetics, to study and comprehend of synchrony between large

groups of neurons, fireflies, or crickets at the same time [28].

It was not until A. T. Winfree’s paper in 1967 work that the breakthrough in the study

of this kind of collective behavior occurred [29]. Winfree’s work was based on the mean

field theory where the nodes (elements) in the network (population) were considered to be

phase oscillators [3] [29]. In this formulation, only the synchronization of the phases in

the oscillators was considered, while the amplitude of oscillators was ignored. Kuramoto ’s

oscillator is one of the common models used in this setup [3].

Following Winfree’s work, there has been considerable efforts to study the structural and

dynamical effects of the network on the emergence of the synchrony.

Parallel to the study of phase synchronization, there has been a lot of attention devoted to

analysis of state synchronization in the network of identical oscillators [3]. A breakthrough

in this research thrust was accomplished by Pecora and Carroll. When solving the problem

of state-synchronization, they introduced the concept of master stability function (MSF) and

chose the negativeness of the maximum Lyapunov exponent (MLE) of traverse modes as a

measure of the stability for the synchronization status of the network [5].

One of the key benefits of the master stability condition (MSC) approach is that the impact

of topological characteristics of the network on the stability of the synchronization can be

assessed separately from the dynamical properties of the nodes in the network [3] [5] [30].
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Synchronization in Network of Dynamical Systems-Basic Formulation

Let N = {1, · · · , N} and let xi ∈ Rn be the state vector for node i, i ∈ N , in the network of

|N | = N identical nodes. Let the individual dynamics be ẋi = f(xi) where f : Rn → Rn [5].

Suppose h : Rn → Rn is the inner coupling function of the states. Hence the dynamics of

the network of N coupled oscillators can be expressed as

ẋi = f(xi)− c
∑
j∈N

aij(h(xj)− h(xi)), ∀i ∈ N

xi(t0) = x0
i ,

or equivalently,

ẋi = f(xi)− c
∑
j∈N

lijh(xj), ∀i ∈ N (1.7)

xi(t0) = x0
i ,

where c is the coupling strength, aij indicates the weight of the connection from node j to

node i, and, L = [lij] is the Laplacian matrix of the network. If the network is assumed to be

connected, then zero is a simple eigenvalue of the Laplacian matrix of the network with the

all-one vector as its corresponding eigenvector. Also in this section we assume that network

is symmetric/bidirectional, hence the Laplacian is diagonalizable by the unitary matrix [31].

Let N − 1 constraints x1 = · · · = xN define the synchronization manifold, and s to be the

synchronization state. Also, let the error vector of node i from the synchronization manifold

be

ei , xi − s.
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Then the variational equation corresponding to (1.7) is

ėi = F ei − c
∑
j∈N

lij H ej, ∀i ∈ N , (1.8)

ei(t0) = e0
i ,

where F = ∂f/∂x|x=s and H = ∂h/∂x|x=s are the Jacobians of the vector-functions f and

h calculated on the trajectory, s, respectively. Note that F and H are in general time varying,

but we have dropped the notation for the sake of brevity.

Equation (1.8), can also be represented as

ė = (I⊗ F− cL⊗H) e, (1.9)

e(t0) = e0,

where e = [eT1 , · · · , eTN ]T .

As it will be shown in the following chapters, equation (1.9) is equivalent to

η̇ = (I⊗ F− cΛ⊗H)η, (1.10)

η(t0) = η0,

where η = (UH ⊗ I)e and U is the unitary matrix which diagonalizes the Laplacian matrix,

L = UΛUH , and Λ is a diagonal matrix, with eigenvalues of the Laplacian matrix as its

diagonal entries [5] [24] [31].

As it is noted in [5], ηN corresponding to µN = 0 gives the variations parallel to the synchro-

nization manifold, s, which will be ignored in this section. To study this term we identify the
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synchronization manifold in Chapter 3. As ηi, i = 1, · · · , N −1 are traverse to the manifold,

for the realization of synchronization state, it is necessary that these traverse modes to be

damped out. In other words, 0 should be a stable equilibrium point of

η̇′ = (I⊗ F− cΛ′ ⊗H)η′, (1.11)

η′(t0) = η0′,

where η′ = [ηT1 , · · · ,ηTN−1]T and Λ′ = diag([µ1, · · · , µN−1]). Hence the synchronization is

achievable if 0 is the stable equilibrium of the following

η̇i = (F− c µi H)ηi, ∀i ∈ N − {N}, (1.12)

ηi(t0) = η0
i ,

where µi is the ith largest eigenvalue of the Laplacian matrix of the network.

From Theorem 2, we know if the MLE of (F − c µi H) is negative for i ∈ N − {N}, the

synchronization would be achieved [5].

Calculation of MLE for the generic equation of

ż = (F− cλH)z

as a function of λ gives the master stability function (MSF) of the network [5].

Based on the definition of MSF, σ(·), can be defined as

σ(λ) , MLE(F− cλH), (1.13)

18



where MLE(·) returns the maximum Lyapunov exponent of the argument. Three types of

MSFs of interest are [1]:

1. Type I: monotonically increasing MSF (e.g. H is negative definite) where the stability

region is cλ(L) ∈ (0, α1), with α1 being the positive root of the MSF.

2. Type II: monotonically decreasing MSF (e.g. H is positive definite) where the stability

region is cλ(L) ∈ (α1,+∞), with α1 being the positive root of the MSF.

3. Type III: MSF which returns negative values in the finite interval (α1, α2) (e.g. H is

positive semidefinite), where α1 < α2 are the positive roots of the MSF.

Fig. 1.5 shows the MSF types of practical interest.
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Figure 1.5: Three types of master stability function of interest [1].
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Literature Review on Synchronization in Complex Networks

Following Pecora’s work, the vast majority of the existing literature on the subject have

adopted the negativeness of the largest traversal Lyapunov exponent as a measure of stability

of the synchronization. Of course, as noted in [5] and [21], the negativity of Lyapunov

exponents, in general, is neither a necessary nor a sufficient condition on the stability of

the synchronization manifold itself and it does not stop the manifold from bubbling and

bursting [5]. The condition of having MSF to be negative is called master stability condition

(MSC).

Since MSC leads to useful bounds on structural properties of the network, especially the

eigenvalues of its Laplacian matrix, scientists have been more focused on studying ways

to relate the bounds on the eigenvalues of the Laplacian matrix imposed by the MSC to

other properties of the network, such as minimum or maximum degree of the nodes, average

degree, etc. [5] [6] [11] [12] [30] [32] [33] [34]. These studies have been extended to under-

stand the relation of synchronizability of the network to its macroscopic and/or qualitative

characteristics such as regularity, smallness, randomness or scalability [30] [32] [33].

Even though the random networks are of limited practical interest, their study helps to pave

the path to understand dynamical flow in the networks with some degree of randomness such

as small-worlds or scale-free networks. Although, it has been numerically shown in [11] [35]

[36] that in large random networks, the average degree is the parameter directly linked to

the stability of the synchronization, rigorous analytical treatment has been lacking.

Due to practical interest in small-worlds, the synchronizability analysis in such networks

has drawn a lot of attention in many disciplines [3] [30] [32] [33] [34] [37]. It has been

shown that the synchronization is easier to achieve in small-worlds compared to regular
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networks [30] [34]. It has been also shown that in addition to small characteristic path in

small-worlds, homogeneity of these networks contributes to their enhanced synchronizability

[33] [38]. That is, as the network becomes more heterogeneous, e.g., scale-free networks,

the synchronization is harder to achieve [33] [38]. Furthermore, it has been shown that the

synchronizability of the network is closely related to the spectra of the Laplacian matrix of the

network. Along this line, there have been some attempts to approximate the distribution of

the spectra for different network types, such as random networks [11], and small-worlds [39].

The approximations of the Laplacian spectra in these studies have been performed using low

orders of moments of the Laplacian matrix specially in the case of small-worlds [39].

Most of these studies consider the networks to be unweighted and undirected, however,

there have been some attempts in analysis of weighted-undirected and binary directed net-

works [40–42]. In [5], it has been shown that for directed networks, where the eigenvalues of

the Laplacian matrix of the network are not real, the short and long wavelength bifurcation

phenomena can happen in regular networks (lattices). Also, the stability of the synchroniza-

tion in the context of time-varying or switching networks has been studied in [43–45].

Even though the study of the synchronization in the networks of identical nodes appears to be

matured, there have been a few attempts made to study the networks under more realistic

assumptions. One such assumption is to consider inner couplings and isolated dynamics

being mismatched. One of the reports on the synchronization of slightly different oscillators

is given in [46]. The authors report that even in the networks where the oscillator dynamics

and their couplings vary slightly from each other, the network can be almost synchronized.

That is, the states will converge to the vicinity of a certain synchronization state. In [47]

and [48], a sensitivity analysis of synchronization has been performed for the network of

mismatched oscillators. It has been shown that near-synchronization behavior can occur in

a network of mismatched oscillators using master stability function. The general stability
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of the synchronization in the network of dynamical systems with nonidentical dynamics for

each node is studied in [49] and [50] using the Lyapunov direct method. However, in most of

these studies the effects of uncertainties in the weights of the links and inner couplings have

been ignored [51]. Also to the best of the author ’s knowledge, there has been no attempt to

investigate the phase transition in which the network undergoes this type of synchronization

(neighborhood synchronization).

Switching Networks

Although the majority of the synchronization literature study static networks, where the links

are considered to be fixed in time, in most applications the network evolves with time [52].

One of the interesting models of the time varying networks is the one with switching struc-

ture, where existing links are removed or new links are established through a deterministic

or stochastic process. The use of non-conservative methods, such as MSF, for analysis of the

switching networks requires simultaneous (joint) upper-triangularization of the Laplacian

matrix of the set of networks which switching is chosen from7. This substantially limits the

scope of the study of this kind of networks [53] [54]. Also the joint upper-triangularization of

the matrix set guarantees the existence of common quadratic Lyapunov function (CQLF) for

the linear time-invariant (LTI) systems [53]. Since CQLF is conservative, switched quadratic

Lyapunov functions (SQLF) has attracted some attentions [55]. The idea is that if all the

networks in the switching set are synchronizable, the Lyapunov function of each network can

be concatenated based on the switching signal to form a global Lyapunov function. Alterna-

tively, the synchronizability of the network-set under arbitrary switching can be checked by

examining a set of linear matrix inequalities (LMI) [54]. Another method in analysis of the

7The simultaneous upper-triangularization of any set of matrices is only possible if the Lie algebra pro-
duced by the matrix set is solvable (nilpotent) [53] [54].
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synchronization/stability of the network is called multiple Lyapunov function (MLF) [56].

In this method, for each network in the set a Lyapunov function is found with negative

definite derivative. The concatenation of these multiple Lyapunov functions constructs a

positive semidefinite function, with guaranteed negative definite derivative everywhere with

the exception of the switching instances8. Now if the values of the concatenated function

at the switching instances are descending, then negative definiteness of the derivatives of

all consisting Lyapunov functions the ensures stability of the synchronization [54]. Unlike

SQLF9, MLF can correspond to different regions of the state space, which renders it useful in

designing of the switching control signal [53]. The result for synchronization under arbitrary

switching can be found in [54] and references therein.

Under the particular condition of deterministic (or stochastic) fast switching, it has been

shown that the results obtained for the static network can be applied to the time-average

(stochastic average, i.e., expected value) of the architecture of the network [52] [57]. The

network is considered to be fast switching if the establishment and removal of connections

are faster than the dynamics of individual nodes. Examples of such networks can be found

in moving particles in plasma, mobile agents in wireless sensor networks, UAVs and etc. [43]

[52] [58].

8Hence MLF is not a Lyapunov function.

9SQLF only partitions the time domain while MLF can partition state space as well.
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Control of complex networks

In control theory, the controllability of a dynamical system is defined as the following [59] [60]

A system with a suitable choice of inputs is controllable if it can be driven from any

arbitrary initial state to a certain target state within a finite time.

Although control theory is mathematically matured in many applications, its advance in

complex networked systems is hindered [60]. The issue is that the controllability of such

systems is determined by two independent factors, the first factor is the topology of the

system, i.e., how the subsystems interact with each other; and the second factor is the

governing dynamics of each individual subsystems [60]. With the availability of deeper

understanding of structural/topological properties of complex networks, recently there have

been profound results regarding the controllability of these networks (see [60–62] and the

references therein).

The need to regulate the behavior of systems consisting of many interconnected components

is a common feature for most applications in social, biological sciences and engineering.

Hence, designing a network of controllers (control network) that can guarantee a specific

behavior of a given network of plants is of utmost importance. Examples include but not

limited to synchronous heart beat cells, synchronization of neurons in nervous systems, flight

formation of unmanned aerial vehicle (UAV), networked control systems in industrial plants,

opinion dynamics in social networks by leaders, and cell cycles in biology [62–64].

Historically, the first controllers designed for networks were centralized, where all the state

information was known at a central point and control laws were determined using all that

information [61]. Even though the optimal control is possible with this kind of controller
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design, the scalability and complexity issues and the requirement of the availability of perfect

state information of the whole network at all times forced engineers to trade-off the optimality

of such controllers to overcome some of the obstacles in the implementation process [61].

To alleviate some of the issues regarding centralized control design, an extreme alternative

is decentralized control. In this approach controllers use only the local state information

to form a control law for each node. This way the complexity of the controller design is

reduced and thus, the solution can be easily scaled. Decentralized control is more effective

in a network of sparsely or weakly coupled subsystems [65–67]. Even though the simplicity

and scalability of the design is achieved with this method, the performance drastically suffers.

Pinning control is an example of decentralized control.

In pinning control, the set of nodes is divided into two subsets, one subset consists of nodes

that have self-feedback and knowledge of the target set. These nodes are called pinned nodes.

The nodes without any controllers form the other subset. The pinned nodes play the role of

leaders or pacemakers in the network. The desired action is initiated only from these nodes

and propagates to the rest of the network [62] [63].

Pinning Control

As this study will mostly focus on the analysis of synchronization and its stability in complex

networks, the effects of pinning on the synchronizability of such networks will be reviewed

here. Since first proposed in [68], pinning control has been a viable candidate to achieve

stability in complex networks. This technique is utilized to compensate for spectral re-

quirement of the architecture of the original network and/or to achieve the robustness of

the stability of the synchronization in the event of link failures and other sources of distur-

bances [17] [18] [34] [60] [62] [63]. Sometimes pinning is used when the network is expected
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to reflect a predetermined behavior. For instance in opinion networks, such a predetermined

behavior/opinion comes from leaders, the synchronous beats of heart cells which is generated

by pacemaker cells in sinoatrial node, or following a reference trajectory in a group of UAVs,

etc. [62] [63].

The pinning controllability has been defined in [62] and has been shown to be equivalent to

the synchronizability of an augmented system. The augmented system includes an additional

node which is the reference signal in the local controller and its connections are directed from

that node to the pinned set and zero to the rest of nodes [58].

It has been shown in [17] that a network of oscillators can be stabilized by a single con-

troller. Clearly, pinning a network in this manner requires a very large controller gain,

which is practically undesirable if not impossible. This idea has been evolved to use multi-

ple controllers with smaller controller gains to obtain a practical design of controllers with

utilizing a small number of controllers [19] [49] [69]. In [69], pinning of higher degree nodes

has been investigated which has been shown to be effective in scale-free networks. As it was

pointed out previously, when the network evolves based on preferential attachment of new

comers, controlling the hubs, where the arriving nodes are likely to be connected, helps the

scalability and efficiency of the control. In [19], assuming that the inner coupling matrix is

positive definite (MSF type II), it is proposed to pin the lower degree nodes to stabilize the

network globally. It has been shown that this approach outperforms that of [69]. In [70],

the condition of positive definiteness of the coupling matrix has been relaxed to positive

definiteness of symmetric part of its product with another positive definite matrix. It has

been also shown that the number of pinning controllers is inversely related to feedback gain.

The adaptive pinning control is used in [17], [19] and [71], where the controller gains are

evolved by a differential equation. This approach provides robustness in the presence of

possible uncertainties and perturbations.
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In most of these studies, controllers’ gains are considered to be equal, which makes the de-

sign of controllers conservative. Also these designs use the Lyapunov direct method, to form

a control law and assign of the controllers, which adds another layer to their conservative-

ness. While this enhances the robustness of the controllers in the event of failures in the

connections, the other approaches, in general, result in a fewer number of pinned nodes [63].

The optimal gains of controllers and their locations have been analyzed in [63]. The problem

has been converted to a combinatorial and continuous optimization problem and solved by

particle swarm optimization. This approach, even though effective in avoiding local optima

compared to generic particle swarm optimization techniques, is computationally complex.

In [72], the cost optimization of pinning control and its effectiveness in several special net-

works such as, lattices, complete networks, cluster of star shaped sub-networks have been

studied. Using MSF, it has been shown that pinning lower degree nodes yields in minimal

cost of pinning for MSF-type II. In this work, cost function is assumed to be the sum of the

controllers’ gains.

In [43], the idea of “spatial pinning” has been introduced, where depending on the appli-

cation, the individual assignments of the controllers is either impossible (e.g. plasma) or

undesirable (e.g. mobile agents). The proposed method applies controllers to any mobile

agent located in a fraction of the total deployed area. It is assumed that if two nodes are

in certain distance of each other they become neighbors, i.e., coupled. If the nodes move

adequately fast or if the density of the nodes is sufficiently large, a fast switching network

emerges and the results of [52] or [57] can be applied to control the network. It has been

shown that by choosing a sufficiently large controller area, i.e., pinning area, the network is

synchronizable.

Node-to-node pinning control has been proposed in [58]. In this strategy, only one node is
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pinned at any time instant but the controller (pinning point) switches in faster rate than the

dynamics of individual nodes, hence the controller is passed around among the nodes. Even

though the authors in [?] assumed a time-invariant network, the result is very similar to

that of [43]. Considering the cost function to be the aggregate controllers’ gains, the authors

in [?] proved that the optimal gain assignment is to pin the nodes with uniform controller

gains as it was conjectured by the extensive numerical results in [62].

Most of these studies assume that the inner coupling matrix, H, is positive definite which

means the MSF of the network is of type II form (see Fig. 1.5). Moreover, the methods

of analysis in these literatures are mostly conservative (the Lyapunov direct method). Fur-

thermore, these results, like pinning a lower degree nodes, are primarily based on extensive

numerical simulations and not analytical. Also, the main part of these analyses is based on

using a single controller to pin the network which usually results in a very large controller

gain.

To mitigate some of the drawbacks in decentralized control, distributed control has been in-

troduced. In these controllers the state information of other (neighboring) nodes is combined

with the local state information to form the control law which increases the performance of

the controllers. Distributed control can be used in a wide range of networks to achieve the

stability of the entire network [61] [73]. Since this method uses the information from a wider

subset of the network nodes, it can be much more effective than the decentralized approach.

However, this approach attains the stability goal by increasing the size of the control net-

work, which directly increases the cost by introducing communications of the state in the

control network. Another drawback for this networked control method is that the availability

and the proper estimation of the states at given time has been proven to be challenging in

the implementation process [61].
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Distributed Control

Here, the concept of distributed control is briefly described and the existing results are

reviewed. Networked control systems are defined as [74]:

“Networked control systems (NCSs) are spatially distributed systems in which the

communications between sensors, actuators, and controllers occur through a

shared band-limited digital communication network.”

As the controllability of arbitrary distributed networks is still to be determined, the impact of

topological characteristics of the network on its stability is largely under-studied [73–76]. One

major step in this direction has been accomplished in [60] ,where the structural controllability

in complex networks of LTI systems has been studied.

To address some of the issues such as imperfect communications and structural uncertainties,

different types of controllers are proposed to be used in distributed networks. Adaptive

controllers are used to cope with the architectural changes and also to compensate for noisy

data where quantizations of states, noise in observation, and errors in estimation of the

recovered data’s contribute to those uncertainties [74,77].

Since the important feature of the implementation of distributed algorithms is communi-

cation and controller actuation, the event/time triggered controllers are commonly used in

NCSs. These controllers, in most cases, relax the requirement of continuous transmission

of data and they can operate on centralized or decentralized triggering rules [74] [78] [79].

In centralized type of triggering, the time sequence of information updates is calculated

and communicated by a central entity, based on a global measure in the network, hence
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the sampling is performed in a synchronous fashion in the nodes. However, as the limi-

tation of communication and processing power gets contingent then the distributed, i.e.,

asynchronous, implementations are favorable. As an extension to event-triggering, a self-

triggering is considered in [78] [80], where each node calculates the next update time at the

current time. In this approach, the measurements are not needed to be tracked between two

consecutive updates.

Although, there have been great strides made in the subject of distributed control, the

question of scalability of the size of the controller network, also known as communication

network, have received very little attention. That is, if the order and/or size of the network

increase by some factors how does that effect the order and/or size of the control network?

Contributions of Thesis

As it is known the spectra of the Laplacian matrix is a major factor in determining the sta-

bility of the dynamical networks. However, there has been small progress on this subject. In

chapter 2, we will provide asymptotic analysis of the spectra of the Laplacian matrix for ran-

dom networks as well as small-worlds. Then in chapter 3, we will take on the synchronization

problem in complex networks with uncertainties in isolated node dynamics, inner coupling

and weights of the links. Additionally, with calculating the probability of the stability we

will assess the transition of the mismatched network to synchrony.

Chapter 4 will provide the study of the pinning control with multiple pinning controllers

under the assumption of the positive inner coupling matrices and constrained controllers’

gains. The analysis will be performed by MSF like methods and a heuristic algorithm will

be presented to identify the pinning set and the corresponding controllers’ gains. It will be
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shown that the algorithm results in improved performance in the sense of the number of

pinning controllers, compared to existing methods. In chapter 5, by removing the condition

of positive definiteness of the inner coupling matrices, the pinning problem will be studied

in the network of moving agents where it is assumed that coupling/linkage of the agents

changes faster than the dynamics of the isolated nodes.

In chapter 6, the problem of scalability of the controller network in the network of LTI nodes

will be analyzed. Here it will be assumed that the controller network is Erdös-Rényi. We

will show that the best controller network should be a subnetwork of the substrate network,

called the plant network. The scalability factor of the controller network will be calculated as

a function of the average degree of the plant network. Chapter 7 is dedicated to networks of

linear-time varying systems which are partially observable. Finally, chapter 8 will conclude

this study.
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CHAPTER 2: PROBABILITY OF SYNCHRONIZATION IN

LARGE COMPLEX NETWORKS

In this chapter, we use an alternative master stability condition (MSC) derived from Lya-

punov direct method to obtain a sufficient condition on the stability of the network, based

on the eigenvalues of symmetric part of local and coupling dynamics. We perform our anal-

ysis in a generalized framework where the linkage matrices are not limited to be diagonal

and/or binary components), allowing multi-state and cross-state linkages, possibly with dif-

ferent strengths [81] [82]. We then use the derived MSC to calculate a lower bound on the

probability of stability for large Erdös-Rényi and Newman-Watts small-world networks.

System Model

Consider a network of N identical nodes with identical coupling dynamics

ẋi = f(xi)−
∑N

j=1
lijh(xj), (2.1)

where xi ∈ Rn, 1 ≤ i ≤ N denote the state vector of node i, and f(·) and H(·) denote the

node and coupling dynamics, respectively. L = [lij] is the Laplacian matrix of the network.

We assume that the network is undirected, i.e. lij = lji for all i, j. Since L has zero row-sum,

this network has a synchronization state, x0, which is the solution of local state equation,

ẋ0 = f(x0). This equation also defines the synchronization manifold. To maintain the

synchrony throughout the network, all xi should converge to a synchronous state, x0. This

means that all the modes traverse to the synchronization manifold should be damped out [5].

Denote the deviation of the state of each node from the synchronous state by ei = xi − x0.

32



If ei are small, (2.1) can be linearized around x0 as

ėi = Fei −
∑N

j=1
lijHej, (2.2)

where F and H are Jacobian matrices of f(·) and H(·) around x0, respectively. Note that in

general, x0 is time dependent and so are F and H. For cleaner notation, we have dropped

their explicit dependence. Stacking (2.2) yields

ė = (I⊗ F− L⊗H)e = F̃e, (2.3)

where I is the identity matrix, ⊗ denotes the Kronecker product, and e = [eT1 · · · eTN ]T is

the error vector with respect to 1⊗ x0, where 1 = [1 · · · 1]T .

Network stability condition

The network synchronization is exponentially stable, if F̃ is exponentially stable. Since L

has zero row sum, its smallest eigenvalue, µN , is zero [24]. The mode for µN = 0 in (2.3)

represents the variations parallel to manifold and hence should be omitted in the study of

stability for traversal exponents [5]. Furthermore, multiplicity of zero in the set of network

eigenvalues is one, if and only if the the graph is connected [24]. The remaining modes in

(2.3) are traverse to the synchronization manifold and decay exponentially if and only if

the remaining modes of (2.3) are exponentially stable. Considering (2.3), norm of e can be

bounded by ( [21] Thms. 1 and 2)

‖e(t)‖ ≤ ‖e(t0)‖ exp

[
1

2

∫ t

t0

λ1

(
F̃(τ) + F̃

T
(τ) + εI

)
dτ

]
,
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for t ≥ t0 and ε > 0, where λi(.) denotes the ith largest eigenvalue of the argument. If

F̃ + F̃
T

+ εI ≺ 0 for all t ≥ t0, this bound approaches zero as t grows and the system is

exponentially stable. Thus, a sufficient condition on stability is

∃ ε > 0 s.t. F̃(t) + F̃
T

(t) + εI ≺ 0, ∀t ≥ t0. (2.4)

Since L is real and symmetric, it can be unitarily diagonalized as L = QΛQT . Consequently,

F̃ can be block diagonalized, using transform QT ⊗ I. That is

(QT ⊗ I)F̃(Q⊗ I) = (QT ⊗ I)(I⊗ F)(Q⊗ I)− (QT ⊗ I)(QΛQT ⊗H)(Q⊗ I)

= I⊗ F−Λ⊗H.

The diagonal block elements are F +µiH, where µi is the ith largest eigenvalue of L. Hence

(2.4) can be replaced by

∃ ε > 0 s.t. F + FT − µi
(
H + HT

)
+ εI ≺ 0, ∀t ≥ t0, (2.5)

for 1 ≤ i ≤ N − 1. Note that since L is symmetric, µi are real and non-negative.

Now we can use Weyl’s inequalities to further explore (2.5). Assume that B and C are n×n

Hermitian matrices, and 1 ≤ j, k, j + k − n ≤ n, then Weyl’s inequalities state that ( [83]

Thm. 1.3)

λj+k−1(B + C) ≤ λj(B) + λk(C) (2.6)

λj+k−n(B + C) ≥ λj(B) + λk(C). (2.7)
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Utilizing (2.6) with j + k = 2 and (2.7) with j + k − n = 1 yields

λj(B) + λn−j+1(C) ≤ λ1(B + C) ≤ λ1(B) + λ1(C), (2.8)

for 1 ≤ j ≤ n. Now, since F + FT and −µi(H + HT ) are Hermitian, we can use (2.8) to

bound λ1(F + FT − µiH− µiHT ) + ε from both sides:

λ1(F + FT−µiH− µiHT ) + ε

≤ λ1(F + FT ) + λ1(−µiH− µiHT ) + ε

= λ1(F + FT )− µiλn(H + HT ) + ε, (2.9)

and

λ1(F + FT−µiH− µiHT ) + ε

≥ λj(F + FT ) + λn−j+1(−µiH− µiHT ) + ε

= λj(F + FT )− µiλj(H + HT ) + ε, (2.10)

for 1 ≤ j ≤ n.

To obtain a sufficient condition on stability we now force the upper bound in (2.9), to be

negative

λ1(F + FT )− min
1≤i≤N−1

{µiλn(H + HT )}+ ε < 0. (2.11)

for some ε > 0. Based on the sign of λn(H + HT ), condition (2.11) reduces to

µN−1 > µ† if λn(H + HT ) > 0

µ1 < µ† if λn(H + HT ) < 0,
(2.12)
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where µ† = (λ1(F + FT ) + ε)/λn(H + HT ). This means that, using the terminology intro-

duced in [84], we can say that the synchronizability set of the network is {L|L satisfies (12)}.

We can also derive a necessary condition for (2.5) by forcing the lower bound in (2.10) to be

negative, or

max
i,j

{
λj(F + FT )− µiλj(H + HT )

}
+ ε ≤ 0. (2.13)

Let k+ be the index of smallest positive eigenvalue of H + HT . Then (2.13) reduces to

µN−1 ≥ µ‡N−1 , maxj≥k+
λj

(
F+FT

)
+ε

λj

(
H+HT

)
µ1 ≤ µ‡1 , maxj<k+

λj

(
F+FT

)
+ε

λj

(
H+HT

) . (2.14)

In the case that λj(H + HT ) = 0, if λj(F + FT ) > 0 then the condition (2.5) is not satisfied,

and if λj(F + FT ) < 0, the corresponding condition can be eliminated.

We note that, (2.14) is a necessary condition on (2.5), which itself is a sufficient condition on

stability. Therefore (2.14) does not reveal anything about the stability of the network. How-

ever, since (2.12) and (2.14) sandwich (2.5), condition (2.14) provides information regarding

how close (2.5) and (2.12) are.

Having developed the bounds on condition (2.5), namely (2.12) and (2.14), we now proceed

to relate them to the degree properties of the network. To do this, we employ following

inequalities known for symmetric Laplacian matrices [24]

µN−1 ≤
N

N − 1
dmin and µ1 ≤

N

N − 1
dmax,

where dmin and dmax denote the minimum and maximum node degrees, respectively. Using
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these, and (2.12), the stability condition can be also expressed as

dmin ≥ d†min , N−1
N
µ†N−1 if λn(H + HT ) > 0

dmax ≤ d†max , N−1
N
µ†1 if λn(H + HT ) < 0

.

Similarly, necessary conditions for (2.5) become

dmin ≥ d‡min , N−1
N
µ‡N−1

dmax ≤ d†max , N−1
N
µ‡1

(2.15)

From (2.12) one can draw the conclusion that in the network with low algebraic connectivity,

µN−1, synchronization is difficult to achieve. This behavior is caused by the fact that the

coupling is not strong enough to push/pull the oscillators to synchronous state. And from

(2.15) we can see the other case of non-synchronization behavior occurs when (some) nodes

have too many connections (condition on dmax). This phenomenon is known as synchroniza-

tion quenching, where the coupling is so strong that eliminates the self-drive of (some of)

the oscillators and consequently, the network cannot achieve synchrony [85].

Probability of Stability

Erdös-Rényi networks

In the following, we investigate probability of stability of Erdös-Rényi networks [23]. For

large Erdös-Rényi networks with randomness parameter p, we can use (2.12) and (2.14) to

calculate the lower and upper bounds on the probability of (2.5) being satisfied. We recall

that (2.12) provides a lower bound on the probability of stability, whereas (2.14) describes
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the closeness of this lower bound and the probability of (2.5).

Since eigenvalues of any large randomly generated symmetric matrix follows the Wigner’s

semi-circular distribution [86], we can approximate the distribution of eigenvalues of Lapla-

cian for an Erdös-Rényi network. By definition, L = diag(d)−A, where A is the adjacency

matrix of the network, and d is the degree sequence of the nodes. Also in large Erdös-Rényi

network, we can approximate diag(d) by Np I [23]. Hence, L ≈ Np I−A. Thus the pdf of

the eigenvalues of L is approximately [86]

pµ(x) =


1

π
√
Np(1−p)

√
1−X2 |X| < 1

0 elsewhere

,

where X = x−Np
2
√
Np(1−p)

. The order statistics µN−1 and µ1 have densities

pµN−1
(x) = (N − 1)[1− Pµ(x)]N−2pµ(x),

pµ1(x) = (N − 1)PN−2
µ (x)pµ(x),

where

Pµ(x) =

∫ x

(N−1)p−2
√
Np(1−p)

pµ(y)dy

= 1− 1

π
cos−1X +

1

π
X
√

1−X2.

Now, we can evaluate the probability of occurrence of each conditions given in (2.12) and

(2.14). The lower bound on the probability of stability attained from Wigner’s approximation

for (2.12) is

PW,LB =

 1−
[
1− Pµ

(
µ†
)]N−1

λn(H + HT ) > 0

PN−1
µ

(
µ†
)

λn(H + HT ) < 0
(2.16)
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Similarly, an upper bound on the probability of (2.5) can be derived by applying Wigner’s

approximation to (2.14) is

PW,UB =
[
Pµ

(
µ‡1

)
− Pµ

(
µ‡N−1

)]N−1

. (2.17)

Since these probabilities have relatively sharp roll-offs as a function of N (see numeri-

cal results), we can use randomness values, pL and pU, which yield PW,LB(pL) = 1/2 and

PW,UB(pU) = 1/2, to study the synchrony trends as network parameters change. From

(2.16) and (2.17), we have

pL ≈
1

N + 4

[
λ1(F + FT ) + ε

λn(H + HT )
+ 4

]
,

pU ≈
1

N + 4

[
max
j>k

λj(F + FT ) + ε

λj(H + HT )

]
.

Thus, the value of randomness, p, required to have stable synchronous state decreases as

O(1/N).

Small-World Networks

Consider a small-world network based on the Newman-Watts model [6] constructed by ran-

domly adding links, with probability p, to a k-regular ring network. This is equivalent to

the superimposition of a ring network and an Erdös-Rényi network on the same node set.

Thus, the Laplacian matrix of the small-world network is

LSW = LRk + LER − Loverlap,
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where LRk , LER and Loverlap denote the Laplacian matrices of a k-regular ring, an Erdös-Rényi

network, and their overlap of edges, respectively. Let us denote the ith largest eigenvalues

of these matrices by µSW
i , µRk

i , µER
i and µoverlap

i , respectively. Weyls’ inequalities yield

µSW
1 ≤ µRk

1 + µER
1 − µ

overlap
1 ≤ µRk

1 + µER
1 . (2.18)

Define L1 = LER−Loverlap and L2 = LRk−Loverlap. Since the overlap is always a subnetwork

of both the random network as well as the ring network, L1 and L2 are Laplacian matri-

ces. Thus, their smallest eigenvalues are zero. Hence, once again we can use the Weyls’

inequalities to get

µSW
N−1 ≥ max{µRk

N−1, µ
ER
N−1}. (2.19)

For even N the eigenvalues of a k-regular ring network are

µRk
l = 2

(
k −

sin kπl
N

cos (k+1)πl
N

sin πl
N

)

Thus, the pdfs of the upper bound on µSW
1 and the lower bound on µSW

N−1 are

pSW,UB
1 (x) = (N − 1)PN−2

µ (x− µRk
1 )pµ(x− µRk

1 )

pSW,LB
N−1 (x) =

(
1−

[
1− Pµ

(
µRk
N−1

)]N−1
)
δ
(
x− µRk

N−1

)
+ (N − 1)[1− Pµ(x)]N−2pµ(x)u

(
x− µRk

N−1

)
,
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where δ(·) and u(·) are the impulse and step functions. Thus, the lower bound on the

probability of stability is given by

PSW,LB =

(
1−

[
1− Pµ

(
µRkN−1

)]N−1
)
u
(
µ† − µRkN−1

)
+
[
1− Pµ

(
µRk
)]N−1 −

[
1− Pµ

(
µ†
)]N−1

(2.20)

if λn(H + HT ) > 0, and

PSW,LB = PN−1
µ

(
µ† − µRkN−1

)
(2.21)

if λn(H + HT ) < 0.

Numerical Results

For a numerical example, we consider a network of Rössler oscillators (with parameters

a1 = 0.165, a2 = 0.2, and a3 = 10) coupled through all of their states. This set of parameters

results in a coherent chaotic oscillation, since a1 < 0.21 [85]. Therefore, the Jacobian of the

oscillator can be computed as

F =


0 −1 −1

1 0.165 0

x3 0 x1 − 10


We also assume

H =
c√

6 +
√

3 +
√

2


√

2
√

2
√

2

0
√

3
√

3

0 0
√

6

 .
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where c = trace(H), is the coupling strength.

10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

P
ro

ba
bi

lit
y 

of
 S

ta
bi

lit
y

 

 

Prob. MSC (5), Sim.

Prob. cond. (12), Sim.

Prob. cond (14), Sim.

Prob. MSC (5), Wigner
approx.

LB prob. stab. Wigner
 approx. (16)

UB prob. stab. Wigner
approx. (17)

N=3000

N=1000

N=300

N=100

Figure 2.1: Probability of stability of Erdös-Rényi networks as a function of p.

With this setting we first consider an Erdös-Rényi network and calculate our results on the

probability of stability of the network for different values of N , p, and c. To this end, we

have considered N trajectories starting from initial point [si sj 0]T where sj’s are selected

uniformly from interval [0.95, 1.05] and all the corresponding eigenvalues are calculated over

average of 20 cycles of initiated trajectories.

Fig. 2.1 shows the probability of the stability of the network as a function of network

randomness, p, for different network size, N, and with coupling strength c = 1. As it can

be seen, probabilities of (2.12) and (2.14) are close to that of (2.5). Moreover, we observe

that the approximated probabilities provided by the Wigner’s distribution of eigenvalues of
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the network are also reasonably close. As Fig. 2.1 shows for positive definite H + HT in a

large network if the average degree, pN , is above some threshold, pLN ≈ λ1(F+FT )/λn(H+

HT ), (in this example approximately 50) the network becomes stable. Note that in this

particular numerical example, due to positive definiteness of H + HT , only the transition

from asynchrony to synchrony is observed.

The behavior of the network in the sense of its stability versus network size for several values

of p is shown in Fig. 2.2. Once again we observe that the probability of stability suddenly

increases as pN crosses the threshold above.
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Figure 2.2: Probability of stability of Erdös-Rényi networks as a function of N .
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Figure 2.3: Probability of stability of Erdös-Rényi networks as a function of c.
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Fig. 2.3 shows that the stability of the network grows as the network size and coupling factor

increase. Of course this is due to our choice of coupling dynamics which is positive definite

and by increasing coupling strength, it provides stronger negative feedback to stabilize the

network.

For small-world networks with Newman-Watts method, we start with a regular ring network

with coordination number k = 20. In other words, each node is connected to its nearest

2k = 40 neighbors. Other parameters are kept the same as the Erdös-Rényi case.

Figs. 2.5, 2.4 and 2.6 depict the probability of stability as functions of randomness parameter,

p, network size, N , and coupling strength, c, respectively. We observe that the lower bound

on the probability of stability derived from (2.19) are close to the simulated results, as well

as (2.20). Also, similar to the Erdös-Rényi case, we can observe the sharp transition from

asynchrony to synchrony state as p, N or c change. We can also see that as pN , which is

directly related to the smallness of the network, passes a certain value (in our example 30)

network becomes stable.
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Conclusion

In conclusion, considering an alternative master stability condition, we have derived a suf-

ficient condition of stability which is a function of the eigenvalues of network structure and

symmetric parts of linearized local and coupling dynamics. Our condition relates the largest

eigenvalues of the symmetric parts of coupling and local dynamics to the stability of the

networks. For both Erdös-Rényi and Newman-Watts small-world networks we have calcu-

lated a lower bound on the probability of stability. We have also show that a threshold value

of randomness exists, where the system sharply becomes stable as p increases beyond this

threshold. The reason for this phenomenon is that below the certain threshold, all or some
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of the nodes cannot achieve sufficient information exchange. As a result, those nodes cannot

synchronize themselves with the rest of the network. Our approach and results can be ex-

tended to the case of randomly changing network topology, if the eigenvalues of instantaneous

networks satisfy our stability criterion stochastically.

48



CHAPTER 3: PROBABILITY OF STABILITY OF

SYNCHRONIZATION IN NETWORK OF MISMATCHED

OSCILLATORS

Here, we investigate the synchronization of a network of mismatched oscillators with mis-

matched couplings. Our formulation also allows the consideration of uncertainties in network

link weights, thus generalizing [48] in addition to its main contributions. Since in presence

of mismatch there is no unique synchronization state in the network, we use the concept of

ε-synchronization [47], where the steady states of the nodes in the network fall into an ε-

neighborhood of a certain trajectory (synchronization manifold). We then use a generalized

master stability function to study the behavior of the network around the synchronization

state. The proposed generalized master stability function bounds the oscillator states to a

neighborhood of average synchronization trajectory as a function of Lyapunov exponents

of the dynamical network. These Lyapunov exponents, in turn, are related to eigenvalues

of the Laplacian matrix of the network. We then provide a probabilistic treatment of syn-

chronization behavior in terms of mismatch parameters for regular and random network

models. We calculate probability of stability of synchronization, and use it to investigate

phase transitions of the synchronization in the network as the network and node parameters

vary. Finally, we verify our analytical results by a numerical example for a network of van

der Pol oscillators [87] with mismatched oscillators and couplings.
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Notation and Main Variables

The set of real (column) n-vectors is denoted by Rn and the set of real m × n matrices is

denoted by Rm×n. We refer to the set of non-negative real numbers by R+. Matrices and

vectors are denoted by capital and lower-case bold letters, respectively. Identity matrix is

shown by I. The Euclidean (L2) vector norm is represented by ‖·‖. When applied to a matrix,

‖·‖ denotes the L2 induced matrix norm, ‖A‖ =
√
λmax(ATA). Table 3.1 summarizes the

main variables used.

Table 3.1: Main variables

Variable Description

xi State vector of node i
γi Parameters vector of node i
θji Parameter vector of coupling from node j to node i
f(xi,γi) Dynamics function of node i
h(xj,xi,θji) Coupling function from node j to node i
ui Input vector for node i
Fx Jacobian of vector f with respect to x
Fγ Jacobian of vector f with respect to γ
Hx Jacobian of coupling vector h with respect to x
Hy Jacobian of coupling vector h with respect to y
Hθ Jacobian of coupling vector h with respect to θ

System Description

Consider a network of N oscillators, indexed by N = {1 · · · N}. Assume that the dynamics

of each isolated oscillator is governed by

ẋi = f(xi,γi),
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where xi ∈ Rn and γi ∈ P ⊆ Rp are the state and parameter vectors of local dynamics of

node i, respectively. P denotes the set of possible parameter vectors, and f : Rn+p → Rn

describes the local dynamics of an isolated node.

The dynamics of coupled oscillators are given as

ẋi = f(xi,γi) +
∑
i,j∈N

aijh(xj, xi, θij), (3.1)

where θij ∈ Q ⊆ Rq is the parameter vector of coupling dynamics from node j to node i,

Q denotes the set of possible parameter values for couplings. The adjacency matrix of the

network is A = [aij], where aij ∈ R+ is the weight of the link from node j to node i. There is

no connection if aij = 0. Note that we allow the more general case of directed and wighted

networks. Moreover, h : R2n+q → Rn models the coupling from node j to node i. We assume

that h(x,y,θ) is Hamiltonian. That is, we assume that Hx = −Hy, where Hx and Hy

denotes the Jacobians of h(x,y,θ) with respect to x and y, respectively. This is a very

general assumption and encompasses the diffusive coupling model predominantly used in the

literature [33,48,51], where it is assumed that h(x1,x2, [θ1 θ2]) = h̃(x1,θ1)− h̃(x2,θ2).

Note that this generalized model also incorporates uncertainties in the adjacency matrix of

the network, A = [aij] + [δaij], considered in [48], by absorbing δaij into θij, i.e., θ′ij =

[θTij δaij]
T .

51



Invariant Synchronization Manifold

Let s be a weighted average of the trajectories of all oscillators

s =
∑
i∈N

αixi, (3.2)

where
∑

i∈N αi = 1. Define the deviation of the trajectory of oscillator i from s as

ei = xi − s. (3.3)

Moreover, let L = [lij] be the Laplacian matrix of the network [24],

L = diag([din
1 · · · din

N ])−A,

where din
i =

∑
j ∈N aij is the in-degree of node i.

Lemma 1. s =
∑

i∈N αixi is an invariant synchronization manifold of the network if

α = [α1 · · ·αN ]T is a null vector of LT .

Proof. Taking derivative of (3.2) yields

ṡ =
∑
i∈N

αiẋi

=
∑
i∈N

αif(s + ei, γ̄ + δγi) +
∑
i,j∈N

aijαih(s + ej, s + ei, θ̄ + δθij), (3.4)

where γ̄ =
∑

i∈N αiγi, δγi = γi − γ̄, θ̄ = 1
d̄in

∑
i,j ∈N αiaijθij, δθij = θij − θ̄, and

d̄in =
∑

i∈N αid
in
i is the weighted average in-degree of the network. Linearization of (3.4)
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around (s, γ̄, θ̄) results in

ṡ =
∑
i∈N

αif(s, γ̄) + Fγ
∑
i∈N

αiδγi +
∑

i, j∈N
aijαih(s, s, θ̄) + Hx

∑
i, j∈N

aijαi(ej − ei)

+ Hθ

∑
i, j∈N

aijαiδθji,

where Hx and Hθ are Jacobians of h with respect to its first and third variable, respectively.

Recalling that
∑

i∈N αi = 1, we have

ṡ = f(s, γ̄) + h(s, s, θ̄)
∑
i∈N

din
i αi

+Hx
∑
i,j∈N

aijαi(ej − ei).

For s to be an invariant manifold, the last term in the above equation must be zero. This is

achieved if αi are chosen to satisfy

∑
i, j∈N

aijαi(ej − ei) =
∑
i∈N

∑
j ∈N

(ajiαj − aijαi)

 ei = 0. (3.5)

Equation (3.5), in turn, will be satisfied if
∑

j ∈N (aijαj − aijαi) = 0 for all i ∈ N , which in

matrix form can be represented as

ATα = diag([din
1 · · · din

N ])α,

where α = [α1 · · ·αN ], or

[
AT − diag([din

1 · · · din
N ])
]
α = 0 = LTα.
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That is, α is a null vector of LT .

Remark 1. We note that, by definition, L has zero row sum. Thus, it is singular. Con-

sequently, LT always has a null vector, α. This means that any network has at least one

invariant manifold.

Remark 2. If the the network is connected, the invariant synchronization manifold is unique.

This is due to the fact that for connected networks the nullity of L is one. Thus, α and,

therefore, s are unique.

Remark 3. In the special case where the network is undirected, L is symmetric. Thus, it

also has zero column-sum. Consequently, α = 1
N

[1 · · · 1] is its null vector, and the invariant

manifold, s, is the simple average of the trajectories.

With αi chosen such that s is an invariant manifold, we have

ṡ = f(s, γ̄) + d̄in h(s, s, θ̄), (3.6)

s(0) =
∑
i∈N

αixi(0),

where s(0) and x(0) are initial states.

Generalized Master Stability Function

In this section we introduce a master stability function which generalizes those in [47] and [48]

by taking into account the parameter mismatch in the links and applies to directed and

weighted networks.

As it has been shown in previous section, every connected network has a unique invariant

manifold. Hence, we can define ε-synchronization as
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Definition 6. A network of oscillators is ε-synchronized if there exists ε > 0 such that

lim sup
t→∞

‖e‖ ≤ ε,

where e = [e1 ... eN ]T .

This definition means that the error from the manifold is contained in a ball of radius ε. We

note that our definition is different but closely related to that given in [50].

Substituting (3.1) and (3.2) in (3.3), and using Taylor series, the dynamics of the error with

respect to the synchronization manifold, ei, is given by

ėi = Fxei −
N∑
j=1

lijHxej + Fγδγi +
N∑
j=1

1i 6=jlijHθδθij + (din
i − d̄in)h(s, s, θ̄), (3.7)

where 1X is the indicator function of X. Stacking (3.7) for all i yields the dynamics of the

deviation of node trajectories from s:

ė = (I⊗ Fx − L⊗Hx) δx +
(
I⊗ Fγ

)
δγ

+
(
A⊗Hθ

)
δθ + (din − d̄in1

T
N)⊗ h(s, s, θ̄), (3.8)

where

δγ = [δγT1 · · · δγTN ]T ,

δθ = [δθT11 · · · δθT1N δθT21 · · · δθT2N · · · θTN1 · · · δθTNN ]T ,

din = [din
1 · · · din

N ]T ,

A = diag([a1 · · · aN ]),
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and ai is the ith row of A.

Let L = PJP−1 be the Jordan decomposition of L, where P = [pij] is a similarity transform

and J is in Jordan form. Then, (3.8) can be rewritten as

ė = (P⊗ I) (I⊗ Fx − J⊗Hx)
(
P−1 ⊗ I

)
e +

(
I⊗ Fγ

)
δγ

+
(
A⊗Hθ

)
δθ + (din − d̄in1

T
N)⊗ h(s, s, θ̄).

Using the similarity transform

η =
(
P−1 ⊗ I

)
e,

where η = [ηT1 · · ·ηTN ]T , we obtain

η̇ = (I⊗ Fx − J⊗Hx)η +
(
P−1 ⊗ I

) (
I⊗ Fγ

)
δγ

+
(
P−1 ⊗ I

) (
A⊗Hθ

)
δθ

+
(
P−1 ⊗ I

) (
(d− d̄in1

T
N)⊗ h(s, s, θ̄)

)
= (I⊗ Fx − J⊗Hx)η +

(
P−1 ⊗ Fγ

)
δγ

+
(
P−1A⊗Hθ

)
δθ

+
(
P−1(d− d̄in1

T
N)
)
⊗ h(s, s, θ̄).

= (I⊗ Fx − J⊗Hx)η + v, (3.9)

where v = [v1 · · ·vN ],

vi =
∑
j ∈N

qij

[
Fγδγj +

N∑
k=1,k 6=j

ajkHθδθjk

+h(s, s, θ̄)(din
i − d̄in)

]
,
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and qij are the elements of Q = P−1. It is clear that stability of η and e are equivalent.

To study the stability of (3.9), let us first consider the simpler case where J consists of a

single Jordan block, i.e.

J = JN(µ) =



µ 1 0 · · · 0 0

0 µ 1 · · · 0 0

0 0 µ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · µ 1

0 0 0 · · · 0 µ


.

Lemma 2. For system

η̇ = (I⊗ Fx − JN(µ)⊗Hx)η + v,

there exists φ > 0 such that

lim sup
t→∞

‖ηi‖ ≤
N∑
j=i

(
φ

λ

)N−j+1

lim sup
t→∞

‖Fx −Hx‖N−j × lim sup
t→∞

‖vj‖,

for all i, if λ > 0, where λ = MLE(Fx−µHx), and MLE(.) returns the maximum Lyapunov

exponent of the argument.

Proof. The state space equation for the ηi can be written as

η̇i = (Fx − µHx)ηi + (Fx −Hx)ηi+1 + vi(t), (3.10)
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for i 6= N , and

˙ηN = (Fx − µHx)ηN + vN(t). (3.11)

The solution of (3.10) and (3.11) are

ηi(t) = Φ(t, 0)ηi(0) +

∫ t

0

Φ(t, τ)vi(τ)dτ +

∫ t

0

Φ(t, τ)(Fx −Hx)ηi+1(τ)dτ,

for i 6= N and

ηN(t) = Φ(t, 0)ηN(0) +

∫ t

0

Φ(t, τ)vN(τ)dτ,

where Φ(t, τ) = Z(t)Z−1(τ), and Z is the normal fundamental matrix of Fx − µHx [88].

Applying triangle inequality yields

‖ηi(t)‖ ≤ ‖Φ(t, 0)‖‖ηi(0)‖

+

∫ t

0

‖(Fx −Hx)ηi+1(τ) + vi(τ)‖‖Φ(t, τ)‖dτ,

for i ∈ {1, ..., N − 1}, and

‖ηN(t)‖ ≤ ‖Φ(t, 0)‖‖ηN(0)‖+

∫ t

0

‖vN(τ)‖‖Φ(t, τ)‖dτ,
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which, as t→∞, yields

lim sup
t→∞

‖ηi‖ ≤ ‖ηi(0)‖ lim sup
t→∞

‖Φ(t, 0)‖

+ lim sup
t→∞

‖vi‖ lim sup
t→∞

∫ t

0

‖Φ(t, τ))‖dτ

+ lim sup
t→∞

‖Fx −Hx‖ lim sup
t→∞

‖ηi+1‖

× lim sup
t→∞

∫ t

0

‖Φ(t, τ)‖dτ, (3.12)

and

lim sup
t→∞

‖ηN‖ ≤‖ηN(0)‖ lim sup
t→∞

‖Φ(t, 0)‖

+ lim sup
t→∞

‖vN‖ lim sup
t→∞

∫ t

0

‖Φ(t, τ)‖dτ. (3.13)

We know that there exists positive real φ such that [88]

‖Φ(t, τ)‖ ≤ φe−λ(t−τ),

where λ is the maximum Lyapunov exponent of Fx − µHx. If λ > 0 this yields

lim sup
t→∞

‖Φ(t, 0))‖ = 0,

lim sup
t→∞

∫ t

0

‖Φ(t, τ))‖dτ ≤ φ

λ
.

Substituting in (3.12) and (3.13) yields,

lim sup
t→∞

‖ηi‖ ≤
φ

λ
lim sup
t→∞

‖Fx −Hx‖‖ηi+1‖+
φ

λ
lim sup
t→∞

‖vi‖,
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and

lim sup
t→∞

‖ηN‖ ≤
φ

λ
lim sup
t→∞

‖vN‖.

Solving the recursive inequalities we get

lim sup
t→∞

‖ηi‖ ≤
N∑
j=i

(
φ

λ

)N−j+1

lim sup
t→∞

‖Fx + Hx‖N−j × lim sup
t→∞

‖vj‖.

Now, let us assume that J consists of M Jordan blocks with eigenvalues µm and sizes nm, m ∈

{1, · · · ,M}, where
∑M

m=1 nm = N . Then Nm =
∑j

m=1 nm will be the index of the last row

of the mth Jordan block. Define J(i) to be the index of the Jordan block that contains the

ith row of J. In other words, J(i) = m, if Nm−1 < i ≤ Nm.

Theorem 5. A network of oscillators is ε-synchronized if λm = MLE(Fx−µmHx) > 0 and

‖P‖2

N−1∑
j=1

( nJ(j)∑
k=1

(
φJ(j)

λJ(j)

)nJ(j)−k+1

lim sup
t→∞

‖Fx −Hx‖nJ(j)−k lim sup
t→∞

‖vj‖
)2

≤ ε2, (3.14)

where φm satisfies

∀t, τ, ‖Φm(t, τ)‖ ≤ φme
−λm(t−τ).

and Φm(t, τ) is the state transition matrix of Fx − µmHx.
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Proof. We have

lim sup
t→∞

‖e‖2 = lim sup
t→∞

ηT (PT ⊗ I)(P⊗ I)η

≤ ‖PTP‖ lim sup
t→∞

‖η‖2

= ‖P‖2 lim sup
t→∞

‖η‖2. (3.15)

For any Laplacian matrix, we have µM = 0. If the network is connected, we further have

nM = 1. Thus,

ηN =
N∑
j=1

αjej =
N∑
j=1

αj(xj − s) =

(
N∑
j=1

αjxj

)
− s = 0,

which together with (3.15) yields

lim sup
t→∞

‖e‖2 ≤ ‖P‖2

N−1∑
i=1

lim sup
t→∞

‖ηi‖2. (3.16)

Lemma 2 upper bounds the right hand side of (3.16) by the left hand side of (3.14).

Corollary 1. A symmetric network of oscillators is ε-synchronized if λj = MLE(Fx −

µjHx) > 0 and
N−1∑
j=1

(
φj
λj

)2

lim sup
t→∞

‖vj(t)‖2 ≤ ε2, (3.17)

where φj satisfies

∀t, τ, ‖Φj(t, τ)‖ ≤ φje
−λj(t−τ),

and Φj(t, τ) is the state transition matrix of Fx − µjHx.

Proof. Since L is symmetric, it can be diagonalized by unitary matrix P = U = [uij], where
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UHU = I. Thus, each Jordan block will be of size 1. This means that M = N , nm = 1, and

J(i) = i. Thus, (3.14) reduces to

N−1∑
j=1

(
φj
λj

)2

lim sup
t→∞

‖vj‖2 ≤ ε2.

Remark 4. In proof of Corollary 1, since unitary transformation preserves Euclidean norm,

(3.16) holds with equality. Thus, Corollary 1 is relatively less conservative than Theorem 5.

Probability of Stability

In the remaining of the paper, we make the following assumptions:

Assumption 1. The network is symmetric.

This implies that L is diagonalizable by a unitary matrix, U = [uij].

Assumption 2. Mismatch parameters, δγi and δθij, are independent zero mean Gaussian

random vectors with covariance matrices, Σγ = E[(γi − γ̄)(γi − γ̄)T ] and Σθ = E[(θij −

θ̄)(θij − θ̄)T ], respectively.

Under Assumption 2, vi are linear combination of independent Gaussian random variables.

Thus, they are jointly Gaussian. To calculate the probability of (3.17) being satisfied, we

need to find the probability density function of v = [vT1 · · ·vTN ]T .

Lemma 3. The covariance matrix of v is Σv = [Σij] where

Σij = FγΣγFT
γ1i=j +

N∑
l=1

uilu
∗
jl

N∑
k=1

a2
lkHθΣθHT

θ.
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Proof. The covariance of v is

Σv = E[(v− v̄)(v− v̄)T ] = [Σij],

where v̄ = h(s, s, θ̄)⊗ (Din − d̄inI) and Din = diag([din
1 · · · din

N ]). Thus, the ijth block of Σv

is

Σij =
∑
k,l∈N

uiku
?
jlE

Fγδγk +
∑
m∈N

amkHθδθmk

Fγδγ l +
∑
n∈N

alnHθδθnl

T
=
∑
k,l∈N

uiku
?
jlFγΣγFT

γ +
∑

k,l,m,n∈N
uiku

?
jlakmalnHθΣθHT

θ1k=l1m=n

= FγΣγFT
γ1i=j +

∑
k,m∈N

uiku
?
jk|akm|2HθΣθHT

θ.

We now provide upper bounds on the probability of stable synchronization for unweighted

regular, Erdös-Rényi, and Newman-Watts networks.

Theorem 6. Under Assumptions 1 and 2, the probability of stable synchronization of an

unweighted K-regular network of oscillators is lower bounded by

P LB
stab(ε) =

[
N−1∏
i=2

(
φ1 λi
λ1 φi

)n]
×
∞∑
j=0

a
(N−1)
j P

(
(N − 1)n

2
+ j,

λ2
1ε

2

φ2
1σ

2

)
, (3.18)
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where P (·, ·) is the regularized gamma function,

a
(i)
j =

j∑
k=0

a
(i−1)
k

nj−k
(j − k)!

(1− φ2
1 λ

2
i

λ2
1 φ

2
i

)j−k,

a
(2)
k =

nk
k!

(
1− φ2

1 λ
2
2

λ2
1 φ

2
2

)k
,

nk =
k−1∏
l=0

(n
2

+ l
)
,

and

σ = lim sup
t→∞

‖FγΣγFT
γ +KHθΣθHT

θ‖
1/2. (3.19)

Proof. Since the network is unweighted and K-regular, we have di =
∑N

k=1 a
2
ik = K. Ac-

cording to Lemma 3 the blocks of the covariance matrix, Σv, are

Σij = FγΣγFT
γ1i=j +KHθ ΣθHT

θ

N∑
l=1

uilu
∗
jl.

= (FγΣγFT
γ +KHθΣθHT

θ)1i=j. (3.20)

Hence, vi are uncorrelated. The mean value of vi can be computed as

E[vi] =
∑
j ∈N

qij

(
FγE[δγj] +

N∑
k=1,k 6=j

ajkHθE[δθjk] + h(s, s, θ̄)(K − d̄in)

)
= 0,

which follows noting that δγi and δθij have zero mean and d̄in = K. Since vi are jointly

Gaussian, uncorrelated, and have zero mean, they are independent.
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Now, let us define the whitened Gaussian random vectors

zi = Σ
− 1

2
ii vi.

Since Euclidean norm is sub-multiplicative, we have

‖vi‖ ≤ ‖zi‖
∥∥∥Σ 1

2
ii

∥∥∥ .
lim sup
t→∞

‖vi‖ ≤ lim sup
t→∞

(
‖zi‖

∥∥∥Σ 1
2
ii

∥∥∥) .
≤ lim sup

t→∞
‖zi‖ lim sup

t→∞

∥∥∥Σ 1
2
ii

∥∥∥ .
= ‖zi‖ lim sup

t→∞

∥∥∥Σ 1
2
ii

∥∥∥ ,
The last equality is due to the fact that with the whitening of ‖vi‖, ‖zi‖ is no longer time

variable. In other words, ‖zi‖ is a random variable (not a random process). Since ‖zi‖2

is the norm squared of a white Gaussian n-vector, it has a chi-squared distribution with n

degrees of freedom. Applying the result of Corollary 1,

‖e‖2 =
N−1∑
i=1

‖ηi‖2

≤
N−1∑
i=1

(
φi
λi

)2

lim sup
t→∞

‖vi‖2

≤
N−1∑
i=1

(
φiσ

λi

)2

‖zi‖2.

where σ is defined in (3.19).
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Now we have

Pr

(
lim sup
t→∞

‖e‖ < ε

)
= Pr

(
lim sup
t→∞

‖e‖2 < ε2

)
≥ Pr

(
N−1∑
i=1

(
φiσ

λi

)2

‖zi‖2 ≤ ε2

)

=

[
N−1∏
i=2

(
φ1 λi
λ1 φi

)n]
×
∞∑
j=0

a
(N−1)
j

∫ ε2

0

fj(y)dy,

where

fj(y) =

(
λ2

1

2φ2
1σ

2

) (N−1)n
2

+j
y

(N−1)n
2

+j−1

Γ
(

(N−1)n
2

+ j
)e− λ21

2φ21σ
2 y.

which using the results in [89] yields (6.23).

Theorem 7. Under Assumptions 1 and 2, the limiting probability of stable synchronization

of an unweighted Erdös-Rényi (ER) network of oscillators, with parameter p, as N →∞, is

lower bounded by

P LB
stab(ε|λ) =

[
N−1∏
i=2

(
φ1 λi
λ1 φi

)n]
×
∞∑
j=0

a
(N−1)
j P

(
(N − 1)n

2
+ j,

λ2
1ε

2

φ2
1σ

2

)
, (3.21)

where σ = lim supt→∞ ‖FγΣγFT
γ + pNHθΣθHT

θ‖
1/2 and λ = [λ1 · · ·λN−1].

Proof. The largest eigenvalue of the Laplacian matrix of any symmetric network is bounded

below by the maximum degree of the network. For large ER networks (N → ∞), it is also

bounded above by Np+
√
Np(1− p) (see eq. (2.15)). Thus

dmax ≤ µmax ≤ Np+
√
Np(1− p).
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Similarly, the smallest non-zero eigenvalue of ER network can be bounded as

dmin ≥ µmin ≥ Np−
√
Np(1− p).

According to Lemma 3, the diagonal blocks of covariance matrix of v are

Σii = FγΣγFT
γ + HθΣθHT

θ

N∑
l=1

|uil|2dl

= FγΣγFT
γ +NpHθΣθHT

θ,

as N →∞, and the off diagonal entries are

Σij = HθΣθHT

θ

N∑
l=1

uilu
∗
jldl

= HθΣθHT

θ

N∑
l=1

uilu
∗
jl(dl −Np)

≤
√
Np(1− p)HθΣθHT

θ.

Therefore,

lim
N→∞

‖Σij‖
‖Σii‖

= 0.

Consequently, as N →∞, vi become independent. The remaining of the proof is similar to

that of Theorem 6 and is omitted in the interest of brevity.

To study the synchronization in small-world networks, we consider the Newman-Watts model

[6]. This model constructs a small-world network by starting from a K-regular ring network

substrate, then randomly adds new links with probability p.

Theorem 8. Under assumptions 1 and 2, the limiting probability of stable synchronization
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of an unweighted Newman-Watts small-world network of oscillators, with parameters p and

K, as N →∞, is lower bounded by

P LB
stab(ε|λ) =

[
N−1∏
i=2

(
φ1 λi
λ1 φi

)n]
×
∞∑
j=0

a
(N−1)
j P

(
(N − 1)n

2
+ j,

λ2
1ε

2

φ2
1σ

2

)
, (3.22)

where

σ = lim sup
t→∞

‖FγΣγFT
γ + (K +Np)HθΣθHT

θ‖
1/2.

Proof. The Laplacian matrix of a Newman-Watts small world network is

LNW = LRing + LER,

where LRing and LER are the laplacians of a K-regular ring and an Erdös-Rényi network

with parameter p. Using Weyl’s inequalities we can bound the minimum and maximum

eigenvalues of the small-world [24]

max{µRing
min , µ

ER
min} ≤ µNW

min ≤ dmin,

µRing
max + µER

max ≥ µNW
max ≥ dmax,

where the eigenvalues of a K-regular ring is [24]

µRing
i = K − 2

sin iKπ
2N

cos (K+2)iπ
2N

sin iπ
N

,

and subscripts min and max refer to smallest non-zero and maximum eigenvalue of L in

corresponding configurations, respectively. The remaining of the proof is similar to that of

Theorem 7 and is omitted in the interest of brevity.
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Numerical Example

In this section we verify our analytical results using numerical examples. We consider the

van der Pol oscillator [87] which has the following dynamics

f(xi,γi) =

 xi2

−x1i − γi(x2
i1 − 1)xi2

 .
We note that since the van der Pol oscillator has a limit cycle, as t → ∞, s is a periodic

trajectory. Hence, the Jacobians are also periodic. We can, therefore, solve (3.6) analytically

using Fourier series [87].

We assume that the nodes are coupled through their first states by

h(xj,xi,θij) =

 θij1(x1j − x1i) + θij2

0

 .
Thus, the Jacobians of f(.)and h(.) around (s, γ̄, θ̄) are

Fx =

 0 1

−1− 2γ̄s1s2 γ̄(1− s2
1)

 ,
Hx =

 θ̄1 0

0 0

 ,
Fγ =

 0

(1− s2
1)s2

 ,
Hθ =

 0 1

0 0

 ,
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where s = [s1 s2]T . Fig. 3.1 depicts the maximum Lyapunov exponent of Fx − µHx as a

function of µ, where µ is the eigenvalue of Laplacian matrix of the network.
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Figure 3.1: Maximum Lyapunov Exponent (MLE) as a function of eigenvalues of Laplacian

matrix of the network, µ.

Furthermore,

vi =

 ∑N
j=1 u

∗
ji

∑N
k=1 ajkδθkj2

(1− s2
1)s2

∑N
j=1 u

∗
jiδγj

 .
It is clear that vi are independent of δθij1. Also, covariance matrix of vi of a K-regular ring
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network for γ̄ = 1 can be calculated from (3.20) as

Σii =

 Kθ̄2
1σ

2
θ2 0

0 σ2
γ((1− s2

1)s2)2

 ,
and

sup Σii =

 Kθ̄2
1σ

2
θ2 0

0 9.93σ2
γ

 , (3.23)

where sup((1 − s2
1)s2)2 is determined by simulation to be 9.93 and the supremums are cal-

culated over one period of the limit cycle. Hence, σ = max(
√
Kθ̄1σθ2 , 3.15σγ).

Now, consider a 6-regular ring network of size N = 100, where γ ∼ N (1, 0.01) and θ ∼

N ([1 0]T , 0.01I). Fig. 3.2 depicts the synchronization manifold, s, and a sample trajectory,

x1, converging to s. Fig. 3.3 presents the analytical lower bound on the probability of stable

ε-synchronization in the considered ring network, as a function of σθ2 and σγ for ε = 0.40. As

it can be seen, the probability of synchronization falls sharply as the variances of mismatches

increase. Moreover, we observe that the range of σγ and σθ2 for which the network is stable

with high probability is rectangular. This is explained by noting that σ is related to the

maximum of σγ and σθ2 , as it can be seen in (3.23). Another observation from Fig. 3.3

is that even small mismatches leads to instability of the synchronization state even with a

relatively large tolerance of ε = 0.40.

71



−3 −2 −1 0 1 2 3
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

x
1

x 2

 

 

Average Trajectory
Sample Trajectory

Figure 3.2: Synchronization manifold, s, and a sample trajectory, x1, for a ring network of

van der Pol oscillators.
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Figure 3.3: P LB
stab in the ring network as a function of σθ2 and σγ for ε = 0.4.
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Figure 3.4: Probability of stability as a function N , for the ring network.

We now proceed to compare a ring network, an Erdös-Rényi network and a Newman-Watts

(small-world) network. For a fair comparison, we choose the network parameters such that

all networks have the same number of nodes and the same average node degree. That

is, we consider a N = 100 node, 10-regular ring, an Erdös-Rényi network with N = 100

and randomness parameter p = 0.1, and a Newman-Watts network generated from a N =

100 node, 6-regular ring and link addition probability p = 0.4 × 100/94 = 0.4167. Fig.s

3.4 through 3.6 present the probability of stability versus network size, N , for these three

networks with ε = 0.4. As it can be seen for the Ring network (Fig. 3.4), as N increases, even

though the variance of the mismatch input is constant, σ = 3.15σγ, the ε-synchronization of

the network deteriorates. This is because as the degree of the nodes are kept constant and
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network size increases, the algebraic connectivity of the network,

µring
N−1 = k − 2

sin(kπ/2N) cos((k + 2)π/2N)

sin(π/N)
,

decreases. For large N , in our example, smaller algebraic connectivity means smaller MLE

(See Fig. 3.1), hence the probability of ε-synchronization falls sharply.

Fig. 3.5 presents the probability of ε-stability of the Erdös-Rényi network. It is interesting

to note that since the network is disconnected for smaller network sizes, the network is

not synchronized. As network size continues to grow, the network becomes connected and

synchronization behavior emerges. This behavior continues until the growth in the network

size, increases the variance of the mismatch input, v, to the extent that the network falls

out of ε-stability.
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Figure 3.5: Probability of stability as a function N , for the Erdös-Réyni network.
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Figure 3.6: Probability of stability as a function N , for the Newman-Watts network.
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Fig. 3.6 presents the probability of ε-stability for the Newman-Watts network. It is interest-

ing to note the mechanisms at work as N increases: At first, when N is small there are very

few added links given a small value of p. Thus, the network has not yet transitioned into

a small-world and its algebraic connectivity is still quite close to that of the ring topology.

Thus, as the size of the network increases its second smallest eigenvalue decreases. Since

the variance of mismatch, v, is constant (σb = 3.15σγ), the probability of stability decreases.

As N continues to increase, by adding links in random, sufficient number of long range

connections are established and the small-world transition is achieved. Consequently, alge-

braic connectivity of the network starts to grow rapidly. Hence, λi increase and, therefore,

P LB
stab improves. As N continues to increases

√
K +Npσθ2 overtakes 3.15σγ in the variance

of mismatch and its destructive effect surpasses the improvement caused by transition to

small-world. Consequently, we observe that P LB
stab begins to drop.

Figs. 3.7 through 3.9 depict the probability of ε-stability as a function of ε in the considered

Ring, Erdös-Réyni, and Newman-Watts networks for different N and d̄: (N = 100, d̄ = 10),

(N = 200, d̄ = 10), and (N = 200, d̄ = 20), respectively. As it can be seen, the analytical

lower bound and the simulation result for the ring network are reasonably close. This is due

to the homogeneity of its node degrees, i.e. di = K, which holds true for the other networks

as N approaches infinity. The other point directly observed from these figures is that the

rise in the probability of the stability is much sharper in the Erdös-Réyni and Newman-

Watts networks, this is because the spread of the spectrum, [µmin, µmax], for these networks

are smaller than that of ring topology. This, in fact, causes the Lyapunov exponents of

the traverse modes to be closer to each other and hence the networks become easily and

rapidly synchronized. Other interesting observation is that the results for the Erdös-Réyni

and Newman-Watts networks are similar. The reason can be sought in the effectiveness of

communication in both networks to each other. As it has been shown in [4], even though
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small-worlds are strongly locally connected (due to ring substrate), they have almost the

same average shortest path length of Erdös-Réyni networks. This results in almost the same

communication efficiency in small-worlds as Erdös-Réyni network. Hence, the synchroniz-

ability of both types of networks are similar.
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Figure 3.7: Pstab as a function of ε for the ring, NW and Erdös-Rényi networks: N =

100, d̄ = 10.
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Figure 3.8: Pstab as a function of ε for the ring, NW and Erdös-Rényi networks: N =

200, d̄ = 10.
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Figure 3.9: Pstab as a function of ε for the ring, NW and Erdös-Rényi networks: N =

200, d̄ = 20.
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Conclusion

We had seen that mismatch in either couplings or the local dynamics does not allow perfect

synchronization. Rather, the network can only be synchronized to a neighborhood of the

synchronization manifold. Considering this relaxed notion of synchronization we have pro-

vided a generalized master stability function that takes the mismatches into account. We

then used this master stability function to derive lower bounds on the probability of syn-

chronization in regular, Erdös-Rényi, and Newman-Watts networks. We verified our results

using numerical examples involving networks of van der Pol oscillators. These examples

clearly shows the different phase transition behavior of the different network models.
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CHAPTER 4: PINNING CONTROL IN NETWORKS OF

DYNAMICAL SYSTEMS

Here, we highlight the effectivity of the pinning control schemes by employing the spectral

characteristics of the network. We derive sufficient stability conditions for pinning control

of linearly coupled oscillators based on Lyapunov direct method. The introduced stability

conditions relate the spectral characteristics of the network to the global stability of synchro-

nization. Based on the derived stability conditions, we introduce an algorithm that achieves

global stability of synchronization with a small number of pinning nodes.

Moreover, to the best of our knowledge, all existing studies consider unconstrained controllers

in pinning schemes. Since using very large gains in a controller is not practical, we assume

that the controller gains are bounded.

System Description

Consider N identical oscillators with phase space equation

ẋi = Axi + Bf(Cxi), (4.1)

xi(t0) = xi0.

Now suppose that these oscillators are linearly coupled as

ẋi = Axi + Bf(Cxi) + cH
N∑
j=1

gji(xj − xi) + ui, (4.2)
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where xi ∈ Rn is the state of node i, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rm×n are fixed matrices,

and f : Rm → Rn is a nonlinear function. H ∈ Rn×n is the coupling matrix and c > 0 is

the coupling coefficient. G = [gij] ∈ RN×N is the adjacency matrix of the network: gij = 0

indicates that there is no link from node i to node j and gij > 0 indicates a connection from

node i to node j with weight gij. We assume that there are no self-loops, i.e. gii = 0. We

also define the Laplacian matrix of the network, L , [lij], as [24]

lij ,


∑N

m=1 gmi i = j

−gij i 6= j
.

Throughout the paper, we assume that the network is connected and there are no isolated

components. In the case of an undirected (bidirectional) network, L is symmetric and positive

semidefinite [24].

Let s be the solution of

ṡ = As + Bf(Cs), (4.3)

s(t0) = s0,

where s0 ∈ Ω, and Ω is the set of all initial conditions x0 such that, x(t) ∈ Ω for all t ≥ t0.

We know that s is an invariant manifold of (4.1) [5]. This means that for some choice of

initial conditions, X(x1(t0), · · · ,xN(t0)) ∈ ΩN , S = [s, · · · , s]T is the synchronous solution

of (6.1) [5]. Note that if (4.1) has only fixed points, then s would be the attracting fixed

point, and Ω would be the basin of attraction corresponding to that fixed point. The same

goes for limit cycles and chaotic attractors.

Now if we choose s as a reference signal, the error of trajectory for node i from the invariant
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manifold can be defined as

ei , xi − s. (4.4)

We assume that controller input, ui, is chosen as linear feedback

ui = Kiei. (4.5)

Note that since, the pinning approach is decentralized, we only consider the self-feedback in

our control rule, and there is no feedback from other nodes in the network.

Suppose that we use l ≤ N controllers to achieve synchronization throughout the network.

Let L , {i1, · · · , il} be the set of pinning points. Then ∀i ∈ L we have controller Ki 6= 0

and, ∀i /∈ L we have Ki = 0.

Assumption: There exists a positive semidefinite matrix M such that

e†i [f(xi)− f(s)] ≤ e†iMei, ∀xi, s ∈ Ω (4.6)

where † denotes the Hermitian transpose. Note that this condition is not very restrictive: If

all elements of the Jacobian of f(·) are bounded, there always exists a positive semidefinite

matrix M such that assumption (4.6) holds [19]. This condition is closely related to QUAD

condition as discussed in [90]. Unlike QUAD condition, here M is not necessarily diagonal.
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Analysis

The dynamics of the error terms, ei, can be found as follows. Starting from (5.4) and

substituting (6.1) and (5.3) we have

ėi = ẋi − ṡ

= Aei + B[f(Cxi)− f(Cs)] + ui +
N∑
j=1

gjicH(xj − xi)

= Aei + B[f(Cxi)− f(Cs)] + ui −
N∑
j=1

ljicHxj,

with the substitution of ui from (5.5) we get

ėi = Aei + B[f(Cxi)− f(Cs)] + Kiei −
N∑
j=1

ljicHxj.

Since
∑

j lji = 0, we can add
∑

j ljiHs = 0, to the right hand side without violating the

equality

ėi = Aei + B[f(Cxi)− f(Cs)] + Kiei +
N∑
j=1

ljicHs−
N∑
j=1

ljicHxj

= Aei + B[f(Cxi)− f(Cs)] + Kiei −
∑
j

ljicHej. (4.7)

Theorem: If assumption (4.6) holds, synchronization in the network of identical oscillators

is asymptotically stable if Ki satisfy the following set of linear matrix inequalities (LMI)

A− λicH + BTCTMCB +
∑
j∈L
|qij|2Kj ≺ 0, (4.8)
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for all i ∈ N = {1, · · · , N}, where λi is the ith eigenvalue of the Laplacian matrix L, and

Q = [qij] is a unitary matrix associated with Schur decomposition of L. That is L = Q†ΛQ

and λi are the diagonal entries of Λ. Moreover, Λ is diagonal if L has N distinct eigenvalues.

Otherwise it is upper triangular.

Proof. Consider the Lyapunov function

v ,
1

2
e†e =

1

2

∑
i

e†iei.

where e = [eT1 · · · eTN ]T . Thus, we can write (5.7) as

ė = (IN ⊗A)e + (I⊗B)


f(Cx1)− f(Cs)

...

f(CxN)− f(Cs)

− c(L⊗H)e + diag([K1, · · · , KN ])e. (4.9)

The derivative of the Lyapunov function can be calculated as

v̇ = e†ė =
∑
i∈N

e†i ėi. (4.10)

Substituting (4.9) in (4.10) the derivative of Lyapunov function is

v̇ =e† (I⊗A− cL⊗H + diag([K1, · · · , KN ])) e

+ e†(I⊗B)


f(Cx1)− f(Cs)

...

f(CxN)− f(Cs)


defining η , (Q⊗ I)e, or ηi =

∑
j∈N qijej, and using the Kronecker product properties, we
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have v = 1/2η†η, and

v̇ = η†

I⊗A− cΛ⊗H + diag

∑
j∈L

q2
ijKj

η + η†(Q⊗ I)(I⊗B)


f(Cx1)− f(Cs)

...

f(CxN)− f(Cs)


≤ η†

I⊗A− cΛ⊗H + diag

∑
j∈L

q2
ijKj

η + η†(I⊗ (BTMCTCB))η

= η†

I⊗A− cΛ⊗H + diag

∑
j∈L

q2
ijKj

+ I⊗ (BTCTMCB)

η

=
∑
i∈N

η†i

A− λicH +
∑
j∈L

q2
ijKj + BTCTMCB

ηi,

Thus, having

A− λicH +
∑
j∈L

q2
ijKj + BTCTMCB ≺ 0

for all i ∈ N guarantees that v̇ < 0, which mean that the synchronization is stable.

Corollary: If assumption (4.6) holds, the set of controllers ui = Kiei = −ckiHei for i ∈ L

globally asymptotically stabilizes the synchronization in the network, if ki satisfy

A− c
(
λi +

∑
j∈L
|qij|2kj

)
H + BTCTMCB ≺ 0, (4.11)

for all i ∈ N .

This corollary is more effective when H is positive definite. Hereafter, we limit ourselves to

the case of positive definite H, as assumed in [17] [19] [49].

Remark 1: It is clear from (4.11) that the dynamics of the oscillators can be stabilized
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around the synchronization manifold by utilizing one controller with a very large control

gain, as long as there exists a Schur decomposition such that Q has at least one nonzero

column.

While the synchronization can be stabilized with a single controller, it is also clear from

(4.11) requires a large controller gain. However, in most real world applications having a

controller with a large gain is not desirable. To address this issue we seek to stabilize the

network with small number of controllers, |L|, under the constraint

||Ki|| < p ∀i ∈ L. (4.12)

Following the corollary, we form the following function

Ψ(µ) = Re{λmax(A + BTCTMCB− µcH)}, (4.13)

where Re{·} returns the real part of the argument. Since the coupling matrix is assumed

to be positive definite, Ψ(µ) is a strictly decreasing function of µ. Thus, there exist µ∗ such

that µ > µ∗ satisfies Ψ(µ) < 0; or

µ∗ = minimize µ

subject to Ψ(µ) ≤ 0.

In other words, if the network has a larger algebraic connectivity [31] than µ∗, it will achieve

stability. Thus, if LMI’s in (4.8) or (4.11) are not all satisfied, it will be due to the smaller

eigenvalues.

Remark 2: It has been shown that for unweighted-undirected networks, if λi and di are
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sorted in descending order, λi majorize di [31], i.e.

r∑
j=1

λj ≥
r∑
j=1

dj 1 ≤ r ≤ N,

Also we know that trace(L) =
∑N

i=1 di =
∑N

i=1 λi. Therefore,

r∑
j=1

λN−j ≤
r∑
j=1

dN−j 1 ≤ r ≤ N.

Hence, lower degrees are more closely linked to the smaller eigenvalues compared to higher

degrees. This suggests that lower degree nodes are more susceptible to instability than the

higher degree nodes. Thus, pinning the lower degrees is more effective than pinning other

nodes. This also has been shown in [19].

Pinning Algorithm

It is clear from (4.11) that larger controller gains help stability. Therefore, when a node is

assigned to be a pinning point, one would like to maximize its feedback gain, as allowed by

the constraint. Thus, we set

ki =
p

c||H||
ai,

where ai = 1 indicates that i is a pinning point (i ∈ L) and ai = 0 means i /∈ L. Hence, the

stability conditions can be written as

µ∗ − λi ≤
p

c||H||
∑
j∈L
|qij|2 (4.14)

for all i ∈ N .
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Thus, the problem of finding minimum number of pinning controllers is reduced to

minimize
∑

i∈N ai

subject to µ∗ − λi ≤ p
c||H||

∑N
j=1 aj|qij|2 ∀ i ∈ N 0.

(4.15)

Here N 0 contains all i ∈ N for which the condition in (4.14) is not satisfied.

This is a standard binary linear program, which is known to be NP-hard in general. In

the following we propose a suboptimal heuristic algorithm to assign pinning points. Our

algorithm is based on the observation that the constraints with smaller eigenvalues requires

more effective gain,
∑N

j=1 |qij|2ki, to be satisfied. Thus, we start with condition with the

smallest eigenvalue and proceed to satisfy the conditions until we reach the condition with

largest eigenvalue that is not yet satisfied. The following outlines the algorithm:

1. Sort λi ∀i ∈ N 0 such that 0 = λi0 < λi1 ≤ · · · ≤ λiN0−1
.

2. Set v := 0, and L := ∅.

3. If N v = ∅

• Done

else go to 4.

4. Add j∗ to L where j∗ = arg maxj /∈L |qivj|2.

5. If (4.14) is satisfied for iv

• v := v + 1.

• Set N v to include i for which (4.14) is not satisfied.

• Go to 3.
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else, go to 4.

This algorithm provides the suboptimal solution in polynomial time.

Numerical Example

In this section we study a numerical example using the well-known Lorenz chaotic attractor

[19]. Consider the state space equation of Lorenz attractor

ẋ1 = −35x1 + 35x2

ẋ2 = −7x1 + 28x2 − x1x3 (4.16)

ẋ3 = x1x2 − 3x3.

We can write these equations in the form (6.1) with B = C = I3, f([x1 x2 x3]T ) = [0 −

x1x3 x1x2]T , and

A =


−35 35 0

−7 28 0

0 0 −3

 .
Now, we find M in (4.6) as

eTi [f(xi)− f(s)] = ei3(xi1xi2 − s1s2)− ei2(xi1xi3 − s1s3)

= ei3(s1ei2 + xi2ei1)− ei2(s1ei3 + xi3ei1)

= −xi3ei1ei2 + xi2ei1ei3, (4.17)

Since xi ∈ Ω is bounded, absolute value of its mth component |xi,m| can be bounded by Mm.

In this example, we can find these bounds numerically to be |xi,1| ≤M1 = 23, |xi,2| ≤M2 =
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32, |xi,3| ≤M3 = 61. Using the Cauchy-Schwartz inequality, 2eiej ≤ e2
i + e2

j , we have

eTi [f(xi)− f(s)] ≤ 1

2
(e2
i1 + e2

i2)|xi3|+
1

2
(e2
i1 + e2

i3)|xi2|

≤ M3

2
e2
i1 +

M3 +M2

2
e2
i2 +

M2

2
e2
i3. (4.18)

Thus,

M =
1

2


M3 0 0

0 M2 +M3 0

0 0 M2

 =


30.5 0 0

0 46.5 0

0 0 16.0


satisfies (4.6).

We assume the coupling matrix

H =
1

2


1 0 0

0 2 0

0 0 1

 . (4.19)

We have chosen H such that ||H|| = 1 so that the coupling strength is only determined by

coupling coefficient c.

Threshold value of (4.13), scaled by coupling coefficient, is found to be µ∗c = 68.17.

For the simulation purposes, here we adopt the Newman’s method to construct a scale-free

network [25]. This method, in contrast to the well known random rewiring approach of

Watts and Strogatz [4], only adds links randomly between vertices of a regular network

with a small probability, ρ. The regular network considered here is a ring network with

coordination number m.

90



10−2 10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

c

b (
%

)

 

 

p=100
p=200
p=1000

Figure 4.1: Percentage of required pinning points (δ = l/N) versus coupling strength, c, for

different values of controller gain constraint, p, in a scale- free network (N = 300, m = 10

and ρ = 0.005), using our proposed method.

The ratio of required number of controllers to the network size, δ = l/N , versus coupling

strength, c, for different constraint values, p, is given in Fig. 4.1. It is clear that the per-

formance of the proposed scheme strongly depends on the value of constraint on controllers’

gain. More importantly, it can be seen that our approach can stabilize the network for even

for very small coupling strengths. In contrast, other schemes such as [19] and [69], cannot
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stabilize the synchronization for small coupling coefficients. Also in Fig. 4.1, we see a step-

like descending of required ratio of controllers as coupling strength increases. The reason

for this behavior is that when c increases, the unstable modes become stable one by one

and they no longer contribute to the constraint in (4.15). Due to high clustering coefficient

in scale-free networks, eigenvalues appear as bundles close to each other (Fig. 4.2). Con-

sequently, when c crosses each bundle, δ decreases quickly. Then, it remains flat until it

reaches another bundle of eigenvalues.
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Figure 4.2: Histogram of eigenvalues of Laplacian matrix of a scale-free network (N = 300,

m = 10 and ρ = 0.005), for one realization.
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Figure 4.3: Percentage of required pinning points (δ = l/N) versus coupling strength, c,

proposed method for different values of controller gains, p, in a scale-free network (N = 300,

m = 10 and ρ = 0.005).

Fig. 4.3 shows the percentage of required pinning controllers for stabilization of synchro-

nization versus constraint p with low degree assignment approach of [19] and our proposed

scheme, with different coupling strengths. The simulations are performed for both methods

under the same constraint on the controller gains. As it can be seen, our method guaran-

tees stability with a smaller number of pinning controllers than the lower-degree assignment

proposed in [19]. It is worth noting that when the coupling matrix is positive definite, it

has been shown in [19] that lower degree assignment requires fewer nodes to be pinned in

comparison to random and higher degree assignments studied in [69].

It is clear that as the constraint on the controller gains is loosened, our scheme uses fewer

controllers to stabilize the synchronization throughout the network. In the extreme, if the
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constraint is sufficiently relaxed, our approach coincides with that of [17] where the stabi-

lization is accomplished using a single pinning controller.

Another issue of the interest is the total power consumed by the controllers. Fig. 4.4 shows

the normalized total required power, lp2, as a function of the constraint, p, for different

coupling strengths, c. We can see that using multiple controllers results in lower total

required power compared to single controller pinning method. The overlapped part of the

plots corresponding to the proposed method is due to requiring the pinning of all the nodes

to achieve stabilization in lower gains. Also, it is clear that our algorithm outperforms the

approach in [19] in the sense of required total power to stabilize the network.
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Figure 4.4: Total required power consumed by controllers in a scale-free network for different

coupling strengths.
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Conclusion

We introduced a pinning algorithm based on spectrum of the network, and assuming con-

strained controller gains. The proposed algorithm identifies the spectral modes where the

network is susceptible to instability. With a numerical example we have shown how the

required ratio of pinning changes in terms of structure of scale-free networks. We have

also shown that our scheme outperforms the existing controller-assignments such as random,

higher-degree or lower-degree assignments, in the sense of using fewer controllers under the

same conditions. We have argued that if the constraint on the controller gains is relaxed

sufficiently, our algorithm can pin the network by a single controller. Also we demonstrated

that our method is more efficient than the existing methods in terms of total power.
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CHAPTER 5: PINNING CONTROL IN FAST SWITCHING

NETWORKS

Motivated by increasing interest in stabilization of switching networks, here, we employ the

pinning control approach to stabilize a switching network of oscillators. We find the smallest

ratio of pinned nodes required to guarantee stability of synchronization. We then relate the

maximum allowable feedback gain to minimum pinning ratio.

Notations and System Description

Notation

The set of real n-vectors is denoted by Rn and the set of real m× n matrices is denoted by

Rm×n. Matrices and vectors are denoted by capital and lower-case bold letters, respectively.

Identity matrix of size m is denoted by Im and all one matrix of size m× n by 1m×n.

Table I summarizes the variables used frequently in the paper.
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Table 5.1: Frequently used variables

Variable Description

xi State vector of node i

ui Input vector of node i

s Reference signal

ei Error of trajectory from reference signal for node i

F Jacobian matrix of local dynamics

H Coupling matrix between two nodes in the dynamic

network

c Coupling strength in dynamics network

N Network size

A = [aij] Adjacency matrix of the network

L = [lij] Laplacian matrix of the network

System Description

Consider N diffusively coupled identical oscillators

ẋi = f(xi) + c

N∑
j=1

aij(t)H(xj − xi) + ui, (5.1)

xi(t0) = xi0,

where xi ∈ Rn is the state of node i, f : Rn → Rn is a nonlinear function describing the

dynamics of the oscillators, H is the coupling matrix, and c > 0 is the coupling strength.
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A = [aij(t)] is the binary adjacency matrix of the network: aij(t) = 0 indicates that there is

no coupling from node i to node j and aij(t) = 1 indicates a connection from node i to node

j. We assume that the network is undirected, i.e. A is symmetric. Moreover, we assume

that there are no self-loops, i.e. aii(t) = 0 for all t. Furthermore, we assume that with period

Ts, aij(t) takes a new binary value, independent of its previous values and of other links. In

other words, the graph is constant over time intervals of length Ts, and when a switching

occurs, the new graph is an Erdös-Rényi graph, independent of all past graphs, with edge

probability p.Moreover, it is assumed that aij(t) takes the value 1 with probability p and 0

with probability of 1− p. The Laplacian matrix of the network, L(t) , [lij(t)], is defined as

lij(t) ,


∑N

m=1 ami(t) i = j

−aij(t) i 6= j
. (5.2)

Let s be the solution of

ṡ = f(s), (5.3)

s(t0) = s0,

where s0 ∈ Ω, and Ω is the set of all initial states x0 such that, x(t) ∈ Ω for all t ≥ t0.

In [5] it is shown that s is an invariant manifold of (6.1). This means that for some choice of

initial conditions, (x1,0, · · · ,xN,0) ∈ ΩN , (s, · · · , s) is the synchronous solution of (6.1) [5].

Note that if (5.3) only has fixed points, then s will be an attracting fixed point, and Ω will

be the basin of attraction corresponding to that fixed point. The same goes for limit cycles

and chaotic attractors.

Now, if we choose s as a reference signal, the error of trajectory of node i from the invariant
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manifold can be defined as

ei , xi − s. (5.4)

We assume that the control input, ui, is chosen as linear feedback

ui = −ζikHei, (5.5)

where k is the feedback gain and ζi is a binary variable, where ζi = 1 indicates that node

i is pinned. Note that since the pinning approach is decentralized, we only consider the

self-feedback in our control rule, and there is no feedback from other nodes in the network.

Analysis

The dynamics of the error terms, ei, can be found as follows. Starting from (5.4) and

substituting (6.1) and (5.3) we have

ėi = ẋi − ṡ

= Fei + ui +
N∑
j=1

ajicH(xj − xi)

= Fei + ui −
N∑
j=1

ljicHxj.

With the substitution of ui from (5.5) we get

ėi = Fei − kζiHei −
N∑
j=1

ljicHxj.
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Since
∑

j lji = 0, we can add
∑

j ljiHs = 0, to the right hand side without violating the

equality

ėi = Fei − kζiHei +
N∑
j=1

ljicHs−
N∑
j=1

ljicHxj

= Fei − kζiHei −
∑
j

ljicHej. (5.6)

Now, stacking ei yields

ė =
(
IN ⊗ F−

[
k diag(ζ1 · · · ζN) + cL(t)

]
⊗H

)
e, (5.7)

where e = [eT1 eT2 · · · eTN ]T . If we define matrix M(t) = [mij(t)] by

mij(t) =



lij(t) i 6= j&1 ≤ i, j ≤ N

lii(t) + ζik/c i = j&1 ≤ i ≤ N

0 i = N + 1

−ζik/c j = N + 1&1 ≤ i ≤ N

, (5.8)

then (5.7) can be written as

ẏ = (IN+1 ⊗ F− cM(t)⊗H)y, (5.9)

where y = [eT sT ]T .

To study the stability of the system (5.9) with the fast switching condition [43, 52, 57], we

will use the following theorem:
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Theorem 1 [52]: Consider the dynamical system

ė = (I⊗ F(t) + L̄⊗H)e, e(t0) = e0, ∀t ≥ t0 (5.10)

where

L̄ = E[L(t)],

and E[·] is the expected value operator. Assuming that

1. F(t) is bounded and continuous in R+, and

2. switching of L(t) is ergodic, and

3. system (5.10) is uniformly asymptotically stable,

then there exists Td > 0 such that for all 0 < Ts ≤ Td, the stochastic system

ż = (I⊗ F(t) + L(t/Ts)⊗H)z, z(t0) = z0, ∀t ≥ t0

is uniformly asymptotically stable almost surely.

Based on this theorem, there exists a dwelling time Td such that if Ts < Td, then the stability

of the system (5.9) can be investigated by considering the expected value of M(t), denoted

by M̄, and we can carry out the stability analysis by using master stability function as in [5].

To use the results in Theorem 1, first we calculate the expected value of the Laplacian matrix
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of the system in (5.9)

M̄ = p



(N − 1) + k
cp
ζ1 −1 · · · −1 − k

cp
ζ1

−1 (N − 1) + k
cp
ζ2 · · · −1 − k

cp
ζ2

...
...

. . .
...

...

−1 −1 · · · (N − 1) + k
cp
ζN − k

cp
ζN

0 0 · · · 0 0


. (5.11)

Now we proceed to calculate the eigenvalues of M̄ to determine the stability of the network

by the available results from static networks. The following Lemma provides the eigenvalues

of M̄.

Lemma 4. Eigenvalues of matrix M̄ are

λN+1 = 0

λN =
1

2

pN +
k

c
−

√(
pN +

k

c

)2

− 4pmk

c


λN−1 = · · · = λm+1 = pN

λm =
1

2

(
pN +

k

c
+

√
(pN +

k

c
)2 − 4pm

k

c

)

λm−1 = · · · = λ1 =
k

c
+ pN,

where m is the number of pinning nodes.
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Proof. We can write M̄ as

M̄ = p


k′Im + Km −1m×N−m 1/p1m×1

−1Tm×N−m mIN−m + KN−m 0

0 · · · 0

 ,

where k′ = k/cp+N −m and

Kn =



(n− 1) −1 · · · −1

−1 (n− 1) · · · −1

...
...

. . .
...

−1 −1 · · · (n− 1)


n×n

,

is the Laplacian of a complete network of size n. The characteristic polynomial of matrix

Kn is [24]

φKn
(λ) = λ(λ− n)n−1. (5.12)

Now we calculate the characteristic polynomial of M̄
′
= M̄/p:

φM′(λ) = |λIN+1 − M̄/p|

= λ×

∣∣∣∣∣∣∣
(λ− k′)Im −Km 1m×N−m

1Tm×N−m (λ−m)IN−m −KN−m

∣∣∣∣∣∣∣

103



Using Schur formula for block matrices, we have

φM′(λ) = λ× |(λ− k′)Im −Km| × |(λ−m)IN−m −KN−m

−1Tm×N−m[(λ− k′)Im −Km]−11m×N−m
∣∣

= λ× φKm
(λ− k′)×

∣∣∣∣(λ−m)IN−m −KN−m −
m

λ− k′
1N−m×N−m

∣∣∣∣
where the last equality is due to

1m×n(λIn −Kn)−11n×m =
n

λ
1m×m.

Since (λ− pm)IN−m −KN−m is invertible we have

φM′(λ) = λ× φKm
(λ− k′)×

∣∣∣∣IN−m − m

λ− k′
[(λ−m)IN−m −KN−m]−11N−m×N−m

∣∣∣∣ .
Since 1m×m = 1m×111×m, using Sylvester’s determinant theorem the second term can be

written as

1−N −m
λ−m

11×N−m[(λ−m)IN−m−KN−m]−11N−m×1 =

(
1− m

λ− k′
N −m
λ−m

)
φKN−m

(λ−m).

Substituting the characteristic polynomial of Laplacian of a complete network of size m in

(5.12), the characteristic polynomial for M̄ can be obtained as

φ ¯M(λ) = λ(λ− k

c
− pN)m−1(λ− pN)N−m−1

(
λ2 − (

k

c
+ pN)λ+

mk

c

)
.

Now if we apply the results of Lemma 1 to the type 1 and 2 MSF, we reach the following
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results:

Theorem 2: Network is stabilizable by m pinning controllers with gain k if

1. the network has type 2 MSF, and

α1 ≤ cλN =
1

2

(
cpN + k −

√
(cpN + k)2 − 4cpmk

)
,

2. the network has type 3 MSF, and the controller gain and the number of pinning

controllers satisfy

α1 ≤ cλN =
1

2

(
cpN + k −

√
(cpN + k)2 − 4cpmk

)

and,

cλ1 = k + cpN ≤ α2.

Proof : Follows directly from Lemma 1 and the MSF being negative.

Let us define pinning ratio as ρ = m/N and average coupling strength as c̄ = cp.

Remark 5. Based on Theorem 2, regardless of whether the MSF is of type 1 or 2, we must

have cλN ≥ α1 which using Lemma 1 yields

m ≥ α1(c̄N + k)− α2
1

c̄k
.

In other words, given k, the smallest number pinning controllers that can stabilize the network
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is

mmin =

⌈
α1(c̄N + k)− α2

1

c̄k

⌉
,

and the smallest ratio of pinning nodes is

ρmin =
1

N

⌈
α1(c̄N + k)− α2

1

c̄k

⌉
.

Remark 6. If for systems with type 2 MSF, the control gain, k, can be chosen to be suffi-

ciently large, the smallest number of pinning controllers and the smallest ratio of controllers

can only be improved to

m?
min =

⌈α1

c̄

⌉
,

and

ρ?min =
1

N

⌈α1

c̄

⌉
.

Remark 7. For systems with type 3 MSF, the second condition is λ1 ≤ α2/c which using

Lemma 1 yields

k ≤ α2 − c̄N = kmax

Thus, the smallest number of pinning controllers and the smallest ratio of controllers can be

improved to

m?
min =

⌈
α1α2 − α2

1

c̄α2 − c̄2N

⌉
,
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and the smallest ratio of pinning nodes is

ρ?min =
1

N

⌈
α1α2 − α2

1

c̄α2 − c̄2N

⌉
.

It is interesting to note that ρ?min is lower bounded by the dynamical parameters of the system,

namely α1 and α2

ρ?min ≥
1

N

⌈
4N(α1α2 − α2

2)

α2
2

⌉
≈ 4α1

α2

.

which can be achieved if c̄ = α2/2N and k = α2/2.

Corollary 2. A system with type 3 MSF can be stabilized by pinning technique if and only

if

α2 − |α2 − 2α1|
2N

≤ c̄ ≤ α2 + |α2 − 2α1|
2N

.

Proof: Follows directly from the combination of the two inequalities of Theorem 2 part 2.

Numerical Example

In this section we study a numerical example using the well-known Rössler chaotic attractor

[43]. Consider the state space equation of Rössler attractor

ẋ1 = x1 − x2

ẋ2 = x1 + θx2 (5.13)

ẋ3 = β + x3(x1 − γ).

where θ = 0.2, β = 0.2, and γ = 7.
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We assume the coupling matrix

H =


1 0 0

0 0 0

0 0 0

 .
With the choice of oscillator parameters in (5.13), the system has a type 3 MSF and we have

α1 = 0.2 and α2 = 4.8.
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Figure 5.1: Pinning ratio ρ and controller gain k as a function p for different network sizes.
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Fig. 5.1 shows the ratio of the pinning nodes and maximum controller gain k required to

reach the stable convergence to the reference signal, s, versus p, for several network sizes, N .

Here we have assumed that the coupling strength is c = 0.01. The switching parameter p

controls the average degree of the nodes, pN . As it is illustrated, network can be stabilized

if 20 < pN < 460 which is a direct result of corollary 1. Also, we observe that as p

increases the pinning ratio drops until it reaches a minimum of ρ?min ≈ 0.16 (dashed line) at

p? = α2/(2cN) = 240/N . It is very interesting that the minimum pinning ratio is almost

independent of the network size. As p exceeds p?, the pinning ratio increases until reaches

1. After that network becomes unstable since average coupling, c̄ reaches α2. Hence the

magnitude of controller gain becomes too small to stabilize the network, k ≤ α2− cpN . This

constraint on controller gain is the reason for increase in pinning ratio in larger networks as

p grows, since as smaller controller gain is available for controllers, it should be compensated

by the increase in the number of employed controllers, hence m increases.

Fig. 5.2 illustrates the the ratio of the pinning nodes and controller gain k required to reach

the stability of synchronization versus network size N , for different values of p. As it can

be observed, for 20 < pN < 460 network can be stabilized and outside this interval, the

evolution of the network to s is improbable. Also as N grows the same linear decline in the

maximum employable controller gain is observed which is predicted by the Theorem 2.

Conclusion

We have analyzed the effectiveness of pinning control under the assumption of fast switching.

Bounds on average coupling strength where this strategy can be utilized to achieve stable

synchronization are given. We have also calculated the minimum ratio of pinning nodes to

achieve the stability based on the type of the master stability function describing the network.
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Figure 5.2: Pinning ratio ρ and controller gain k as a function N for some values of p.

We have demonstrated that if a system has type 3 master stability function then the controller

gain is bounded. We have also shown that if the constraint on the gain controller is satisfied,

in case of type 3 master stability function, the ratio of pinning controllers is almost inversely

related to controller gain.
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CHAPTER 6: STABILIZING A RANDOM DYNAMICAL

NETWORK WITH RANDOM FEEDBACK NETWORK

Although there have been many efforts in the study of the distributed control [73, 75], the

impact of topological characteristics of the network on its stability is largely under-studied.

Here, we aim to address some aspects of this problem for large networks. Since considering

large networks with non-identical dynamics renders the analysis intractable, here we consider

all plants, couplings and controllers to be identical. Moreover, to gain insight into the

behavior of large networks without being limited to one particular topology, we take our

results further by assuming random networks. To do this we utilize the results in [91], derived

for an arbitrary dynamics network, and adapt it to the case where all nodes and coupling

dynamics are identical. Then, assuming a random network model, for both dynamics and

communications networks, we analyze the probability that the stability condition is satisfied.

We then use these results to study asymptotic behavior of large random networks.

Notations and System Description

Notations

The set of real n-vectors is denoted by Rn and the set of real m× n matrices is denoted by

Rm×n. Matrices and vectors are denoted by capital and lower-case bold letters, respectively.

The Euclidean (L2) vector norm is represented by ||·||. When applied to a matrix ||·|| denotes

the L2 induced matrix norm, ||A|| = λmax(ATA). Also, we denote a graph corresponding to

a network with G, and vector d denotes the corresponding degree sequence of the graph.
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Table 6.1: Frequently used variables

Variable Description

xi State vector of node i
ui Input vector of node i
A Plant dynamics matrix
H Coupling matrix between two nodes in the dynamic

network
B Plant input matrix
K Local feedback gain
L Inter-plant feedback gain
c Coupling strength in dynamics network
N Plant network size
GD Dynamics network graph

G = [gij] Adjacency matrix of GD
dD = [dD,i] Degree sequence of GD
GC Communications (control) network graph

F = [fij] Adjacency matrix of GC
dC = [dC,i] Degree sequence of GC

p Randomness parameter of dynamics network
q Conditional randomness parameter of communications

network

Table I summarizes the variables used frequently in the rest of this chapter.

System Description

We consider a dynamics network, consisting of N identical linear time-invariant plants de-

scribed by

ẋi(t) = Axi(t) + Bui(t) + c

N∑
j=1

gjiHxj(t), (6.1)

xi(0) = xi0
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where xi ∈ Rn is the state of the ith node, ui ∈ Rm is the input signal of ith node, and

A ∈ Rn×n, B ∈ Rn×m and H ∈ Rn×n are the node dynamics, input, and coupling matrices,

respectively. c is the coupling strength and G = [gij] ∈ RN×N is the binary adjacency matrix

associated with the dynamics network (graph) GD with no self loops, i.e. gii = 0.

We assume that the isolated nodes are asymptotically stabilizable with local state feedback

ui = Kxi. That is, there exist K, and positive definite matrices P,Q ∈ Rn×n that satisfy

the Lyapunov equation

(A + BK)TP + P(A + BK) = −Q. (6.2)

Furthermore, we assume that the communications network provides the control input vector

for node i

ui = Kxi + c
N∑
j=1

fjiLxj, (6.3)

where K is the local feedback gain, L is feedback gain from other subsystems, and F = [fij]

is the binary adjacency matrix corresponding to the communications network, GC . Again,

we assume that there are no self loops, i.e. fii = 0.

Network Stability Condition

In this section, we provide a stability condition for a networked system using Lyapunov

direct method for directed networks.

The network is asymptotically stable if there exists a Lyapunov function, V (·), of the network

state vectors, which has negative derivative with respect to time.
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Following (6.2), we know that Vnode(xi) = xTi Pxi is a Lyapunov function for the isolated

nodes. Therefore, one reasonable choice of the Lyapunov function candidate for the whole

network is

V (x1, · · · ,xN) =
N∑
i=1

Vnode(xi) =
N∑
i=1

xTi Pxi. (6.4)

Theorem 9. Network (6.1) with controller (6.3) is asymptotically stable if

c2

N∑
j=1

||P(fjiBL + gjiH)||2

δji
+

N∑
j=1

gijδij < λmin(Q) (6.5)

for all i, where δij are arbitrary positive reals.

Proof. Follows directly from Theorem 1 in [91].

Inspecting (6.5), we observe that if we include feedbacks from subsystems which are not

connected in the dynamics network (fji = 1 and gji = 0), we add unnecessary positive terms

to the left side of the stability conditions, which makes the conditions harder to satisfy.

Therefore, the communications network should be a subset of the dynamics network, i.e.

GC ⊆ GD or fij = 0 if gij = 0.

To gain the largest convergence rate for each node, we choose Q to be the identity matrix of

consistent size [59]. From (6.5), it is clear that the norm of the closed loop gain from other

nodes, ||P(BL + H)||, should be chosen to be as small as possible. Ideally, if L exists such

that ||P(BL + H)|| = 0 (known as matching condition [73]), the stability conditions in (6.5)

are satisfied with δij < 1/N and fij = gij or GC = GD. However, It is desirable to use a GC

that is smaller than GD, if possible. Furthermore, in general, the matching condition may
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not be satisfied. In this case one would want to choose L that minimizes the norm or

L? = arg min
L
||P(BL + H)||. (6.6)

The norm of the closed loop gain will then be ||P(BL?+H)||. We note that the optimization

problem in (6.6) reduces to a standard semidefinite program (SDP), which can be readily

solved (see [91] and Ch.4 in [92]).

Theorem 10. Let δij = δo if fij = 0 and δij = δc if fij = 1, then the network in (6.1) with

controller (6.3) is stable if

αi
δo

+ βiδo +
γi
δc

+ ζiδc < 1, (6.7)

where

αi = c2ρ1

(
N∑
j=1

gji −
N∑
j=1

gjifji

)
= c2ρ1

(
dinD,i − dinC,i

)
,

βi =
N∑
j=1

gij −
N∑
j=1

gijfij = doutD,i − doutC,i,

γi = c2ρ2

N∑
j=1

gjifji = c2ρ2d
in
C,i,

ζi =
N∑
j=1

gijfij = doutC,i,

and dinD,i and dinC,i are the in-degrees of node i in GD and GC, respectively. Similarly, doutD,i

and doutC,i are the out-degrees of node i in GD and GC, respectively. And ρ1 = ||PH||2 and

ρ2 = ||P(H + BL?)||2.

Proof. We can write

δij = (1− fij)δo + fijδc (6.8)
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and

1

δij
=

1− fij
δo

+
fij
δc
. (6.9)

Also, considering the fact that GC ⊆ GD, the stability conditions in (6.5) can be expressed

as

c2ρ1

N∑
j=1

gji
δji

+ c2(ρ2 − ρ1)
N∑
j=1

gjifji
δji

+
N∑
j=1

δijgij < 1. (6.10)

Hence, substituting (6.8) and (6.9) in (6.10), yields (6.7).

Corollary 3. If we choose δo = c
√
ρ1 and δc = c

√
ρ2, the network (6.1) with controller (6.3)

is stable if

dD,i ≥ dC,i > η
√
ρ1dD,i −

η

c
, (6.11)

where dD,i = dinD,i + doutD,i, dC,i = dinC,i + doutC,i, and

η =
1

√
ρ1 −

√
ρ2

. (6.12)

Proof. Substituting the values of δo and δc in (6.7),

√
ρ1

(
din
D,i + dout

D,i

)
− (
√
ρ1 −

√
ρ2)
(
din
C,i + dout

C,i

)
<

1

c
.

Corollary 4. If the matching condition, ||P(H + BL∗)|| = 0, is satisfied, (6.11) reduces to

dD,i ≥ dC,i > dD,i −
1

c
√
ρ1

. (6.13)
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Stability of a Dynamics Network with Random Communications Network

The constraints on dC,i derived above guarantee the stability of the network. However, except

for the trivial cases (e.g. if the two bounds in (6.11) force dC,i = dD,i), given the network GD

it is not easy to find a small GC such that these conditions are satisfied. In fact, finding the

smallest GC reduces to a linear integer program, which in general is NP-hard.

In the following, to get further insight into the problem, we assume that the communications

network, GC , is a random sub-graph of the dynamics network, GD. In other words, we assume

that with probability q, there is a connection from node i to node j if in the dynamics network

there is such a link. That is,

fij =

 1 with probability q if gij = 1

0 otherwise
. (6.14)

Note that, here, we make no assumption about the topology of the dynamics Network.

With a random sub-graph as the communications network, the question of interest is: Given

GD and q, what is the probability that the network is stable?

Degree distribution of random subgraph GC

Since the in-degree and out-degree of each node are summations of independent Bernoulli

random variables with success probability q, their distributions are binomial. That is

dinC,i ∼ B(dinD,i, q), d
out
C,i ∼ B(doutD,i, q).
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Since dinC,i and doutC,i are independent random variables and have the same success probability,

their sum also has a binomial distribution. That is

dC,i ∼ B(dD,i, q). (6.15)

If pN is large enough, we can approximate the distribution of dC,i with a Gaussian distribu-

tion with mean [93]

µi = qdD,i. (6.16)

Lemma 5. Covariance of dC,i in (6.15) is

σ2
ij =

 q(1− q)dD,i i = j

q(1− q)(gij + gji) i 6= j
. (6.17)

Proof. We know that

dC,i =
N∑
k=1

(fikgik + fki)gki. (6.18)
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From definition of covariance, we have

σ2
ij = E[dC,idC,j]− q2dD,idD,j

=
∑
k,l

(fikgik + fkigki)(fjlgjl + fljglj)− q2dD,idD,j

=
∑
k,l

gikgjl(q(1− q)1i=j1k=l + q2

+
∑
k,l

gikglj(q(1− q)1i=l1j=k + q2)

+
∑
k,l

gkigjl(q(1− q)1i=l1j=k + q2)

+
∑
k,l

gikgjl(q(1− q)1i=j1k=l + q2)− q2dD,idD,j

where 1x is the indicator function of x. Thus,

σ2
ij = q(1− q)1i=jdout

D,i + q2dinD,id
in
D,j +

∑
k,l

(gikglj + gkigjl)(q(1− q)1j=k1i=l + q2)

+q(1− q)1i=jdin
D,i + q2din

D,id
in
D,j − q2dD,idD,j

or

σ2
ij = q(1− q)1i=jdD,i + q2dout

D,id
out
D,j + q2dout

D,id
in
D,j + q2din

D,id
out
D,j + q2din

D,id
in
D,j − q2dD,idD,j

= q(1− q)(gij + gji) + q(1− q)1i=jdD,i.

Thus, if i 6= j

σ2
ij = q(1− q)(gij + gji),
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and if i = j

σ2
ii = q(1− q)dD,i.

It is clear from (6.17) that if dD,i � 2 ≥ gij+gji, dC,i can be approximated to be independent,

and hence, jointly Gaussian. That is

dC ∼ N (qdD, q(1− q)diag(dD)), (6.19)

where dC =

[
dC,1 · · · dC,N

]T
and dD =

[
dD,1 · · · dD,N

]T
.

Probability of Stability

The probability that the stability condition associated with node i is satisfied can be ap-

proximated as

P (dC,i ≥ φi) ≈ Q

(
φi − µi
σii

)
, (6.20)

where

φi = η
√
ρ1dD,i −

η

c
, (6.21)

and

Q(x) =
1√
2π

∫ +∞

x

e−
y2

2 dy. (6.22)

Since the degrees are almost independent, the probability of stability with random commu-
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nications network can be approximated as

Pstab ≈ ΠN
i=1Q

(
φi − µi
σi

)
= ΠN

i=1Q

(
η
√
ρ1 − q√
q(1− q)

√
dD,i −

η√
q(1− q)

1

c
√
dD,i

)

= ΠN
i=1Q

(
η
√
ρ1dD,i − η

c
− qdD,i√

q(1− q)dD,i

)
. (6.23)

Erdös-Rényi Dynamics Network

So far we have assumed that the dynamics network is arbitrary and the communications

network is random. Now, let us assume that the dynamics network is also a directed Erdös-

Rényi random network [23] with randomness parameter p. Then, for large N , we can assume

that dD,i ≈ 2pN [23]. Thus, (6.23) becomes

Pstab ≈ QN

(
2η
√
ρ1pN − η

c
− 2pqN√

2pq(1− q)N

)
. (6.24)

If in (6.11), we use the approximations dD,i ≈ 2pN and dC,i ≈ qdD,i = 2pqN , which are valid

for large N , the stability condition for a random network with a random communications

network reduces to

q > η
√
ρ1 −

η

2cpN
. (6.25)

We can now use this result to study asymptotic network stability trends.

We can see that as the network size, N , increases and c is kept constant, the last term

on the right hand side of (6.25) decreases. Since η
√
ρ1 > 1, a random network tends to

become unstable if the ratio of number of links in the communications network to that
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of the dynamics network, q, is kept fixed. To sustain the stability of the network as the

network size grows under the aforementioned condition, either the coupling strength, c, or

the randomness parameter of the dynamics network, p, must decrease, at least as 1/N . This

means that a larger dynamics network must either be more weakly (c = O(1/N)), or more

sparsely (p = O(1/N)), connected, if it is to be stable. Either way, to keep the overall

network stable with a fixed q, the overall effect of all other nodes on a particular node, must

not be allowed to increase. In the case of fixed network size, to have a stable network as

p increases, coupling strength must decrease at least as 1/p. This is intuitively justifiable

since the mean and variance of dynamics at each node have linear and quadratic relations

with both coupling strength and randomness parameter, respectively.

For reasonably large pN , due to multiplication of large number of terms in (6.24), the

probability of stability has a sharp roll-off as a function of q. To quantify where these sharp

transitions take place, we can look at

qc = P−1
stab

(
1

2

)
.

From (6.24), we can calculate qc as

qc =
2η(2c

√
ρ1pN − 1) + cz2

2c(2pN + z2)
− z

2(2pN + z2)

√
z2 + 4η

(
2
√
ρ1pN −

1

c

)
−

2η2(2c
√
ρ1pN − 1)2

c2pN

(6.26)

where z = Q−1
(

2−
1
N

)
.
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Numerical Results

In this section, we verify the validity of our results with a numerical example. Here, we

consider a dynamics network with

A =

 0 1

5
2

0

 ,
and

B =

 0

1
4

 .
These nodes are assumed to be coupled by

H =

 0 1
4

1 0

 .

By setting the desired poles of isolated nodes at −1, −2, and using the method proposed

in [91], we can calculate the local feedback gain as

K = −
[

18 12

]
.

The solution of problem (6.6) is

L? = −
[

4 0

]
,
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and the solution of the Lyapunov equation is

P =

 1 −1
2

−1
2

1
2

 .
Consequently, we have ρ1 = 0.841 and ρ2 = 0.1.
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Figure 6.1: Probability of stability versus randomness parameter q, in the ring configuration

of different coordination numbers, k, for dynamics network and N = 100, and coupling

strength of c = 0.05.

Fig. 6.1 shows the probability of the stability as a function of conditional randomness

parameter of the communications network, q. Here the dynamics network is assumed to
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have a ring configuration with coordination number k, i.e., every vertex is connected to 2k

of its closest vertices in the ring. As it can be seen the approximations are reasonable. More

interestingly, they are closer to simulations for larger coordination numbers. The reason

for this phenomenon is that the average number of links in the communications network is

2kq, and for higher k the Gaussian approximation for the node degrees is more accurate.

Also, Fig. 6.1 shows that as number of links in the dynamics network increases, so does

the average number of links in the communications network required to stabilize the overall

network. This is also predicted by (6.23).
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Figure 6.2: Probability of stability as a function of randomness parameter q of the commu-

nications network for different network size, N and coupling strength, c.
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Figure 6.3: Probability of stability versus network size, N , in Erdös-Rényi network for

different values of c and q.

The probability of stability for large Erdös-Rényi dynamics network with randomness pa-

rameter of p = 0.25 is shown in Fig. 6.2. As it can be observed, the approximations in (6.23)

and (6.24) are reasonable in comparison to the simulation results.

Fig. 6.3 depicts the probability of stability as a function of network size N for different

values of q and c. We see that for weaker couplings and higher randomness values for the

communications network, the overall network tends to be stabilized for larger network sizes.
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Figure 6.4: Probability of stability versus coupling strength, c, in Erdös-Rényi dynamics

network for different q and network size N = 100.

This behavior can be predicted from (6.25), which can be rewritten as

N <
η

2cp(η
√
ρ1 − q)

. (6.27)

Thus, weaker couplings or richer connected communications network makes the network

more stable.

Fig. 6.4 shows the probability of stability as a function of coupling strength, c, in an Erdös-

Rényi dynamics network for different randomness values of communications network, q. As
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it can be seen, a larger q results in stabilization of the stronger connected networks.

Conclusion

We have presented a network stability condition for an arbitrary dynamics network with

identical plants, controllers and couplings. Using this condition, we have derived approximate

probability of stability, assuming that the communications network is a random sub-network

of the dynamics network. We have further studied our network stability condition and

probability of stability for the case where the dynamics network is an Erdös-Rényi network.

Using these result, we have studied the asymptotic trends in stability of the network, when

network parameters take extreme values. A numerical example shows that our analytical

results have reasonable accuracy.

128



CHAPTER 7: SWITCHING CONTROL OF LINEAR

TIME-VARYING NETWORKED SYSTEMS WITH SPARSE

OBSERVER-CONTROLLER NETWORKS

In this chapter, a set of stability conditions for linear time-varying networked control systems

with arbitrary topologies using a piecewise quadratic switching stabilization approach with

multiple quadratic Lyapunov functions is provided. This set of stability conditions is used to

provide a novel iterative low-complexity algorithm that must be updated and optimized in

discrete time for the design of a sparse observer-controller network, for a given plant network

with an arbitrary topology. The distributed observers is employed by utilizing the output of

other subsystems to improve the stability of each observer. To avoid unbounded growth of

controller and observer gains,the bounds on the norms of the gains are imposed.

Introduction

Networked control systems (NCS) have been the subject of much interest due to the fact that

they have a wide range of applications, including electric power networks, transportation net-

works, factory automation, tele-operations and sensor and actuator networks, and the fact

that they pose interesting unsolved problems in control theory. A centralized architecture is

traditionally employed to control spatially distributed systems in which the components were

connected via dedicated hard-wired links carrying the information from the sensors to a cen-

tral location, where control signals were computed and sent to the actuators. However, the

centralized architecture is not scalable. Moreover, it does not meet many new requirements

such as modularity, resiliency, integrated diagnostics, and efficient maintenance. Distributed
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or decentralized networked control systems meet these requirements through reduction in

the required communications and distribution of the computational power across the sys-

tem. Consequently, these approaches can be scalable. More recently, the distributed and

decentralized architectures have been made feasible due to relative maturity in communica-

tion and computing technologies, enabling their convergence with control.

In general, a NCS consists of a number of subsystems, each comprised of a plant and a

controller, coupled together in some network topology. The interaction of plants with one

another forms the plant network. Measurements and control signals are communicated using

the control network, a.k.a. information, communications, or feedback network (Fig. 7.1).

This generalization covers the full range of architectures from decentralized, when the con-

trol network has no links, to centralized, when the control network is complete (i.e. all

information is available to all controllers). For each architecture both the dynamics of each

subsystem and the topology of plant network, play important roles in the stability of the

entire interconnected system.

A key aspect in designing a particular NCS is the amount of information exchange. Typically,

the all-to-all information exchange required for a centralized architecture is not feasible due

to cost and complexity of the required communication. On the other end of the spectrum,

ideally, one would have a decentralized controller [94] [95] [96]. It can be shown that even

if each subsystem is asymptotically stable in isolation, the entire interconnected system

may be unstable. Therefore, a decentralized architecture is usually inadequate to satisfy

the performance requirements or even to stabilize the plant network. Thus, often the best

solution is a distributed architecture, where some information is exchanged with neighbors

[97]- [101].
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Figure 7.1: A Networked Control System (NCS)

The networked control literature can be classified into two main groups. The first group as

illustrated in [102]- [76] studies different factors, including bandwidth, packet dropout and

disorder, data quantization, time-varying sampling intervals, and time delays, all of which

are imposed by imperfections and limitations of communication channels and can degrade

the system performance or even destabilize the system. The second group, which this paper

also falls into, considers the topological network effects, and investigates how the topology of

the plant network affects the entire interconnected system stability and other performance

metrics.

The problem of imposing a priori constraints on the controller has been arisen in previ-

ous articles on decentralized and distributed control of a general linear time-invariant (LTI)

system. These constraints often are called the information constraints, and specify what in-

formation is available to which controller and manifests itself as sparsity or delay constraints.

In [110]- [113], the authors have shown the convexification problem of finding optimal con-

troller in order to minimize a norm of the closed loop map under a structural condition,
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namely quadratic invariance, which is an algebraic condition relating the plant and the con-

straint set. The works in [114, 115] have shown similar results, conditioned on the plant

network being a partially ordered set (poset) which is based on poset information structure

(acyclic information flow) among subsystems. This constraint is closely related to quadratic

invariance, however, it can lead to more computationally efficient solutions and is applicable

to a more general class of problems.

While these results are elegant and important, they impose restrictions on the topology of

the plant network of LTI systems. The key question in the design of control network for

NCSs with arbitrary plant network topologies is one of topological information requirements

and can be framed as the question: Which subsystems should be given the input and output

information of a particular subsystem, in order for the local controllers to be able to satisfy

a global control objective? This is a critical question in the design of massively distributed

control systems, such as the Smart Grid [116]- [119].

In this paper, we extend our LTI NCS results [120] by considering a linear time-varying

(LTV) NCS with an arbitrary topology and provide a methodology to design an iterative

sparse observer and controller network which updates in discrete time. As in our previous

work [120] here we also assume that the communication links do not have any bandwidth

limitation, data loss or induced network delays.

We first use multiple quadratic Lyapunov functions to develop a set of stability conditions

that guarantee global asymptotic stability using the piecewise quadratic switching stabi-

lization method [121]- [124]. We then use these stability conditions to design an iterative

sparse observer-controller network for a given plant network with an arbitrary topology. We

take a broader look at the topological information requirements by taking into account the

distributed state estimation problem, which is generally neglected in existing work.
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Notation and Problem Definition

Notation

The set of real (column) n-vectors is denoted by Rn and the set of real m × n matrices

is denoted by Rm×n. We use R+ and Z+ to denote the sets of non-negative real and non-

negative integers respectively. Matrices and vectors are denoted by capital and lower-case

bold letters, respectively. Generalized matrix inequality, ≺, is defined by the positive definite

cone between symmetric matrices. The Euclidean (l2) vector norm and the induced l2 matrix

norm are represented by ‖·‖ and the Frobenius matrix norm is denoted by ‖·‖F . By λmin(·),

λmax(·) and σmax(·) we denote the smallest and largest eigenvalue and the largest singular

value of the argument, respectively. The Schur (Hadamard) product is represented by ◦ and

the m × n unit matrix consisting of all ones is denoted by 1m×n. We let N = {1, . . . , N}

and Ni = N − {i}. The indicator function of x is represented by 1x and column-stacking

operator is denoted by vec(·).

In the following subsection, we address the problem statement by employing the same

methodology similar to that of [120].

Problem Definition

Consider a network of N coupled LTV subsystems, each consisting of a plant and a controller.

The state of the ith plant, xi(t) ∈ Rni , is governed by

ẋi(t) = Ai(t)xi(t) + Bi(t)ui(t) +
∑
j∈Ni

Hij(t)xj(t)

yi(t) = Ci(t)xi(t), (7.1)
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where ui(t) ∈ Rmi and yi(t) ∈ Rri are input and output of the ith subsystem, and Ai(t),

Bi(t), Ci(t) and Hij(t) are known matrices. We assume that subsystem (7.1) is both com-

pletely controllable and completely observable for all i. We consider an arbitrary directed

network without self-loops. That is, Hii(t) ≡ 0, and Hij(t) and Hji(t) are not necessarily

equal. We look for a distributed stabilizing observer-based controller of the form

˙̂xi(t) = Ai(t)x̂i(t) + Bi(t)ui(t) +
∑
j∈Ni

Hij(t)x̂j(t) + Mi(t)(Ci(t)x̂i(t)− yi(t))

+
∑
j∈Ni

Oij(t)(Cj(t)x̂j(t)− yj(t)),

ui(t) = Ki(t)x̂i(t) +
∑
j∈Ni

Lij(t)x̂j(t), (7.2)

where x̂i(t) is the estimate of xi(t), Ki(t) and Lij(t) are local and coupling controller gains,

and Mi(t) and Oij(t) are local and coupling observer gains, respectively. Note that to

estimate xi(t), we not only use output of subsystem i, but also outputs of (potentially)

all other subsystems. This is dual to the concept of distributed control. Our objective is

to find distributed observer-based control law (7.2), using feedback from (potentially) all

other subsystems to stabilize the plant network with a sparse control network. That is,

we aim to find Ki(t),Mi(t),Lij(t) and Oij(t), such that the entire interconnected system is

globally asymptotically stable and that the number of links in the control network (number

of non-zero coupling gains Lij(t) and Oij(t)) is minimized. We also impose constraints

‖Ki(t)‖ ≤ κi, (7.3a)

‖Mi(t)‖ ≤ µi, (7.3b)

‖Lij(t)‖ ≤ ιij, (7.3c)

‖Oij(t)‖ ≤ ωij, (7.3d)
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to avoid undesirably large gains.

Defining x(t) = vec(xi(t)), u(t) = vec(ui(t)), y(t) = vec(yi(t)), (7.1) reduces to

ẋ(t) = A(t)x(t) + B(t)u(t) + H(t)x(t),

y(t) = C(t)x(t), (7.4)

where A(t) = diag(Ai(t)), B(t) = diag(Bi(t)), C(t) = diag(Ci(t)) and H(t) = [Hij(t)].

Moreover, (7.2) yields

˙̂x(t) = A(t)x̂(t) + B(t)u(t) + H(t)x̂(t) + M(t)(C(t)x̂(t)− y(t)) + O(t)(C(t)x̂(t)− y(t)),

u(t) = K(t)x̂(t) + L(t)x̂(t), (7.5)

where K(t) = diag(Ki(t)), M(t) = diag(Mi(t)), L(t) = [Lij(t)], with Lii(t) ≡ 0 and O(t) =

[Oij(t)], with Oii(t) ≡ 0.

Defining error e(t) , x̂(t)− x(t) reduces (7.4) and (7.5) to

ẋ(t) = [A(t) + H(t) + B(t)(K(t) + L(t))] x(t) + B(t)(K(t) + L(t))e(t), (7.6)

ė(t) = [A(t) + H(t) + (M(t) + O(t))C(t)] e(t). (7.7)

This is an LTV networked linear cascade dynamical system with the equilibrium point

(x, e) ≡ (0,0).

Assumption 3. Matrices A(t),B(t),C(t) and H(t) are continuously differentiable and have
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bounded derivatives:

‖Ȧ(t)‖ ≤ a, ‖Ḃ(t)‖ ≤ b, ‖Ċ(t)‖ ≤ c, ‖Ḣ(t)‖ ≤ h. (7.8)

Under Assumption 3, for all t, t′ ∈ R+ we have [125]

‖A(t)−A(t′)‖ ≤ a|t− t′|, ‖B(t)−B(t′)‖ ≤ b|t− t′|,

‖C(t)−C(t′)‖ ≤ c|t− t′|, ‖H(t)−H(t′)‖ ≤ h|t− t′|. (7.9)

Piecewise Quadratic Switching Stabilization

As the nature of problem is time-varying, and analytical design approaches are intractable

(due to the generality of the network topology), one needs to take a numerical design ap-

proach. Thus, the design must be updated and optimized at discrete times. Consider the

discrete series 0 = t0 < t1 < · · · < tk < · · · . If a sample-and-hold control approach over

intervals [tk, tk+1) is used, system (7.6) and (7.7) will become

ẋ(t) = [A(t) + H(t) + B(t)(Kk + Lk)] x(t) + B(t)(Kk + Lk)e(t), (7.10)

ė(t) = [A(t) + H(t) + (Mk + Ok)C(t)] e(t), (7.11)

for t ∈ [tk, tk+1).

Assumption 4. For every k ∈ Z+, there exists constant Tmin > 0 such that

Tk , tk+1 − tk ≥ Tmin. (7.12)
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Later, in Corollary 5 we will find a lower bound for Tmin.

Theorem 1. The equilibrium point, x ≡ 0, of the system

ẋ(t) = [A(t) + H(t) + B(t)(Kk + Lk)] x(t), (7.13)

is globally asymptotically stable, if for every k ∈ Z+ and t ∈ [tk, tk+1), there exist Kk, Lk,

Pk, βi > 0, and εi > 0 such that

2β ◦Pk + [A(t) + H(t) + B(t)(Kk + Lk)]
T Pk

+Pk [A(t) + H(t) + B(t)(Kk + Lk)] � 0 (7.14a)

Pk − ε � 0 (7.14b)

Pk−1 −Pk � 0 (7.14c)

are satisfied for all k ≥ 1 and (7.14a), (7.14b) are satisfied for k = 0, where Pk = diag(Pk,i),

β = diag (βi1
ni×ni), and ε = diag(εiIni).

Proof. Consider multiple quadratic Lyapunov functions [124] Vk(x(t)) = xT (t)Pkx(t), t ∈

[tk, tk+1), and let V (x(t)) = Vk(x(t)) when t ∈ [tk, tk+1). Since Pk � 0, to show that

x(t)→ 0, it suffices to show that V (x(t))→ 0. Condition (7.14a) yields
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V̇k(x(t)) = xT (t) [A(t) + H(t) + B(t)(Kk + Lk)]
T Pkx(t)

+ xT (t)Pk [A(t) + H(t) + B(t)(Kk + Lk)] x(t)

≤ − 2xT (t)β ◦Pkx(t)

= − 2
∑
i∈N

βix
T
i (t)Pk,ixi(t)

≤ − 2β
∑
i∈N

xTi (t)Pk,ixi(t)

= − 2βVk(x(t)), (7.15)

for t ∈ [tk, tk+1), where β = mini βi. This means that V̇ (x(t)) = V̇k(x(t)) is negative definite

over t ∈ [tk, tk+1). Moreover, since x(t) is continuous, condition (7.14c) implies that V (x(t))

is decreasing over all t. Thus, since V (x(t)) is positive definite, if we show that its samples,

V (x(tk)) = Vk(x(tk)), converge to zero we have V (x(t)) → 0 as well. Since the sequence

Vk(x(tk)) is monotonically decreasing and positive definite, it converges to some value v ≥ 0.

To show that v = 0, first we note that due to the comparison lemma [125], (7.15) yields

Vk(x(t)) ≤ Vk(x(tk))e
−2β(t−tk), t ∈ [tk, tk+1). (7.16)
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Now, we can write

0 = v − v

= lim
k→∞

Vk+1(x(tk+1))− lim
k→∞

Vk(x(tk))

= lim
k→∞

[
Vk+1(x(tk+1))− Vk(x(t−k+1))

]
+ lim

k→∞

[
Vk(x(t−k+1))− Vk(x(tk))

]
= lim

k→∞

[
xT (tk+1) (Pk+1 −Pk) x(tk+1)

]
+ lim

k→∞

[
Vk(x(tk))

(
e−2β(t−k+1−tk) − 1

)]
≤ lim

k→∞

[
Vk(x(tk))

(
e−2β(t−k+1−tk) − 1

)]
≤ −

(
1− e−2βTmin

)
lim
k→∞

Vk(x(tk))

≤ −
(
1− e−2βTmin

)
lim
k→∞

[
λmin(Pk)‖x(tk)‖2

]
≤ − ε

(
1− e−2βTmin

)
lim
k→∞
‖x(tk)‖2

≤ 0, (7.17)

where ε = mini εi > 0. This implies that

ε
(
1− e−2βTmin

)
lim
k→∞
‖x(tk)‖2 = 0. (7.18)

which requires that limk→∞ x(tk) → 0, and limk→∞ Vk(x(tk)) → 0. In other words, the

system (7.13) is globally asymptotically stable.

Theorem 2. The equilibrium point of the system in (7.6) and (7.7), (x, e) ≡ (0,0), is

globally asymptotically stable, if for every k ∈ Z+ and t ∈ [tk, tk+1), there exist Kk, Lk, Pk,
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Mk, Ok, P̂k, βi > 0, and εi > 0 such that

2β ◦Pk + [A(t) + H(t) + B(t)(Kk + Lk)]
T Pk

+Pk [A(t) + H(t) + B(t)(Kk + Lk)] � 0 (7.19a)

2β ◦ P̂k + [A(t) + H(t) + (Mk + Ok)C(t)]T P̂k

+P̂k [A(t) + H(t) + (Mk + Ok)C(t)] � 0 (7.19b)

Pk − ε � 0 (7.19c)

P̂k − ε � 0 (7.19d)

Pk−1 −Pk � 0 (7.19e)

P̂k−1 − P̂k � 0 (7.19f)

are satisfied for all k ≥ 1 and (7.19a) to (7.19d) are satisfied for k = 0, where Pk =

diag(Pk,i), P̂k = diag(P̂k,i), β = diag (βi1
ni×ni), and ε = diag(εiIni).

Proof. By Theorem 1, conditions (7.19a), (7.19c) and (7.19e) imply that the unforced sys-

tem (7.10) is globally asymptotically stable and, consequently, (7.10) is input-to-state sta-

ble. Similarly, (7.19b), (7.19d) and (7.19f) guarantee global asymptotical stability of (7.11).

Hence the equilibrium point of cascaded dynamical system (7.10) and (7.11), (x, e) ≡ (0,0),

is globally asymptotically stable [125].

We note that conditions (7.19a) and (7.19b) are the requirement that the energy in the

system is decreasing in every interval while conditions (7.19c) and (7.19d) guarantee posi-

tive definiteness of multiple quadratic Lyapunov functions. Conditions (7.19e) and (7.19f)

are necessary to guarantee multiple quadratic Lyapunov functions form a non-increasing

sequence when entering the next interval.
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Theorem 2 provides a set of stability conditions based on which the controllers and observers

can be designed. However, these conditions are not convex. This is important since a solution

must be found iteratively at each tk. The following theorem provides a set of convex, albeit

more conservative, stability conditions. It also incorporates bounds (7.3).

Theorem 3. System (7.1) with controller (7.2) is globally asymptotically stable, and bounds

(7.3) are satisfied, if the following convex constraints have a feasible point, such that

Fk + FT
k + γIn � 0 (7.20a)

F̂k + F̂T
k + γIn � 0 (7.20b)

ε−1 � Zk � 0 (7.20c)

P̂k − ε � 0 (7.20d)

Zk − Zk−1 � 0 (7.20e)

P̂k−1 − P̂k � 0 (7.20f)

κiλmin(Zk,i)− σmax(Wk,i) ≥ 0 (7.20g)

ιijλmin(Zk,j)− σmax(Yk,ij) ≥ 0 (7.20h)

µiλmin(P̂k,i)− σmax(Ŵk,i) ≥ 0 (7.20i)

ωijλmin(P̂k,i)− σmax(Ŷk,ij) ≥ 0 (7.20j)

are satisfied for all i, j ∈ N , γ > 0, k ≥ 1 and (7.20a)-(7.20d) and (7.20g)-(7.20j) are

satisfied for k = 0, where

Fk = (Ak + Hk)Zk + Bk(Wk + Yk) + β ◦ Zk,

F̂k = P̂k(Ak + Hk) + (Ŵk + Ŷk)Ck + β ◦ P̂k,

Zk = diag(Zk,i), P̂k = diag(P̂k,i), Wk = diag(Wk,i), Ŵk = diag(Ŵk,i), Yk = [Yk,ij] and
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Ŷk = [Ŷk,ij] with Yk,ii = Ŷk,ii ≡ 0.

Furthermore, if Z?
k,i, P̂

?
k,i,W

?
k,i,Ŵ

?
k,i,Y

?
k,ij, Ŷ?

k,ij is a solution of (7.20), the controller and

observer gains are

K?
k,i = W?

k,iZ
? −1
k,i , L?

k,ij = Y?
k,ijZ

? −1
k,j ,

M?
k,i = P̂? −1

k,i Ŵ?
k,i, O?

k,ij = P̂? −1
k,i Ŷ?

k,ij,
(7.21)

for all t ∈ [tk, tk+1) and the next switching time is tk+1 = tk + Tk where

Tk =
1

2
min

{
−λmax(Fk + FT

k )

(a+ h)‖Zk‖+ b‖Wk + Yk‖
,

−λmax(F̂k + F̂T
k )

(a+ h)‖P̂k‖+ c‖Ŵk + Ŷk‖

}
. (7.22)

Proof. We will show that the conditions of Theorem 2, namely (7.19a)-(7.19f), are satisfied

if (7.20a)-(7.20f) hold. Defining new variables Zk , P−1
k , Wk , KkP

−1
k , and Yk , LkP

−1
k ,

reveals that (7.19a), (7.19c) and (7.19e) are equivalent to

2β ◦ Zk + [(A(t) + H(t))Zk + B(t)(Wk + Yk)]
T

+ [(A(t) + H(t))Zk + B(t)(Wk + Yk)] � 0, (7.23a)

ε−1 � Zk � 0, (7.23b)

Zk − Zk−1 � 0, (7.23c)

Clearly, (7.23b) and (7.23c) are (7.20c) and (7.20e). To show that (7.23a) yields (7.20a), we

first note that

(A(t) + H(t))Zk =(Ak + Hk)Zk + (4A(t) +4H(t))Zk

�(Ak + Hk)Zk + ‖(4A(t) +4H(t))Zk‖ In

�(Ak + Hk)Zk + Tk(a+ h)‖Zk‖In, (7.24)
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where 4A(t) = A(t) − Ak and 4H(t) = H(t) − Hk, and the last inequality is due to

Assumption 3. Similarly, we can show that

B(t)(Wk + Yk) �Bk(Wk + Yk) + Tkb‖Wk + Yk‖In. (7.25)

Thus, the left hand side of (7.23a) can be upper bounded by

Fk + FT
k + 2Tk[(a+ h)‖Zk‖+ b‖Wk + Yk‖]In. (7.26)

In other words, if (7.26) is negative semidefinite, (7.19a) holds. Upper bound (7.26) is

negative semidefinite, if there exist γ > 0 such that

Fk + FT
k + γIn � 0, (7.27)

which is (7.20a) and

Tk ≤
1

2

−λmax(Fk + FT
k )

(a+ h)‖Zk‖+ b‖Wk + Yk‖
, (7.28)

which is guaranteed by (7.22). A similar argument, omitted for brevity, shows that (7.19b),

(7.19d) and (7.19f) are satisfied if (7.20b), (7.20d), (7.20f) and (7.22) hold.

For (7.3a) we note that we can upper bound the norm of Ki as

‖Kk,i‖ = ‖Wk,iZ
−1
k,i‖

≤ ‖Wk,i‖‖Z−1
k,i‖

= σmax(Wk,i)λmax(Z−1
k,i )

=
σmax(Wk,i)

λmin(Zk,i)
. (7.29)
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Thus, forcing (7.3a) will be forced if

‖Kk,i‖ ≤
σmax(Wk,i)

λmin(Zk,i)
≤ κi, (7.30)

or equivalently κiλmin(Zk,i)− σmax(Wk,i) ≥ 0, which is (7.20g). Similarly, (7.3b)-(7.3d) are

forced if (7.20h)-(7.20j) hold.

Finally, we note that the original variables can then be found from Pk = Z−1
k , Kk = WkZ

−1
k

and Lk = YkZ
−1
k .

Corollary 5. If the conditions of Theorem 3 hold, a lower bound for Tmin in Assumption 2

is

Tmin = min
k
Tk ≥

1

2
min

{
εγ

a+ h+ b (κ+ ι)
,

1

‖P̂0‖
γ

a+ h+ c (µ+ ω)

}
(7.31)

where ε = mini εi > 0, γ > 0 are the margins in inequalities (7.20a) and (7.20b) and

κ =
∑

i∈N

√
min{mi, ni}κi, ι =

∑
i,j∈N

√
min{mi, nj}ιij, µ =

∑
i∈N

√
min{ni, ri}µi and

ω =
∑

i,j∈N
√

min{ni, rj}ωij.
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Proof. Equation (7.20a) gives us λmax(Fk + FT
k ) ≤ −γ. From (7.28), we have

Tk = − 1

2

λmax(Fk + FT
k )

(a+ h)‖Zk‖+ b‖Wk + Yk‖

= − 1

2

λmax(Fk + FT
k )

(a+ h)‖Zk‖+ b‖KkZk + LkZk‖

≥ 1

2‖Zk‖
γ

a+ h+ b‖Kk + Lk‖

≥ 1

2

εγ

a+ h+ b‖Kk + Lk‖F

≥ 1

2

εγ

a+ h+ b (‖Kk‖F + ‖Lk‖F )

≥ 1

2

εγ

a+ h+ b (κ+ ι)
. (7.32)

The last four inequalities are satisfied because for any D ∈ Rm×n, the Frobenius and Euclid-

ian norms satisfy ‖D‖ ≤ ‖D‖F ≤
√

min{m,n}‖D‖.

Similarly, we have

Tk = − 1

2

λmax(F̂k + F̂T
k )

(a+ h)‖P̂k‖+ c‖Ŵk + Ŷk‖

= − 1

2

λmax(F̂k + F̂T
k )

(a+ h)‖P̂k‖+ c‖P̂kMk + P̂kOk‖

≥ 1

2‖P̂k‖
γ

a+ h+ c‖Mk + Ok‖

≥ 1

2‖P̂0‖
γ

a+ h+ c‖Mk + Ok‖F

≥ 1

2‖P̂0‖
γ

a+ h+ c (µ+ ω)
. (7.33)
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Sparse Control Network Design

To design a sparse control network, we seek a set of Lk,ij and Ok,ij that guarantee stability,

with a small number links. Note that if link ij is used it can carry both Lk,ijx̂j(t) and

Ok,ijyj(t). Thus, the use of a link from node i to node j at time k can be encoded in binary

variables αk,ij ∈ {0, 1}. Then we can write Lk,ij = αk,ijL
?
k,ij and Ok,ij = αk,ijO

?
k,ij, where

L?
k,ij and O?

k,ij are the optimal link gains, when the link is used. In aggregate, these can be

written as Lk = αk ◦ L?
k and Ok = α̂k ◦O?

k, where αk = [αk,ij1
mi×nj ] and α̂k = [αk,ij1

ni×rj ]

with αk,ii ≡ 0.

Now, with the stability conditions provided in (7.20) in hand, our objective is to design

a control network with minimum number of links that satisfies stability conditions (7.20).

Minimizing the number of communication links is equivalent to minimizing the number of

αk,ij = 1, or in other words, minimizing the sum of αk,ij subject to constraints in (7.20).

Our problem can therefore be formulated as the following convex mixed-binary program:

minimize
∑
i,j∈N

αk,ij (7.34a)

subject to (7.20) (7.34b)

αk,ij ∈ {0, 1} (7.34c)

where Yk = αk ◦Xk and Ŷk = α̂k ◦ X̂k.

The complexity of solving problem (7.34) is important, since it has to be solved in each

iteration. In general a mixed-binary program is NP-hard. In the worst case, one has to solve

O(2N
2
) convex problems, carrying an exhaustive search on the binary variables. While a

variety of exact methods for convex mixed-binary programs are available [126], their com-
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putational complexity is prohibitive for large networks, specially since the calculation is

to be repeated periodically. Here, we propose a simple suboptimal relaxation-thresholding

approach which should be carried out in each iteration:

1. Set k ← 0 and t0 ← 0.

2. Find a feasible point for (7.34) excluding (7.20e) and (7.20f) to find the initial conditions

Z0 and P̂0.

3. Initialize αk,ij ← 1 for all i, j ∈ N , i 6= j.

4. Find a feasible point for (7.34) to yield Zk,i,Wk,i,Xk,ij,P̂k,i,Ŵk,i and X̂k,ij. If a feasible

solution is found, α†k,ij ← αk,ij. Otherwise go to step 7, unless the problem is infeasible

at the first iteration, in which case there is no solution and the design procedure is

terminated.

5. Solve (7.34) with (7.34c) relaxed to αk,ij ∈ [0, 1] to obtain solution α
(r)
k,ij satisfying

(7.20a) and (7.20b) and Zk,i,Wk,i,Xk,ij,P̂k,i,Ŵk,i,X̂k,ij are those found in step 4.

6. If all α
(r)
k,ij = 0, set α†k,ij ← 0 and go to step 7. Otherwise, set αk,ij corresponding to

the smallest non-zero α
(r)
k,ij to zero and return to step 4.

7. Return α†k,ij.

8. Calculate the next switching time Tk from (7.22).

Note that with the above design procedure, in the worst case, one has to solve O(N2) convex

problems in each iteration, since it can be solved by using a linear search in a sorted set

{α(r)
k,ij}.

To further simplify the procedure we can substitute steps 6 and 7 above with
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6. Solve

maximize
m,l

τk = α
(r)
k,ml

subject to αk,ij = 1
α
(r)
k,ij≥τk

, (7.20a) and (7.20b).
(7.35)

7. Return α†k,ij = 1
α
(r)
k,ij>τ

?
k
, where τ ?k is the solution of (7.35).

We note that the maximum number of convex problems that should be solved in (7.35) in

each iteration is only O(logN), since it can be solved by a binary search on τk in a sorted

set {α(r)
k,ij}. Of course, this reduction in complexity is at the price of a more conservative

solution.

Numerical Example

Consider the system shown in Fig. 7.2, where three inverted pendulums are mounted on

coupled carts. Linearizing equations of motions yield [127]

Ai(t) =



0 1 0 0

Mi+m
Mil

g 0 ki(t)
Mil

ci+bi(t)
Mil

0 0 0 1

−m
Mi
g 0 −ki(t)

Mi

−ci−bi(t)
Mi


,Hij(t) =



0 0 0 0

0 0
−kij(t)
Mil

−bij(t)
Mil

0 0 0 0

0 0
kij(t)

Mi

bij(t)

Mi


,

Bi(t) =

[
0 −1

Mil
0 1

Mi

]T
,Ci(t) =

 1 0 0 0

0 0 1 0

 , (7.36)

for (i, j) = (1, 2), (2, 1), (2, 3), (3, 2), where ki(t) =
∑

j∈Ni kij(t) and bi(t) =
∑

j∈Ni bij(t).

Here ci, bij(t) = bji(t), and kij(t) = kji(t) are friction, damper and spring coefficients,

respectively, and we have assumed the moment of inertia of the pendulums to be zero.
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Figure 7.2: Network of three coupled inverted pendulums

Since the subsystems are controllable and observable, we can use the optimization problem

(7.34) to design distributed observers and controllers that stabilize the entire network with

small number of links in the control network. As design criteria, we assume bounds on the

norm of local gains are κ1 = κ2 = 280, κ3 = 480 and µi = 40 and bounds on the norms of

coupling gains are ιij = 20 and ωij = 10 and the numerical system parameters are M1 = 5,

M2 = 3, M3 = 7, m = 1, g = 10, l = 1, kij(t) = 1 + 0.5 cos(t), bij(t) = 1 + 0.5 sin(t), c1 = 4,

c2 = 2 and c3 = 1. All subsystem matrices are continuously differentiable uniformly bounded

with a = 0.48, h = 0.34 and b = c = 0. Hence, Assumption 1 is satisfied. We set γ = 0.2,

βi = 0.01 and εi = 0.05 for all i.

The simulation results are presented in Fig. 7.3(a) to Fig. 7.4(d) for t = [0, 10π] seconds

where to solve (7.34), we used our proposed simple suboptimal relaxation-thresholding ap-

proach with linear search. To show that how this performs well (near optimal), we compare

the number of required links with the optimal exhaustive search on binary variables. Fig.

7.3(a) to 7.3(d) depict ‖Pk,i‖ and ‖P̂k,i‖ as a function of tk. We can see that, as expected

they converge as tk →∞. The convergence of ‖Pk,i‖ happens after only one time slot, while

‖P̂k,i‖ takes 5 time slots to converge. Fig. 7.3(e) and Fig. 7.3(f), depict ‖Kk,i‖ and ‖Mk,i‖,

which are the local controller and observer gains, respectively. Similarly, Fig. 7.4(a), and

Fig. 7.4(b) depict ‖Lk,ij‖ and ‖Ok,ij‖, which are the coupling controller and observer gains,
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respectively. We observe that whenever a link is not necessary, (i.e., αk,ij = 0), the link gain

is set to zero. Otherwise, it is assigned the optimal values L?
k,ij and O?

k,ij. We can see that

all local and coupling gains are limited as enforced in (7.3).

In Fig. 7.4(c), we plot number of required links in communications network versus tk for the

two cases: (i) proposed simple suboptimal relaxation-thresholding approach and (ii) optimal

exhaustive search on binary variables. The suboptimal approach performs very well and as

we expected, the optimal search gives better result at the price of more complexity. Fig.

7.4(d) presents the updating times, Tk versus tk. We see that the fewer number of links

indicates the shorter updating time Tk and whenever there is a change in the number of

required links, there also is a step change in the updating time Tk.

Concluding Remarks

We have provided an iterative design approach for distributed observer-based controllers that

stabilize a given linear time-varying networked control system with an arbitrary directed

topology. To measure states of each subsystem, we use the outputs of other subsystems

to improve stability of observer dynamics; this approach is the dual of the distributed con-

troller network. Our design approach is based on a set of stability conditions obtained using

the piecewise quadratic switching stabilization method with multiple quadratic Lyapunov

functions, which must be updated and optimized in discrete time and provides a sparse

observer-controller network that guarantees global asymptotic stability. Due to the assump-

tions made here to maintain tractability, the design has some degree of conservatism. Thus,

although the results provide us with significant insight into the problem of designing a sparse

observer-controller network, a gap still remains. Further quantification or reduction of this

gap will be quite valuable.
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We added a free variable to the stability inequalities to avoid spending the entire margin

in the stability criteria during the search for a sparse observer-controller network. Optimal

distribution of this margin among the inequalities to make the network robust without signif-

icantly growing the size of the observer-controller network is, however, unknown. Therefore,

further investigation of the tradeoff between the stability margin and the sparsity of the

observer-controller network will be interesting.

We believe that the results presented in this chapter provide a foundation for further progress

toward understanding these interesting and important problems.
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Figure 7.3: (a,b) Norm of Pk,i versus time, (c,d) Norm of P̂k,i versus time , (e, f) Norm of
local controller gains Kk,i and Mk,i versus time.
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CHAPTER 8: CONCLUSION

The contribution of this dissertation comes in three major categories. First, the stabil-

ity of synchronization in complex network of dynamical systems has been analyzed. Using

Lyapunov direct method, sufficient conditions on the stability of the synchronization state

for wide range of identical dynamical systems have been derived. With these conditions

which came in the form of master stability condition, the impact of topological effect of

the network, i.e., the connections, have been separated from the characteristic behavior of

the isolated dynamics of the node, i.e., local dynamics. This enabled the separate study of

the connection network and individual dynamics. This analysis unlike most of literatures

that have used negativeness of Lyapunov exponents as stability criteria as only necessary

condition for stability, produced sufficient global stability. With the very simple and quite

effective framework provided by this approach, a thorough analytical treatment of stability

in in networks of practical interests, namely, random networks and small-worlds, has been

given. The previous works were only based on extensive simulations. In a nutshell, chapter

2 addressed the following series of questions: I) What are the conditions under which the

network is guaranteed to have stable synchronous state? II) What are the conditions that

connection network should have to be synchronizable? III) In large complex networks of prac-

tical interests, i.e., random networks and small worlds, what would be the required statistical

characteristics of the substrate network to achieve the stable synchronization state?

Next in this category, in chapter 3, the study addressed the following questions: I)What would

be the sufficient conditions under which the network ’s error from nominal synchronization

state would be bounded and stable? II) What would be the upper bound of that error from

the nominal synchronization state? By removing the condition of absolute similarity of the

individual nodes, the bounded stability of the error from nominal synchronization trajectory
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in presence of mismatches has been analyzed. That is, it has been assumed that although the

nodes are similar but they are not identical. The extensive analytical treatment for random

networks and small-worlds has been conducted and novel results have been derived.

The next progress made by this study has been to address the problems in decentralized

control under more realistic condition on the controller gains. Questions such as I) Feasi-

bility: What is the minimum number of decentralized controllers to stabilize a network? II)

Achievability: which nodes should have controllers to achieve that minimum number of con-

trollers to have a stable synchronous state? These questions have been addressed in chapter

4. Although the problem of feasibility happened to be NP-Hard with respect to networks

size, a heuristic algorithm has been devised which under most circumstances approach the

optimum solution and has a complexity of network size order.

Chapter 5 has addressed the following questions in fast switching networks:I) what is the

conditions of stability for the network under the fast switching networks? II) what is the

minimum number of controllers to pin a network of fast switching oscillators? The answer

to the first question was proven to be simple: the conditions of stability is the same as

previous part of the study if applied to the time/ensemble average of the switching network.

The second question has been addressed with a tractable solution and the framework set

proved to be useful in the study of the communication networks with fast moving nodes.

Third front of contributions addressed the following questions in distributed control of the

networks in linear systems: I) what is the minimal order of communications network to

achieve stability in heterogeneous network of linear time varying systems with partially ob-

servable nodes? II) how these results scale for the large networks? These questions have been

addressed in chapter 6 and 7, respectively. By posing the problem as a convex problem, a

tractable solution have found for the distributed control networks. The scalability problem
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due to complexity of the general question has been addressed to linear time-invariant systems

as the network size grows unboundedly. The latter results gave insight to structural effect

of the networks and set a lower bound on the performance of the cyber network-design.
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