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Abstract. This paper is concerned with the global exponential synchronization for an array of
hybrid coupled neural networks with time-varying leakage delay, discrete and distributed delays.
Applying a novel Lyapunov functional and the property of outer coupling matrices of the neural
networks, sufficient conditions are obtained for the global exponential synchronization of the
system. The derived synchronization criteria are closely related with the time-varying delays and the
coupling structure of the networks. The maximal allowable upper bounds of the time-varying delays
can be obtained guaranteeing the global synchronization for the neural networks. The method we
adopt in this paper is different from the commonly used linear matrix inequality (LMI) technique,
and our synchronization conditions are new, which are easy to check in comparison with the
previously reported LMI-based ones. Some examples are given to show the effectiveness of the
obtained theoretical results.
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1 Introduction

Since small-world and scale-free complex networks were proposed in [6] and [43],
complex dynamical networks, which are a set of interconnected nodes with specific dy-
namics, have received increasing attention from various fields of science and engineering
such as, for example, the World Wide Web, electrical power grids, communication net-
works, the Internet, global economic markets, and so on. Many interesting behaviors have
been observed from complex dynamical networks, e.g., synchronization, consensus, self-
organization, and spatiotemporal chaos spiral waves. Synchronization, as an important
collective behavior of complex dynamical networks, has been widely investigated in the
last two decades (see, for example, [3, 7, 10, 26, 27, 32, 34, 35, 49, 51]).

∗This work was supported by the National Natural Science Foundation of China (11371368, 61305076), the
Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and the
Natural Science Foundation of Young Scientist of Hebei Province (A2013506012).

c© Vilnius University, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nonlinear Analysis: Modelling and Control

https://core.ac.uk/display/322857408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yankedu2011@163.com


58 Y. Du, R. Xu

Due to the complexity of neural networks, coupling of neurons should be taken into
account. Coupled neural networks (CNNs), as a special kind of complex networks, have
been found to exhibit more complicated and unpredictable behaviors than a single neural
network. Particularly, synchronization in an array of CNNs, which is one of the hot
research fields of complex networks, has been a challenging issue due to its potential
applications in many areas such as secure communication, information science, chaos
generator design, and harmonic oscillation generation. On the other hand, in the applica-
tions of neural networks, there exist unavoidably time delays due to the finite information
processing speed and the finite switching speed of amplifiers. It is well known that time
delay can cause oscillation and instability of neural networks. Therefore, various syn-
chronization criteria for CNNs with time delays have been investigated in the literature
[8, 9, 11, 12, 15, 19, 25, 28, 30, 31, 33, 36, 37, 38, 39, 40, 42, 45, 46, 47, 48, 50, 51, 52, 53] and
references therein. To mention a few representative works, the synchronization problems
for an array of neural networks with hybrid coupling and constant delay or interval time-
varying delay were investigated in [8,50]. In [31], the global exponential synchronization
was investigated for an array of asymmetric neural networks with time-varying delays and
nonlinear coupling. Cao and Li [9] presented cluster synchronization criteria for an array
of hybrid coupled neural networks with delay. Park et al. [30] obtained delay-dependent
synchronization conditions for coupled discrete-time neural networks with interval time-
varying delays in network coupling.

So far, very little attention has been paid to neural networks with time delay in leakage
(or “forgetting”) term (see [1,2,4,5,12,13,14,20,21,28,29]). This is due to some theoreti-
cal and technical difficulties. In fact, in electronic implementation of neural networks, the
self-decay process of neurons is not instantaneous. When a neuron disconnects from the
neural network and external inputs, it takes time to reset electrical potential to stationary
state. In order to describe the phenomena, Gopalsamy [16] studied the neural network
model with time delay in the stabilizing negative feedback term (i.e., leakage term), and
found that time delay in the leakage term has a tendency to destabilize a system. On
the other hand, it has been observed that neural networks usually have a spatial extent
due to the presence of a multitude of parallel pathways with a variety of axon sizes and
lengths. It is desired to model them by introducing continuously distributed delays over
a certain duration of time such that the distant past has less influence compared with the
recent behavior of the state (see [25, 39]). However, to the best of our knowledge, there
are no global exponential synchronization results about an array of hybrid coupled neural
networks with time-varying leakage delay, discrete and distributed delays.

In previous works, most of the synchronization criteria have been derived based on the
LMI method (see [8, 9, 12, 25, 28, 30, 31, 36, 39, 40, 41, 45, 46, 47, 50, 52]). Although inter-
esting from the theoretical viewpoint, the LMI method would bring some slack variables
and the presence of too many slack variables increases computation burden and restricts
applications of the synchronization conditions. In addition, the synchronization criteria
for CNNs based on the LMI method are usually composed of C2

N LMIs (see [12,31,50]),
where N is the number of coupled nodes, and C2

N is the combinatorial number. Thus, it
involves a large number of calculations. In order to avoid the heavy workload to verify
the synchronization conditions based on LMI method, in this paper, another effective
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method will be used to discuss synchronization of CNNs with time delays. This approach
is based on the work of Hajnal [17], in which scrambling matrix was proposed to tackle
the convergence of products of stochastic matrices. Similar method has also been used to
study consensus problem in continuous time networks (see [18, 23]) and synchronization
problem (see [24, 44]). Whereas, few people extended this approach to synchronization
of complex neural networks with mixed time delays. Motivated by the works of Zhang
et al. [50], Park et al. [28], Liu et al. [24], and the discussions above, the purpose of this
paper is to adopt a novel method which applies the property of outer coupling matrices of
the neural networks, and present some new sufficient conditions for the global exponential
synchronization of hybrid coupled neural networks with time-varying mixed delays. To
this end, we consider the following differential equation system:

ẋi(t) = −Axi
(
t− τ(t)

)
+W1f

(
xi(t)

)
+W2f

(
xi
(
t− h(t)

))
+W3

t∫
t−σ(t)

f
(
xi(s)

)
ds+ u(t) + α1

N∑
j=1

g
(1)
ij Γ1xj(t)

+ α2

N∑
j=1

g
(2)
ij Γ2xj

(
t− h(t)

)
+ α3

N∑
j=1

g
(3)
ij Γ3

t∫
t−σ(t)

xj(s) ds, (1)

where i = 1, 2, . . . , N , N is the number of coupled nodes, xi(t) = (x1
i (t), x

2
i (t), . . . ,

xni (t))T ∈ Rn is the neuron state vector of the ith node, n denotes the number of neurons
in a neural network, f(xi(·)) = (f1(x1

i (·)), f2(x2
i (·)), . . . , fn(xni (·)))T ∈ Rn and u(t) =

(u1(t), u2(t), . . . , un(t))T ∈ Rn denote the neuron activation function vector and the
external input vector, respectively, τ(t), h(t) and σ(t) denote the time-varying leakage
delay, discrete delay and distributed delay, respectively, A = diag{a1, a2, . . . , an} > 0 is
the self-feedback matrix, Wk = (w

(k)
ij ) ∈ Rn×n (k = 1, 2, 3) are the connection weight

matrices, αk > 0 (k = 1, 2, 3) are the coupling strengths, Γk = diag{γ(k)
1 , γ

(k)
2 , . . . ,

γ
(k)
n } > 0 (k = 1, 2, 3) are the constant inner coupling matrices of nodes, which describe

the individual coupling between networks, Gk = (g
(k)
ij )N×N (k = 1, 2, 3) are the outer

coupling matrices representing the coupling strength and the topological structure of the
networks.

Our control goal is to let system (1) achieve synchronization, that is, limt→∞ |xki (t)−
xkj (t)| = 0 for all i, j ∈ {1, 2, . . . , N} and k ∈ {1, 2, . . . , n}.

The organization of this paper is as follows. In Section 2, some preliminaries are given.
In Section 3, new synchronization criteria are derived for system (1). In Section 4, some
numerical examples are provided to illustrate the effectiveness of the obtained theoretical
results. A brief remark is given in Section 5 to conclude this work.

2 Preliminaries

For convenience, we introduce several notations. A > 0 means that A is a symmet-
ric positive definite matrix. In represents the nth-order identity matrix. For a vector
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x = (x1, x2, . . . , xn)T ∈ Rn, ‖x‖ = max16i6n |xi|. For A = (aij) ∈ Rn×n, ‖A‖ =
max16i6n{

∑n
j=1 |aij |}.

Throughout this paper, we make the following assumptions.

(H1) The time delays satisfy that

0 6 τ(t) 6 τ, 0 6 h(t) 6 h, 0 6 σ(t) 6 σ,

where τ , h and σ are known constants.
(H2) The outer coupling matrices Gk (k = 1, 2, 3) satisfy the diffusive coupling

connections:

g
(k)
ij > 0 (i 6= j), g

(k)
ii = −

N∑
j=1,
j 6=i

g
(k)
ij (i, j = 1, 2, . . . , N).

(H3) f(x) is Lipschitz continuous with the Lipschitz constant L > 0, that is,∥∥f(x)− f(y)
∥∥ 6 L‖x− y‖.

Next, we give a useful lemma.

Lemma 1. (See [22].) Assume that V (t) is a nonnegtive continuous function on [t∗, t],
and satisfies the inequality

D+
(
V (t)

)
6 −aV (t) + bV̄ (t),

where a > b > 0 and V̄ (t) = supt−τ6s6t V (s), τ > 0 is a constant. Then

V (t) 6 V̄ (t∗)e−λ(t−t∗)

for t > t∗, where λ is the unique positive root of the transcendental equation λ = a−beλτ .

Remark 1. The outer coupling matrix Gk reflects the topology structure which can be
well defined by a network G = (V, E) with the node set V and the edge set E . Each
subsystem is viewed as a node, and if there exists a link from node j to i, then g(k)

ij > 0,
otherwise, g(k)

ij = 0 (i 6= j). In the synchronization analysis of CNNs (1), if all the
states are synchronous, a restriction condition must be imposed on the coupling matrices
Gk = (g

(k)
ij )N×N (k = 1, 2, 3). This is the fundamental reason why a zero-row-sum

condition
∑N
j=1 g

(k)
ij = 0 is required. A usually used zero-row-sum condition is expressed

as g(k)
ii = −

∑N
j=1,j 6=i g

(k)
ij .

Remark 2. Nowadays, the synchronization analyses of CNNs usually require that the
outer coupling matrix is symmetric [8, 12, 25, 28, 30, 50] or irreducible [33, 46, 47]. The
underlying reason is the requirement of mathematical techniques, for example, the LMI-
based synchronization results are on the basis of Kronecker product expression, in which
the symmetric or irreducible feature of coupling matrix plays an important role in the
derivation. In this paper, without the requirement of symmetric or irreducible conditions
on outer coupling matrices, some global exponential synchronization criteria are estab-
lished for an array of hybrid coupled neural networks with time-varying mixed delays,
which are more flexible.
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3 Global exponential synchronization criteria

Let xi(t) = (x1
i (t), x

2
i (t), . . . , x

n
i (t))T be the solution of system (1) with the initial value

ϕi(θ), θ ∈ [−max{τ, h, σ}, 0]. Let ī(t), i(t) and k̄(t) be the indexes satisfying

xkī(t)(t) = max
16i6N

{
xki (t)

}
, xki(t)(t) = min

16i6N

{
xki (t)

}
,∥∥y(t)

∥∥ = max
16k6n

∣∣yk(t)
∣∣ = yk̄(t)(t) = x

k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t),

where y(t) = (y1(t), y2(t), . . . , yn(t))T, yk(t) = xk
ī(t)

(t) − xki(t)(t), ī(t), i(t) ∈ {1, 2,
. . . , N}, k̄(t) ∈ {1, 2, . . . , n}.

Denote

F (Gk) = min
16i,j6N
i 6=j

{
g

(k)
ij + g

(k)
ji +

N∑
l=1,
l 6=i,j

min
{
g

(k)
il , g

(k)
jl

}}
,

H(Gk) = max
16i6N

{
N∑
j=1
j 6=i

g
(k)
ij

}
,

p = ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ,
q = 2α1γ̄

(1)H(G1) + 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ,

0 < a = min
16i6n

{ai} 6 max
16i6n

{ai} = ā,

0 < γ(k) = min
16i6n

{
γ

(k)
i

}
6 max

16i6n

{
γ

(k)
i

}
= γ̄(k) (k = 1, 2, 3).

Theorem 1. Under assumptions (H1)–(H3), if

a+ α1γ
(1)F (G1) > āτ(ā+ p+ q) + p+ 2α2γ̄

(2)H(G2) + 2α3γ̄
(3)H(G3)σ, (2)

then system (1) can achieve exponential synchronization.

Proof. Define a Lyapunov functional:

V (t) =
∥∥y(t)

∥∥ = x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t).

Let tl (l = 1, 2, . . . ) be critical values such that at least one of the indexes ī(t), i(t)
and k̄(t) in V (t) switch. We suppose

V (t) = xk̄l
īl

(t)− xk̄lil (t), t ∈ [tl, tl+1), l = 1, 2, . . . .

Here īl, il and k̄l are constants. In what follows, we will calculate the right upper deriva-
tive of V (t) along the trajectories of (1).

Since each xji (t) (i = 1, 2, . . . , N ; j = 1, 2, . . . , n) is differentiable in (0,+∞), we
have

D+
(
V (t)

)
=

d

dt

(
xk̄l
īl

(t)− xk̄lil (t)
)
, t ∈ (tl, tl+1),
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and
D+
(
V (tl)

)
=

d

dt

(
xk̄l
īl

(t)− xk̄lil (t)
)∣∣
t=tl

.

Therefore, for t ∈ (0,+∞),

D+
(
V (t)

)
=

d

dt

(
x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t)
)
,

in which the indexes ī(t), i(t) and k̄(t) are regarded as constants.
By the above analysis, we have

D+
(
V (t)

)
= −ak̄(t)

[
x
k̄(t)

ī(t)

(
t− τ(t)

)
− xk̄(t)

i(t)

(
t− τ(t)

)]
+

n∑
j=1

w
(1)

k̄(t)j

[
fj
(
xj
ī(t)

(t)
)
− fj

(
xji(t)(t)

)]
+

n∑
j=1

w
(2)

k̄(t)j

[
fj
(
xj
ī(t)

(
t− h(t)

))
− fj

(
xji(t)

(
t− h(t)

))]

+

n∑
j=1

w
(3)

k̄(t)j

t∫
t−σ(t)

[
fj
(
xj
ī(t)

(s)
)
− fj

(
xji(t)(s)

)]
ds

+ α1γ
(1)

k̄(t)

N∑
j=1

(
g

(1)

ī(t)j
− g(1)

i(t)j

)
x
k̄(t)
j (t) + α2γ

(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
t−h(t)

)

+ α3γ
(3)

k̄(t)

N∑
j=1

(
g

(3)

ī(t)j
− g(3)

i(t)j

) t∫
t−σ(t)

x
k̄(t)
j (s) ds

6 −ak̄(t)

[
x
k̄(t)

ī(t)

(
t− τ(t)

)
− xk̄(t)

i(t)

(
t− τ(t)

)]
+

n∑
j=1

∣∣w(1)

k̄(t)j

∣∣LV (t) +

n∑
j=1

∣∣w(2)

k̄(t)j

∣∣LV (t− h(t)
)

+

n∑
j=1

∣∣w(3)

k̄(t)j

∣∣Lσ sup
t−σ6s6t

V (s)

+ α1γ
(1)

k̄(t)

N∑
j=1

(
g

(1)

ī(t)j
− g(1)

i(t)j

)
x
k̄(t)
j (t) + α2γ

(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
t−h(t)

)

+ α3γ
(3)

k̄(t)

N∑
j=1

(
g

(3)

ī(t)j
− g(3)

i(t)j

) t∫
t−σ(t)

x
k̄(t)
j (s) ds. (3)

By Newton–Leibniz formula and (3), we have

−ak̄(t)

[
x
k̄(t)

ī(t)

(
t− τ(t)

)
− xk̄(t)

i(t)

(
t− τ(t)

)]
= −ak̄(t)

[
x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t)
]

+ ak̄(t)

t∫
t−τ(t)

[
ẋ
k̄(t)

ī(t)
(s)− ẋk̄(t)

i(t) (s)
]

ds
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6 −ak̄(t)V (t) + ak̄(t)

t∫
t−τ(t)

{
−ak̄(t)

[
x
k̄(t)

ī(t)

(
s− τ(s)

)
− xk̄(t)

i(t)

(
s− τ(s)

)]

+

n∑
j=1

∣∣w(1)

k̄(t)j

∣∣LV (s) +

n∑
j=1

∣∣w(2)

k̄(t)j

∣∣LV (s− h(s)
)

+

n∑
j=1

∣∣w(3)

k̄(t)j

∣∣Lσ sup
s−σ6s′6s

V (s′)

+ α1γ
(1)

k̄(t)

N∑
j=1

(
g

(1)

ī(t)j
− g(1)

i(t)j

)
x
k̄(t)
j (s) + α2γ

(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
s−h(s)

)
+ α3γ

(3)

k̄(t)

N∑
j=1

(
g

(3)

ī(t)j
− g(3)

i(t)j

) s∫
s−σ(s)

x
k̄(t)
j (s′) ds′

}
ds

6 −ak̄(t)V (t) + a2
k̄(t)τ sup

t−2τ6s6t
V (s) + ak̄(t)‖W1‖Lτ sup

t−τ6s6t
V (s)

+ ak̄(t)‖W2‖Lτ sup
t−τ−h6s6t

V (s) + ak̄(t)‖W3‖Lτσ sup
t−τ−σ6s6t

V (s)

+ ak̄(t)

t∫
t−τ(t)

{
α1γ

(1)

k̄(t)

N∑
j=1

(
g

(1)

ī(t)j
− g(1)

i(t)j

)
x
k̄(t)
j (s) + α2γ

(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)

× xk̄(t)
j

(
s− h(s)

)
+ α3γ

(3)

k̄(t)

N∑
j=1

(
g

(3)

ī(t)j
− g(3)

i(t)j

) s∫
s−σ(s)

x
k̄(t)
j (s′) ds′

}
ds. (4)

By (H2), it follows that

α1γ
(1)

k̄(t)

N∑
j=1

(
g

(1)

ī(t)j
− g(1)

i(t)j

)
x
k̄(t)
j (s)

= α1γ
(1)

k̄(t)

[
N∑
j=1
j 6=ī(t)

g
(1)

ī(t)j
x
k̄(t)
j (s) + g

(1)

ī(t)̄i(t)
x
k̄(t)

ī(t)
(s)

]

− α1γ
(1)

k̄(t)

[
N∑
j=1
j 6=i(t)

g
(1)
i(t)jx

k̄(t)
j (s) + g

(1)
i(t)i(t)x

k̄(t)
i(t) (s)

]

= α1γ
(1)

k̄(t)

[
N∑
j=1
j 6=ī(t)

g
(1)

ī(t)j
x
k̄(t)
j (s)−

N∑
j=1
j 6=ī(t)

g
(1)

ī(t)j
x
k̄(t)

ī(t)
(s)

]

− α1γ
(1)

k̄(t)

[
N∑
j=1
j 6=i(t)

g
(1)
i(t)jx

k̄(t)
j (s)−

N∑
j=1
j 6=i(t)

g
(1)
i(t)jx

k̄(t)
i(t) (s)

]
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= α1γ
(1)

k̄(t)

{
N∑
j=1
j 6=ī(t)

g
(1)

ī(t)j

[
x
k̄(t)
j (s)− xk̄(t)

ī(t)
(s)
]
−

N∑
j=1
j 6=i(t)

g
(1)
i(t)j

[
x
k̄(t)
j (s)− xk̄(t)

i(t) (s)
]}

6 2α1γ̄
(1)H(G1)V (s). (5)

Similarly, we have

α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
s− h(s)

)
6 2α2γ̄

(2)H(G2)V
(
s− h(s)

)
, (6)

and

α3γ
(3)

k̄(t)

N∑
j=1

(
g

(3)

ī(t)j
− g(3)

i(t)j

) s∫
s−σ(s)

x
k̄(t)
j (s′) ds′

6 2α3γ̄
(3)H(G3)σ(s) sup

s−σ(s)6s′6s
V (s′). (7)

Substituting (5)–(7) into (4), we get

−ak̄(t)

[
x
k̄(t)

ī(t)

(
t− τ(t)

)
− xk̄(t)

i(t)

(
t− τ(t)

)]
6 −ak̄(t)V (t) + a2

k̄(t)τ sup
t−2τ6s6t

V (s) + ak̄(t)‖W1‖Lτ sup
t−τ6s6t

V (s)

+ ak̄(t)‖W2‖Lτ sup
t−τ−h6s6t

V (s) + ak̄(t)‖W3‖Lτσ sup
t−τ−σ6s6t

V (s)

+ 2ak̄(t)

t∫
t−τ(t)

{
α1γ̄

(1)H(G1)V (s) + α2γ̄
(2)H(G2)V

(
s− h(s)

)
+ α3γ̄

(3)H(G3)σ(s) sup
s−σ(s)6s′6s

V (s′)
}

ds

6 −aV (t) + ā2τ sup
t−2τ6s6t

V (s) + ā‖W1‖Lτ sup
t−τ6s6t

V (s)

+ ā‖W2‖Lτ sup
t−τ−h6s6t

V (s) + ā‖W3‖Lτσ sup
t−τ−σ6s6t

V (s)

+ 2āτ
{
α1γ̄

(1)H(G1) sup
t−τ6s6t

V (s) + α2γ̄
(2)H(G2) sup

t−τ−h6s6t
V (s)

+ α3γ̄
(3)H(G3)σ sup

t−τ−σ6s6t
V (s)

}
6 −aV (t) + āτ

[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ + 2α1γ̄

(1)H(G1)

+ 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ
]

sup
t−2τ−h−σ6s6t

V (s). (8)
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Noting that we can always choose ī(t) and i(t) satisfying ī(t) 6= i(t) for N > 2, we
further derive from (5) that

α1γ
(1)

k̄(t)

N∑
j=1

(
g

(1)

ī(t)j
− g(1)

i(t)j

)
x
k̄(t)
j (t)

= α1γ
(1)

k̄(t)

{
N∑
j=1
j 6=ī(t)

g
(1)

ī(t)j

[
x
k̄(t)
j (t)− xk̄(t)

ī(t)
(t)
]
−

N∑
j=1
j 6=i(t)

g
(1)
i(t)j

[
x
k̄(t)
j (t)− xk̄(t)

i(t) (t)
]}

= α1γ
(1)

k̄(t)

{
g

(1)

ī(t)i(t)

[
x
k̄(t)
i(t) (t)− xk̄(t)

ī(t)
(t)
]
− g(1)

i(t)̄i(t)

[
x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t)
]

+

N∑
j=1

j 6=ī(t),i(t)

g
(1)

ī(t)j

[
x
k̄(t)
j (t)− xk̄(t)

ī(t)
(t)
]
−

N∑
j=1

j 6=ī(t),i(t)

g
(1)
i(t)j

[
x
k̄(t)
j (t)− xk̄(t)

i(t) (t)
]}

= −α1γ
(1)

k̄(t)

{(
g

(1)

ī(t)i(t)
+ g

(1)

i(t)̄i(t)

)[
x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t)
]

+

N∑
j=1

j 6=ī(t),i(t)

{
g

(1)

ī(t)j

[
x
k̄(t)

ī(t)
(t)− xk̄(t)

j (t)
]

+ g
(1)
i(t)j

[
x
k̄(t)
j (t)− xk̄(t)

i(t) (t)
]}}

6 −α1γ
(1)

k̄(t)

{(
g

(1)

ī(t)i(t)
+ g

(1)

i(t)̄i(t)

)[
x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t)
]

+

N∑
j=1

j 6=ī(t),i(t)

{
min

(
g

(1)

ī(t)j
, g

(1)
i(t)j

)[
x
k̄(t)

ī(t)
(t)− xk̄(t)

i(t) (t)
]}}

= −α1γ
(1)

k̄(t)

{
g

(1)

ī(t)i(t)
+ g

(1)

i(t)̄i(t)
+

N∑
j=1

j 6=ī(t),i(t)

min
(
g

(1)

ī(t)j
, g

(1)
i(t)j

)}
V (t)

6 −α1γ
(1)F (G1)V (t). (9)

Similar to (6) and (7), we get

α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
t− h(t)

)
6 2α2γ̄

(2)H(G2)V
(
t− h(t)

)
, (10)

and

α3γ
(3)

k̄(t)

N∑
j=1

(
g

(3)

ī(t)j
− g(3)

i(t)j

) t∫
t−σ(t)

x
k̄(t)
j (s) ds 6 2α3γ̄

(3)H(G3)σ sup
t−σ6s6t

V (s). (11)
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It follows from (3) and (8)–(11) that

D+
(
V (t)

)
6 −aV (t) + āτ

[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ + 2α1γ̄

(1)H(G1)

+ 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ
]

sup
t−2τ−h−σ6s6t

V (s) + ‖W1‖LV (t)

+ ‖W2‖LV
(
t− h(t)

)
+ ‖W3‖Lσ sup

t−σ6s6t
V (s)− α1γ

(1)F (G1)V (t)

+ 2α2γ̄
(2)H(G2)V

(
t− h(t)

)
+ 2α3γ̄

(3)H(G3)σ sup
t−σ6s6t

V (s)

6 −
[
a− ‖W1‖L+ α1γ

(1)F (G1)
]
V (t) +

{
āτ
[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ

+ 2α1γ̄
(1)H(G1) + 2α2γ̄

(2)H(G2) + 2α3γ̄
(3)H(G3)σ

]
+ ‖W2‖L+ ‖W3‖Lσ

+ 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ
}

sup
t−2τ−h−σ6s6t

V (s) (12)

for all t > 0. By (2) and Lemma 1, we have that V (t) exponentially approaches to zero
as t → ∞. Therefore, system (1) can achieve exponential synchronization. The proof is
complete.

Theorem 2. Under assumptions (H1)–(H3),if

a+ α1γ
(1)F (G1) + α2γ

(2)F (G2)

>
[
āτ + 2α2γ̄

(2)H(G2)h
]
(ā+ p+ q) + p+ 2α3γ̄

(3)H(G3)σ, (13)

then system (1) can achieve exponential synchronization.

Proof. We note that

α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
t− h(t)

)
= α2γ

(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j (t)

− α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

) t∫
t−h(t)

ẋ
k̄(t)
j (s) ds. (14)

By (9), we have

α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j (t) 6 −α2γ

(2)F (G2)V (t). (15)
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Following the similar derivation in Theorem 1, we get

− α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

) t∫
t−h(t)

ẋ
k̄(t)
j (s) ds

= −α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

) t∫
t−h(t)

{
−ak̄(t)x

k̄(t)
j

(
s− τ(s)

)

+

n∑
p=1

w
(1)

k̄(t)p
fp
(
xpj (s)

)
+

n∑
p=1

w
(2)

k̄(t)p
fp
(
xpj
(
s− h(s)

))
+

n∑
p=1

w
(3)

k̄(t)p

s∫
s−σ(s)

fp
(
xpj (s

′)
)

ds′ + uk̄(t)(s) + α1

N∑
p=1

g
(1)
jp γ

(1)

k̄(t)
xk̄(t)
p (s)

+ α2

N∑
p=1

g
(2)
jp γ

(2)

k̄(t)
xk̄(t)
p

(
s− h(s)

)
+ α3

N∑
p=1

g
(3)
jp γ

(3)

k̄(t)

s∫
s−σ(s)

xk̄(t)
p (s′) ds′

}
ds

6 2α2γ̄
(2)āH(G2)h sup

t−h−τ6s6t
V (s) + 2α2γ̄

(2)H(G2)‖W1‖Lh sup
t−h6s6t

V (s)

+ 2α2γ̄
(2)H(G2)‖W2‖Lh sup

t−2h6s6t
V (s)

+ 2α2γ̄
(2)H(G2)‖W3‖Lhσ sup

t−h−σ6s6t
V (s)

+ 4α1α2γ̄
(1)γ̄(2)H(G1)H(G2)h sup

t−h6s6t
V (s)

+ 4(α2)2
[
γ̄(2)

]2[
H(G2)

]2
h sup
t−2h6s6t

V (s)

+ 4α2α3γ̄
(2)γ̄(3)H(G2)H(G3)hσ sup

t−h−σ6s6t
V (s)

6 2α2γ̄
(2)H(G2)h

[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ + 2α1γ̄

(1)H(G1)

+ 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ
]

sup
t−τ−2h−σ6s6t

V (s). (16)

It follows from (14)–(16) that

α2γ
(2)

k̄(t)

N∑
j=1

(
g

(2)

ī(t)j
− g(2)

i(t)j

)
x
k̄(t)
j

(
t− h(t)

)
6 −α2γ

(2)F (G2)V (t) + 2α2γ̄
(2)H(G2)h

[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ

+ 2α1γ̄
(1)H(G1) + 2α2γ̄

(2)H(G2) + 2α3γ̄
(3)H(G3)σ

]
sup

t−τ−2h−σ6s6t
V (s). (17)

Nonlinear Anal. Model. Control, 21(1):57–76



68 Y. Du, R. Xu

Combining (3), (8), (9), (11) and (17), we can deduce that

D+
(
V (t)

)
6 −aV (t) + āτ

[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ + 2α1γ̄

(1)H(G1)

+ 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ
]

sup
t−2τ−h−σ6s6t

V (s) + ‖W1‖LV (t)

+ ‖W2‖LV
(
t− h(t)

)
+ ‖W3‖Lσ sup

t−σ6s6t
V (s)− α1γ

(1)F (G1)V (t)

− α2γ
(2)F (G2)V (t) + 2α2γ̄

(2)H(G2)h
[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ

+ 2α1γ̄
(1)H(G1) + 2α2γ̄

(2)H(G2) + 2α3γ̄
(3)H(G3)σ

]
sup

t−τ−2h−σ6s6t
V (s)

+ 2α3γ̄
(3)H(G3)σ sup

t−σ6s6t
V (s)

6 −
[
a− ‖W1‖L+ α1γ

(1)F (G1) + α2γ
(2)F (G2)

]
V (t) +

{
āτ
[
ā+ ‖W1‖L

+ ‖W2‖L+ ‖W3‖Lσ + 2α1γ̄
(1)H(G1) + 2α2γ̄

(2)H(G2) + 2α3γ̄
(3)H(G3)σ

]
+ ‖W2‖L+ ‖W3‖Lσ + 2α2γ̄

(2)H(G2)h
[
ā+ ‖W1‖L+ ‖W2‖L+ ‖W3‖Lσ

+ 2α1γ̄
(1)H(G1) + 2α2γ̄

(2)H(G2) + 2α3γ̄
(3)H(G3)σ

]
+ 2α3γ̄

(3)H(G3)σ
}

sup
t−2τ−2h−σ6s6t

V (s). (18)

By (13) and Lemma 1, V (t) exponentially approaches to zero as t → ∞. Therefore,
system (1) can achieve exponential synchronization. The proof is complete.

Remark 3. The differences between Theorems 1 and 2 lie in the fact that the term
α2γ

(2)

k̄(t)

∑N
j=1(g

(2)

ī(t)j
− g(2)

i(t)j)x
k̄(t)
j (t− h(t)) is treated differently in the proof procedure

although the selected Lyapunov functional is same. That is, different inequality treatment
leads to different expressions (2) and (13). Since both Theorems 1 and 2 are sufficient
conditions, in general, it is difficult to judge which criterion is superior.

Remark 4. Based on Theorem 1, we have that under assumptions (H1)–(H3), if a +
α1γ

(1)F (G1) > p + 2α2γ̄
(2)H(G2), then system (1) can achieve exponential synchro-

nization for sufficiently small delay upper bounds τ and σ. For example, for given
constant σ satisfying that a + α1γ

(1)F (G1) > p + 2α2γ̄
(2)H(G2) + 2α3γ̄

(3)H(G3)σ,
we can obtain the maximal allowable upper bound of the leakage delay, that is,

τ <
a+ α1γ

(1)F (G1)− p− 2α2γ̄
(2)H(G2)− 2α3γ̄

(3)H(G3)σ

ā(ā+ p+ q)
. (19)

In another word, large leakage delay could have a negative impact on the synchronization
of system (1), and cause non-synchronization of the system.

In a similar way, from Theorem 2, for given constants τ and σ satisfying a +
α1γ

(1)F (G1) + α2γ
(2)F (G2) > p + 2α3γ̄

(3)H(G3)σ + āτ(ā + p + q), we can derive
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the maximal allowable upper bound of the time-varying delay h(t) guaranteeing the
exponential synchronization of system (1):

h <
a+ α1γ

(1)F (G1) + α2γ
(2)F (G2)− p− 2α3γ̄

(3)H(G3)σ − āτ(ā+ p+ q)

2α2γ̄(2)H(G2)(ā+ p+ q)
.

Remark 5. From (19), we have that, if

F (G1) = min
16i,j6N
i 6=j

{
g

(1)
ij + g

(1)
ji +

N∑
l=1
l 6=i,j

min
{
g

(1)
il , g

(1)
jl

}}
> 0,

which means that the outer coupling matrix G1 is of scrambling property, i.e., for any
indices i, j (i 6= j), either of the following conditions satisfies: (i) g(1)

ij + g
(1)
ji > 0;

(ii) There is an index l ∈ {1, 2, . . . , N} \ {i, j} such that g(1)
il > 0 and g(1)

jl > 0, then
the coupled network (1) can achieve exponential synchronization for all matrix A when
the coupling strength α1 is large enough and the delay upper bound τ satisfies (19).

Remark 6. In previous works, most of the synchronization criteria have been derived
based on the LMI method. It is well known that, one of the hot issues in the synchro-
nization field is to reduce the computing complexity of the synchronization criteria. In
the aspects of analytic technique and the synchronization criteria, the present results
are different from the existing researches. Recalling (2) and (13), our synchronization
conditions only involve the parameters of system (1) to be computed, thus, they would be
easy to check in comparison with those previously reported LMIs (see [8,9,12,25,28,30,
31,36,39,40,45,46,47,50,52]). On the other hand, from the proofs of Theorems 1 and 2,
one can see that the signs of elements of connection weight matrices are neglected in the
derivation of inequalities, that is, (2) and (13) are related with ‖Wk‖ (k = 1, 2, 3). In this
point, our synchronization criteria may be conservative. Nevertheless, our results provide
a new, convenient, and efficient approach to study the synchronization for complex neural
networks with hybrid coupling and mixed time delays.

4 Numerical simulations

In this section, we provide several numerical examples to illustrate the feasibility of the
theoretical results.

Example 1. Consider the following 2-neuron delayed neural network without coupling

ẋ(t) = −Ax
(
t− τ(t)

)
+W1f

(
x(t)

)
+W2f

(
x
(
t− h(t)

))
+W3

t∫
t−σ(t)

f
(
x(s)

)
ds+ u(t), (20)
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(a) (b)

Figure 1. (a) Chaotic trajectory of (20) with initial values φ1(s) = 0.5, φ2(s) = −1. (b) Phase portrait of the
strange attractor.

in which

x(t) =
(
x1(t), x2(t)

)T
, f

(
x(t)

)
=
(
f1

(
x1(t)

)
, f2

(
x2(t)

))T
,

fi(xi) = tanh(xi) (i = 1, 2), u(t) = (0, 0)T, τ(t) ≡ 0.1,

h(t) = σ(t) = 0.1− 0.1e−t, A = I2,

W1 =

[
1.8 10
0.1 1.8

]
, W2 =

[
−1.5 0.1
0.1 −1.5

]
, W3 =

[
0.1 0.01
0.02 0.1

]
.

(21)

Through numerical simulations, we find that system (20) with (21) admits chaotic
behavior. The dynamical chaotic behavior of system (20) with initial values φ1(s) = 0.5,
φ2(s) = −1 is exhibited in Fig. 1.

Example 2. Consider the neural network (1) with hybrid coupling. Choose the following
parameters:

Γ1 =

[
8 0
0 8

]
, Γl =

[
1 0
0 0.5

]
, Gk =

−2 1 1
1 −2 1
1 1 −2

 , (22)

αk = 1 (l = 2, 3; k = 1, 2, 3). (23)

The other functions and parameters are the same as those in (21). It is clear that L = 1,
τ = h = σ = 0.1. It is not difficult to verify that system (1) with (21) and (23) satisfies
assumptions (H1)–(H3) and the inequality (2). According to Theorem 1, system (1) can
achieve exponential synchronization. Numerical simulations illustrate the fact (Fig. 2).
The states of network are shown in Fig. 2a, and the synchronization errors are illustrated
in Fig. 2b, where eji (t) = xji (t) − x

j
1(t) (i = 2, 3; j = 1, 2). Moreover, by (2), we can

calculate that the maximal allowable upper bound of the leakage delay is τ = 0.1415.
If we apply the result of Theorem 3.1 in [12] to this example, and choose the decay

rate α = 0, using the LMI Toolbox in Matlab and solving the LMIs in Theorem 3.1,
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(a) (b)

Figure 2. (a) Transient behaviors of the state variables xji (t) (i = 1, 2, 3; j = 1, 2) in Example 2.
(b) Synchronization errors eji (t) (i = 2, 3; j = 1, 2) in Example 2.

we cannot obtain a strictly feasible solution. As a result, Theorem 3.1 in [12] cannot be
applied to this example.

Example 3. Consider the neural network (1) with nonsymmetric coupling

fi(xi) = tanh(xi) (i = 1, 2), u(t) = (2 + sin t, cos t)T,

A = Γ2 = Γ3 = I2, Γ1 = 6I2,

W1 =

[
0.2 0.1
0.1 0.6

]
, W2 =

[
−0.5 0.1
0.1 −0.4

]
, W3 =

[
0.1 0.1
0.2 0.1

]
,

Gk =

−3 1 2
2 −4 2
1 3 −4

 , αk = 1 (k = 1, 2, 3),

σ(t) = τ(t) = 0.1
∣∣sin(t)

∣∣.

(24)

It is easy to verify that system (1) with (24) satisfies inequality (2). According to Theo-
rem 1, system (1) can achieve exponential synchronization. Further, we can obtain that
the conditions of Theorem 2 are satisfied if h(t) 6 0.0443. We now choose h(t) =
0.04| cos(t)|, the synchronization performance is illustrated in Fig. 3, where Fig. 3a shows
the time responses of state vector of system (1), Fig. 3b depicts the synchronization errors,
where eji (t) = xji (t)− x

j
1(t) (i = 2, 3; j = 1, 2).

Example 4. Consider the neural network (1) with nonsymmetric and reducible coupling

fi(xi) = tanh(xi) (i = 1, 2), u(t) = (3, 1,−2)T,

A = Γ2 = Γ3 = I3, Γ1 = 6I3,

αk = 1 (k = 1, 2, 3), τ(t) ≡ 0.05,

σ(t) = 0.1
∣∣ sin(t)

∣∣, h(t) = 0.01
∣∣ cos(t)

∣∣,
(25a)
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(a) (b)

Figure 3. (a) Transient behaviors of the state variables xji (t) (i = 1, 2, 3; j = 1, 2) in Example 3.
(b) Synchronization errors eji (t) (i = 2, 3; j = 1, 2) in Example 3.

(a) (b)

Figure 4. (a) Transient behaviors of the state variables xji (t) (i = 1, 2, 3; j = 1, 2) in Example 4.
(b) Synchronization errors eji (t) (i = 2, 3; j = 1, 2) in Example 4.

W1 =

0.2 0.1 0.1
0.1 0.6 −0.2
0.2 0.2 −0.3

 , W2 =

−0.5 0.1 0.1
0.1 −0.4 0.3
0.1 −0.3 0.4

 ,

W3 =

0.1 0.1 0.5
0.2 0.1 0.2
0.3 −0.1 0.2

 , Gk =


−4 2 1 1
1 −3 1 1
0 0 −2 2
0 0 1 −1

 .
(25b)

It is easy to verify that system (1) with (25) satisfies inequality (13). By Theorem 2,
system (1) can achieve exponential synchronization. The synchronization performance is
illustrated in Fig. 4, where Fig. 4a shows the time responses of state vector of system (1),
Fig. 4b depicts the synchronization errors, where eji (t) = xji (t) − xj1(t) (i = 2, 3, 4;
j = 1, 2, 3).
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Remark 7. In Example 2 (4), system (1) satisfies the condition of Theorem 1 (2), but
does not satisfy that of Theorem 2 (1). In Example 3, system (1) satisfies the conditions
of both Theorems 1 and 2. Hence, as pointed out in Remark 3, it is difficult to judge
which criterion is superior.

5 Conclusions

In this paper, we incorporated time-varying leakage delay, discrete and distributed time
delays into an array of neural networks with nonsymmetric hybrid coupling. By employ-
ing a novel Lyapunov functional and the property of outer coupling matrices of the neural
networks, sufficient conditions were obtained for the global exponential synchronization
for system (1), which are closely related with the time-varying delays and the coupling
structure of the networks. The maximal allowable upper bounds of the time-varying delays
can be obtained guaranteeing the exponential synchronization for the neural networks.
The method we adopted in this paper is different from the commonly used LMI technique,
and our synchronization criteria provide a new, convenient, and efficient approach to study
the synchronization for complex neural networks with hybrid coupling and mixed time
delays. Some numerical examples were given to illustrate the feasibility and effectiveness
of our theoretical results.

We would like to point out that the techniques used in this paper may be applied to
study the synchronization for CNNs with multiple time delays and switching topology.
On the other hand, we assumed the activation functions are global Lipschitz continuous,
and how to tackle the synchronization problems with generalized activation functions is
our future work.
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