8 research outputs found

    Time-based Location Techniques Using Inexpensive, Unsynchronized Clocks in Wireless Networks

    Get PDF
    The ability to measure location using time of flight in IEEE 802.11 networks is impeded by the standard clock resolution, imprecise synchronization of the 802.11 protocol, and the inaccuracy of available clocks. To achieve real-time location with accuracy goals of a few meters, we derive new consensus synchronization techniques for free-running clocks. Using consensus synchronization, we improve existing time of arrival (TOA) techniques and introduce new time difference of arrival (TDOA) techniques. With this common basis, we show how TOA is theoretically superior to TDOA. Using TOA measurements, we can locate wireless nodes that participate in the location system, and using TDOA measurements, we can locate nodes that do not participate. We demonstrate applications using off-the-shelf 802.11 hardware that can determine location to within 3m using simple, existing optimization methods. The synchronization techniques extend existing ones providing distributed synchronization for free-running clocks to cases where send times cannot be controlled and adjusted precisely, as in 802.11 networks. These location and synchronization techniques may be applied to transmitting wireless nodes using any communication protocol where cooperating nodes can produce send and receive timestamps

    Phaser: Enabling phased array signal processing on commodity WiFi access points

    Get PDF
    Signal processing on antenna arrays has received much recent attention in the mobile and wireless networking research communities, with array signal processing approaches addressing the problems of human movement detection, indoor mobile device localization, and wireless network security. However, there are two important challenges inherent in the design of these systems that must be overcome if they are to be of practical use on commodity hardware. First, phase differences between the radio oscillators behind each antenna can make readings unusable, and so must be corrected in order for most techniques to yield high-fidelity results. Second, while the number of antennas on commodity access points is usually limited, most array processing increases in fidelity with more antennas. These issues work in synergistic opposition to array processing: without phase offset correction, no phase-difference array processing is possible, and with fewer antennas, automatic correction of these phase offsets becomes even more challenging. We present Phaser, a system that solves these intertwined problems to make phased array signal processing truly practical on the many WiFi access points deployed in the real world. Our experimental results on three- and five-antenna 802.11-based hardware show that 802.11 NICs can be calibrated and synchronized to a 20° median phase error, enabling inexpensive deployment of numerous phase-difference based spectral analysis techniques previously only available on costly, special-purpose hardware

    Software Defined Radio Localization using 802.11-style Communications

    Get PDF
    This major qualifying project implements a simple indoor localization system using software defined radio. Both time of arrival and received signal strength methods are used by an array of wireless receivers to trilaterate a cooperative transmitter. The implemented system builds upon an IEEE 802.11b-like communications platform implemented in GNU Radio. Our results indicate substantial room for improvement, particularly in the acquisition of time data. This project contributes a starting point for ongoing research in indoor localization, both through our literature review and system implementation

    CLOCK SYNCHRONIZATION AND TARGET LOCATION DETERMINATION IN WIRELESS NETWORKS

    Get PDF
    In a distributed system most nodes maintain a local oscillator to derive time information for synchronization with other nodes. A number of clock synchronization techniques have been presented in the literature (e.g. NTP, PTP) which rely on the exchange of messages among nodes to share timing information and to adjust the oset or skew of the clocks. We present an approach which does not require any adjustments to the local clocks, but relies on achieving synchronization through clock mapping functions which map the time at one node to the time at another node. We further show how closed paths in a graph of nodes can be used to estimate the synchronization tolerance. Through experimental results using piecewise linear functions, we demonstrate the feasibility of this approach and show how clock synchronization of better than 100 ps can be achieved in Wi-Fi environments. Using the techniques and relying on the hardware of SMiLE3 board, we also demonstrate the ability to measure distance with accuracy of a few inches and thereby the localization to accuracy better than one foot. Results of experiments conducted for localization are also presented

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Personalized Interaction with High-Resolution Wall Displays

    Get PDF
    Fallende Hardwarepreise sowie eine zunehmende Offenheit gegenüber neuartigen Interaktionsmodalitäten haben in den vergangen Jahren den Einsatz von wandgroßen interaktiven Displays möglich gemacht, und in der Folge ist ihre Anwendung, unter anderem in den Bereichen Visualisierung, Bildung, und der Unterstützung von Meetings, erfolgreich demonstriert worden. Aufgrund ihrer Größe sind Wanddisplays für die Interaktion mit mehreren Benutzern prädestiniert. Gleichzeitig kann angenommen werden, dass Zugang zu persönlichen Daten und Einstellungen — mithin personalisierte Interaktion — weiterhin essentieller Bestandteil der meisten Anwendungsfälle sein wird. Aktuelle Benutzerschnittstellen im Desktop- und Mobilbereich steuern Zugriffe über ein initiales Login. Die Annahme, dass es nur einen Benutzer pro Bildschirm gibt, zieht sich durch das gesamte System, und ermöglicht unter anderem den Zugriff auf persönliche Daten und Kommunikation sowie persönliche Einstellungen. Gibt es hingegen mehrere Benutzer an einem großen Bildschirm, müssen hierfür Alternativen gefunden werden. Die daraus folgende Forschungsfrage dieser Dissertation lautet: Wie können wir im Kontext von Mehrbenutzerinteraktion mit wandgroßen Displays personalisierte Schnittstellen zur Verfügung stellen? Die Dissertation befasst sich sowohl mit personalisierter Interaktion in der Nähe (mit Touch als Eingabemodalität) als auch in etwas weiterer Entfernung (unter Nutzung zusätzlicher mobiler Geräte). Grundlage für personalisierte Mehrbenutzerinteraktion sind technische Lösungen für die Zuordnung von Benutzern zu einzelnen Interaktionen. Hierzu werden zwei Alternativen untersucht: In der ersten werden Nutzer via Kamera verfolgt, und in der zweiten werden Mobilgeräte anhand von Ultraschallsignalen geortet. Darauf aufbauend werden Interaktionstechniken vorgestellt, die personalisierte Interaktion unterstützen. Diese nutzen zusätzliche Mobilgeräte, die den Zugriff auf persönliche Daten sowie Interaktion in einigem Abstand von der Displaywand ermöglichen. Einen weiteren Teil der Arbeit bildet die Untersuchung der praktischen Auswirkungen der Ausgabe- und Interaktionsmodalitäten für personalisierte Interaktion. Hierzu wird eine qualitative Studie vorgestellt, die Nutzerverhalten anhand des kooperativen Mehrbenutzerspiels Miners analysiert. Der abschließende Beitrag beschäftigt sich mit dem Analyseprozess selber: Es wird das Analysetoolkit für Wandinteraktionen GIAnT vorgestellt, das Nutzerbewegungen, Interaktionen, und Blickrichtungen visualisiert und dadurch die Untersuchung der Interaktionen stark vereinfacht.An increasing openness for more diverse interaction modalities as well as falling hardware prices have made very large interactive vertical displays more feasible, and consequently, applications in settings such as visualization, education, and meeting support have been demonstrated successfully. Their size makes wall displays inherently usable for multi-user interaction. At the same time, we can assume that access to personal data and settings, and thus personalized interaction, will still be essential in most use-cases. In most current desktop and mobile user interfaces, access is regulated via an initial login and the complete user interface is then personalized to this user: Access to personal data, configurations and communications all assume a single user per screen. In the case of multiple people using one screen, this is not a feasible solution and we must find alternatives. Therefore, this thesis addresses the research question: How can we provide personalized interfaces in the context of multi-user interaction with wall displays? The scope spans personalized interaction both close to the wall (using touch as input modality) and further away (using mobile devices). Technical solutions that identify users at each interaction can replace logins and enable personalized interaction for multiple users at once. This thesis explores two alternative means of user identification: Tracking using RGB+depth-based cameras and leveraging ultrasound positioning of the users' mobile devices. Building on this, techniques that support personalized interaction using personal mobile devices are proposed. In the first contribution on interaction, HyDAP, we examine pointing from the perspective of moving users, and in the second, SleeD, we propose using an arm-worn device to facilitate access to private data and personalized interface elements. Additionally, the work contributes insights on practical implications of personalized interaction at wall displays: We present a qualitative study that analyses interaction using a multi-user cooperative game as application case, finding awareness and occlusion issues. The final contribution is a corresponding analysis toolkit that visualizes users' movements, touch interactions and gaze points when interacting with wall displays and thus allows fine-grained investigation of the interactions

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore