238 research outputs found

    Vectorial channel estimation for uplink MC-CDMA in beyond 3G wireless systems

    Get PDF
    In beyond 3G wireless systems the bandwidth efficiency can be increased with the use of adaptive antenna arrays. This paper focus on a key issue for adaptive antenna arrays, that is, channel parameters estimation including Direction-Of-Arrival (DOA). In order to estimate DOA. the channel frequency responses for the links between the mobile users and each of base station array elements are estimated by pilot-aided minimum mean square error (MMSE) algorithm. This estimator is not sensitive to the channel statistics. Based on frequency response estimatives DOA's of impinging multipath components to the base station are estimated by a low complex Wlauimuni Likelihood (ML) approach. Furthermore an uplink burst structure with specifically designed midamble field for multiuser channel estimation in MC-CDMA is proposed. The performance is assessed in terms of channel estimation errors for a MC-CDMA TDD system over fast and slow fading mobile channels

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Técnicas de equalização e pré-codificação para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia EletrĂłnica e TelecomunicaçÔesO nĂșmero de dispositivos com ligaçÔes e aplicaçÔes sem fios estĂĄ a aumentar exponencialmente, causando problemas de interferĂȘncia e diminuindo a capacidade do sistema. Isto desencadeou uma procura por uma eficiĂȘncia espectral superior e, consequentemente, tornou-se necessĂĄrio desenvolver novas arquitecturas celulares que suportem estas novas exigĂȘncias. Coordenação ou cooperação multicelular Ă© uma arquitectura promissora para sistemas celulares sem fios. Esta ajuda a mitigar a interferĂȘncia entre cĂ©lulas, melhorando a equidade e a capacidade do sistema. É, portanto, uma arquitectura jĂĄ em estudo ao abrigo da tecnologia LTE-Advanced sob o conceito de coordenação multiponto (CoMP). Nesta dissertação, considerĂĄmos um sistema coordenado MC-CDMA com prĂ©-codificação e equalização iterativas. Uma das tĂ©cnicas mais eficientes de prĂ©-codificação Ă© o alinhamento de interferĂȘncias (IA). Este Ă© um conceito relativamente novo que permite aumentar a capacidade do sistema em canais de elevada interferĂȘncia. Sabe-se que, para os sistemas MC-CDMA, os equalizadores lineares convencionais nĂŁo sĂŁo os mais eficientes, devido Ă  interferĂȘncia residual entre portadoras (ICI). No entanto, a equalização iterativa no domĂ­nio da frequĂȘncia (FDE) foi identificada como sendo uma das tĂ©cnicas mais eficientes para lidar com ICI e explorar a diversidade oferecida pelos sistemas MIMO MC-CDMA. Esta tĂ©cnica Ă© baseada no conceito Iterative Block Decision Feedback Equalization (IB-DFE). Nesta dissertação, Ă© proposto um sistema MC-CDMA que une a prĂ©-codificação iterativa do alinhamento de interferĂȘncias no transmissor ao equalizador baseado no IB-DFE, com cancelamento sucessivo de interferĂȘncias (SIC) no receptor. Este Ă© construĂ­do por dois blocos: um filtro linear, que mitiga a interferĂȘncia inter-utilizador, seguido por um bloco iterativo no domĂ­nio da frequĂȘncia, que separa eficientemente os fluxos de dados espaciais na presença de interferĂȘncia residual inter-utilizador alinhada. Este esquema permite atingir o nĂșmero mĂĄximo de graus de liberdade e permite simultaneamente um ganho Ăłptimo de diversidade espacial. O desempenho deste esquema estĂĄ perto do filtro adaptado- Matched Filter Bound (MFB).The number of devices with wireless connections and applications is increasing exponentially, causing interference problems and reducing the system’s capacity gain. This initiated a search for a higher spectral efficiency and therefore it became necessary to develop new cellular architectures that support these new requirements. Multicell cooperation or coordination is a promising architecture for cellular wireless systems to mitigate intercell interference, improving system fairness and increasing capacity, and thus is already under study in LTE-Advanced under the coordinated multipoint (CoMP) concept. In this thesis, efficient iterative precoding and equalization is considered for coordinated MC-CDMA based systems. One of the most efficient precoding techniques is interference alignment (IA), which is a relatively new concept that allows high capacity gains in interfering channels. It is well known that for MC-CDMA systems standard linear equalizers are not the most efficient due to residual inter carrier interference (ICI). However, iterative frequency-domain equalization (FDE) has been identified as one of the most efficient technique to deal with ICI and exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems, namely the one based on Iterative Block Decision Feedback Equalization (IB-DFE) concept. In this thesis, it is proposed a MC-CDMA system that joins iterative IA precoding at the transmitter with IB-DFE successive interference cancellation (SIC) based receiver structure. The receiver is implemented in two steps: a linear filter, which mitigates the inter-user aligned interference, followed by an iterative frequency-domain receiver, which efficiently separates the spatial streams in the presence of residual inter-user aligned interference. This scheme provides the maximum degrees of freedom (DoF) and allows almost the optimum space-diversity gain. The scheme performance is close to the matched filter bound (MFB)

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    Advanced transmitter and receivers in future wireless networks

    Get PDF
    O objectivo desta dissertação Ă© aprofundar o estudo de tecnologias que permitam atingir comunicaçÔes mais eficientes e fiĂĄveis nas futuras redes sem fios. Uma das tecnologias estudadas nesta dissertação e que ainda nĂŁo existem muitos estudos Ă© o Complex Rotation Matrix (CRM). Esta tecnologia Ă© bastante Ăștil em sistemas que usem multi-portadoras como o Orthogonal Frequency Division Multiplexing (OFDM) pois permite dividir a informação pelas vĂĄrias sub-portadoras. Caso este sistema use tambĂ©m a tecnologia MIMO ainda permitirĂĄ a divisĂŁo da informação por vĂĄrias antenas. As constelaçÔes hierĂĄrquicas sĂŁo outro dos temas abordados nesta dissertação e sĂŁo um mĂ©todo eficiente de entregar o mesmo conteĂșdo a diferentes utilizadores. Esta tĂ©cnica poderĂĄ ser bastante Ăștil tanto em sistemas de uma portadora como multi-portadoras. O Single Carrier (SC) Ă© outra das tecnologias abordadas nesta dissertação. Um dos standards em que poderia ser utilizado tanto o OFDM com o SC Ă© no Digital Video Broadcasting – Satellite services to Handhelds (DVB-SH). Este esquema de comunicação tem com propĂłsito a entrega de conteĂșdos multimĂ©dia aos terminais mĂłveis via comunicação com estaçÔes base ou por satĂ©lite. O uso de o OFDM no downlink (DL) e do SC no uplink (UL) no mesmo standard/protocolo teria repercussĂ”es tambĂ©m ao nĂ­vel dos terminais mĂłveis pois permitiria uma melhor eficiĂȘncia na duração das baterias. Os resultados obtidos nesta tese visam sobretudo o estudo do CRM, estimação de canal e constelaçÔes hierĂĄrquicas. Para a obtenção de resultados foram efectuadas simulaçÔes com o mĂ©todo de Monte Carlo e Turbo CĂłdigos. Os simuladores foram desenvolvidos em Matlab.The main purpose of this dissertation is the study of technologies that allow achieving more reliable and efficient communications in wireless systems. One of the technologies studied in this dissertation and practically new is the Complex Rotation Matrix (CRM). This technology is useful in systems that use multi-carrier as the Orthogonal Frequency Division Multiplexing (OFDM). The hierarchical constellations are other theme approached in this dissertation and it purpose efficiently is to deliver the same content to different users. Another technology studied in this dissertation was the Single Carrier (SC) with Frequency Division Equalization. The SC is a well-know technology and is used in several telecommunications systems. The goal is the future wireless communications adopt the two technologies in the same system and use one of them depending of the situation. The Digital Video Broadcasting – Satellite services to Handhelds (DVB-SH) is one standard that can take advantage of the using of the OFDM and SC in the same system. The main goal of the DVB-SH is deliver multimedia content via satellite communications or communications with base stations to mobile terminals. The mobile terminals can achieve a more efficiency in their batteries whether in a standard/protocol that uses OFDM in DL and SC in UL. The results obtained with this thesis have the purpose to study the CRM, channel estimation and hierarchical constellation. The simulators were developed in Matlab platform and Turbo Codes are the codification used, channel estimation is also used and all the simulations were made with the Monte Carlo method

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotĂ©cnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC
    • 

    corecore