279 research outputs found

    Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview

    Get PDF
    The development of a feasible biorefinery is in need of alternative technologies to improve lignocellulosic biomass conversion by the suitable use of energy. Microwave heating processing (MHP) is emerging as promising unconventional pretreatment of lignocellulosic materials (LCMs). MHP applied as pretreatment induces LCMs breakdown through the molecular collision caused by the dielectric polarization. Polar particles movement generates a quick heating consequently the temperatures and times of process are lower. In this way, MHP has positioned as green technology in comparison with other types of heating. Microwave technology represents an excellent option to obtain susceptible substrates to enzymatic saccharification and subsequently in the production of bioethanol and high-added compounds. However, it is still necessary to study the dielectric properties of materials, and conduct economic studies to achieve development in pilot and industrial scale. This work aims to provide an overview of recent progress and alternative configurations for combining the application of microwave technology on the pretreatment of LCMs in terms of biorefinery.Financial support is gratefully acknowledged from the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref. 249564). This study was supported by the Secretary of Public Education of Mexico PROMEP project/103.5/13/6595 – UACOAH-PTC-292 and PROMEP project/DSA/103.5/14/10442 – UACOAH-PTC-312. We gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the infrastructure project - INFR201601 (Ref. 269461) and CB-2015-01 (Ref. 254808). The author A. Aguilar-Reynosa thanks to Mexican Science and Technology Council (CONACY, Mexico) for master fellowship support

    Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept : a review

    Get PDF
    The concept of a biorefinery that integrates processes and technologies for biomass conversion demands efficient utilization of all components. Hydrothermal processing is a potential clean technology to convert raw materials such as lignocellulosic materials and aquatic biomass into bioenergy and high added-value chemicals. In this technology, water at high temperatures and pressures is applied for hydrolysis, extraction and structural modification of materials. This review is focused on providing an updated overview on the fundamentals, modelling, separation and applications of the main components of lignocellulosic materials and conversion of aquatic biomass (macro- and micro- algae) into value-added products.The authors Hector A. Ruiz and Bruno D. Fernandes thank to the Portuguese Foundation for Science and Technology (FCT, Portugal) for their fellowships (grant number: SFRH/BPD/77361/2011 and SFRH/BD/44724/2008, respectively) and Rosa M. Rodriguez-Jasso thanks to MexicanScience and Technology Council (CONACYT, Mexico) for PhD fellowship support (grant number: 206607/230415)

    Biomass for Bioenergy

    Get PDF
    Lignocellulosic wastes has been widely discussed as a promising natural chemical source and alternative feedstock for second-generation biofuels. However, there are still many technical and economic challenges facing its utilization. Lignin is one of the components of lignocellulosic biomass, and is the most rigid constituent and can be considered as a glue providing the cell wall with stiffness and the plant tissue with compressive strength. In addition, it provides resistance to chemical and physical damage. Resistance of lignocelluloses to hydrolysis is mainly from the protection of cellulose by lignin and cellulose binding to hemicellulose. The present book provides basic knowledge and recent research on different applications of biomass, focusing on the bioenergy and different pretreatment methods that overcome the aforementioned hurdles

    Towards practical application of gasification: a critical review from syngas and biochar perspectives

    Get PDF
    Syngas and biochar production are mainly influenced by temperature, feedstock properties, gasifying agent, pressure, and the mass ratio between gasifying agent and feedstock with temperature being the most significant factor. Increasing temperature generally promotes syngas production while suppressing biochar production. The selection of gasifiers (fixed bed, fluidized bed, and entrained flow) is highly dependent on scale requirement (e.g., volume of feedstock and energy demand), feedstock characteristics (e.g., moisture and ash content), and the quality of syngas and biochar. Updraft fixed bed gasifiers are suitable for the feedstocks with a moisture content up to 50 wt.%. High ash feedstocks such as Indian coal, dried sewage sludge, and municipal solid waste that are not suitable for fixed bed gasifiers, have been successfully gasified in bubbling fluidized bed reactors. Woody biomass is not suitable for entrained flow gasifiers unless specialized feeding methods are employed such as wood torrefaction and grinding followed by the existing feeding methods for pulverized coals, biomass-oil biochar slurry preparation followed by pumping, wood or torrefied wood slurry preparation followed by pumping, etc. Syngas and biochar can potentially be contaminated by NH3, H2S, and tar, which can be removed using catalysts (e.g., Ni-based), metal oxides-based sorbents, and thermal and catalytic cracking methods. Existing syngas and biochar upgrading methods suffered from various problems such as economic infeasibility, limited productivity, and fouling, and future syngas and biochar upgrading methods should be aimed to have the features of reliability, security, affordability, and sustainability, towards the practical, large-scale production of syngas- and biochar-based products. One potential solution is to develop integrated systems by combining biochar upgrading and application with syngas upgrading, which warrants an integrated perspective based on both life cycle assessment and economic analysis

    Hydrolysis of rice straw for production of soluble sugars

    Get PDF

    Biomass Processing for Biofuels, Bioenergy and Chemicals

    Get PDF
    Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production

    scaling up of simultaneous saccharification and fermentation of microwave alkali pretreated emptyfruit bunch for lactic acid production

    Get PDF
    Oil palm empty fruit bunches (EFB), a major solid waste in the palm oil industries is a source of lignocellulosic biomass. Cellulose, which is the major component of EFB can be converted to lactic acid. Production of lactic acid is desirable because it can be utilized in industries including bioplastics, chemicals, and cosmetics. The aim of this study is to produce lactic acid on a larger scale from microwave-alkali (Mw-A) pretreated oil palm EFB using simultaneous saccharification and fermentation (SSF) process with Rhizopus oryzae fungus. The present work is divided into four different stages; pretreatment of EFB, development of practical and effective procedure for inoculum build up for lactic acid production on a pilot scale, optimization of process to improve the yield by using fed batch mode operation and scale up of lactic acid production in 150 L fermentor. The Mw-A pre-teatment proved to be an effective method for removing lignin, preserving cellulose fraction and enhancing the enzymatic hydrolysis of EFB. The composition changes on the lignin, hemicelluloses and cellulose after pretreatment was used as indicators to represent the effectiveness of the pretreatment. In order to fulfill the requirement of massive inoculum production for large scale fermentation, a study was performed to develop a protocol in preparing inoculum for lactic acid production from EFB. Multi-stage inocula were developed and their fermentation ability was assessed. The procedure performed eliminated the requirement of huge quantity of spore suspension and improved the fermentation consistency. In order to obtain the desired morphological form of Rhizopus pellets, several parameters such as concentration of spore suspension, storage time and doses of inoculum were varied. Longer storage time of spore suspension of more than three days led to the formation of free mycelia. Low inoculum concentrations of 107 spores/ml are beneficial for formation of pellet. In addition, xylose has a positive effect on pellet formation compared to glucose. To achieve a high lactic acid concentration in the broth, high solids loading was required to allow a higher rate of glucose conversion. However, a decrease in the final lactic acid concentration was observed when running SSF at a massive insoluble solids level. High osmotic pressure in the medium led to poor cellular performance and caused the Rhizopus oryzae pellets to break down, affecting the lactic acid production. The process performance was further improved using a fed-batch operation mode. The fed-batch operation was observed to facilitate higher lactic acid concentration of 12 g/L, compared with the SSF batch mode with final lactic acid concentration of 6.8 g/L. For scale-up of the lactic acid fermentation, the strategy was adopted to provide almost equivalent oxygen mass transfer coefficient (kLa) to the different-sized fermentor systems (16 L and 150 L), thus ensuring the same amount of dissolved oxygen supply in each fermentation broth. At kLa value of 0.06 s-1, final lactic acid concentration in both scales were found identical

    Bio-hydrogen and Methane Production from Lignocellulosic Materials

    Get PDF
    This chapter covers the information on bio-hydrogen and methane production from lignocellulosic materials. Pretreatment methods of lignocellulosic materials and the factors affecting bio-hydrogen production, both dark- and photo-fermentation, and methane production are addressed. Last but not least, the processes for bio-hydrogen and methane production from lignocellulosic materials are discussed

    Effect of pretreatment on the breakdown of lignocellulosic matrix in barley straw as feedstock for biofuel production

    Get PDF
    Lignocellulosic biomass is composed of cellulose, hemicellulose, lignin and extraneous compounds (waxes, fats, gums, starches, alkaloids, resins, tannins, essential oils, silica, carbonates, oxalates, etc). The sugars within the complex carbohydrates (cellulose and hemicellulose) can be accessed for cellulosic bioethanol production through ethanologenic microorganisms. However, the composite nature of lignocellulosic biomass, particularly the lignin portion, presents resistance and recalcitrance to biological and chemical degradation during enzymatic hydrolysis/saccharification and the subsequent fermentation process. This leads to a very low conversion rate, which makes the process uneconomically feasible. Thus, biomass structure requires initial breakdown of the lignocellulosic matrix. In this study, two types of biomass pretreatment were applied on barley straw grind: radio-frequency (RF)-based dielectric heating technique using alkaline (NaOH) solution as a catalyst and steam explosion pretreatment at low severity factor. The pretreatment was applied on barley straw which was ground in hammer mill with a screen size of 1.6 mm, so as to enhance its accessibility and digestibility by enzymatic reaction during hydrolysis. Three levels of temperature (70, 80, and 90oC), five levels of ratio of biomass to 1% NaOH solution (1:4, 1:5, 1:6, 1:7, & 1:8), 1 h soaking time, and 20 min residence time were used for the radio frequency pretreatment. The following process and material variables were used for the steam explosion pretreatment: temperature (140-180oC), retention time (5-10 min), and 8-50% moisture content (w.b). The effect of both pretreatments was assessed through chemical composition analysis and densification of the pretreated and non-pretreated biomass samples. Results of this investigation show that lignocellulosic biomass absorbed more NaOH than water, because of the hydrophobic nature of lignin, which acts as an external crosslink binder on the biomass matrix and shields the hydrophilic structural carbohydrates (cellulose and hemicellulose). It was observed in the RF pretreatment that the use of NaOH solution and the ratio of biomass to NaOH solution played a major role, while temperature played a lesser role in the breakdown of the lignified matrix, as well as in the production of pellets with good physical quality. The heat provided by the RF is required to assist the alkaline solution in the deconstruction and disaggregation of lignocellulosic biomass matrix. The disruption and deconstruction of the lignified matrix is also associated with the dipole interaction, flip flop rotation, and friction generated between the electromagnetic charges from the RF and the ions and molecules from the NaOH solution and the biomass. The preserved cellulose from the raw sample (non-treated) was higher than that from the RF alkaline pretreated samples because of the initial degradation of the sugars during the pretreatment process. The same observation applies to hemicellulose. This implies that there is a trade-off between the breakdown of the biomass matrix/creating pores in the lignin and enhancing the accessibility and digestibility of the cellulose and hemicellulose. The use of dilute NaOH solution in biomass pretreatment showed that the higher the NaOH concentration, the lower was the acid insoluble lignin and the higher was the solubilized lignin moieties. The ratio of 1:6 at the four temperatures studied was determined to be the optimal. Based on the obtained data, it is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 64% compared to using non-treated biomass. However, the use of NaOH led to an increase in the ash content of biomass. The ash content increased with the decreasing ratio of biomass to NaOH solution. This problem of increased ash content can be addressed by washing the pretreated samples. RF assisted-alkaline pretreatment technique represents an easy to set-up and potentially affordable route for the bio-fuel industry, but this requires further energy analysis and economic validation, so as to investigate the significant high energy consumption during the RF-assisted alkaline pretreatment heating process. Data showed that in the steam explosion (SE) pretreatment, considerable thermal degradation of the energy potentials (cellulose and hemicellulose) with increasing acid soluble and insoluble lignin content occurred. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. It is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 33% compared to using non-treated biomass.The carbon content of the solid SE product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased. The RF alkaline and SE treatment combinations that resulted to optimum yield of cellulose and hemicellulose were selected and then enzymatically digested with a combined mixture of cellulase and β-glucosidase enzymes at 50oC for 96 h on a shaking incubator at 250 rev/min. The glucose in the hydrolyzed samples was subsequently quantified. The results obtained confirmed the effectiveness of the pretreatment processes. The average available percentage glucose yield that was released during the enzymatic hydrolysis for bioethanol production ranged from 78-96% for RF-alkaline pretreated and 30-50% for the SE pretreated barley straw depending on the treatment combination. While the non-treated sample has available average percentage glucose yield of just below 12%. The effects of both pretreatment methods (RF and SE) were further evaluated by pelletizing the pretreated and non-pretreated barley straw samples in a single pelleting unit. The physical characteristics (pellet density, tensile strength, durability rating, and dimensional stability) of the pellets were determined. The lower was the biomass:NaOH solution ratio, the better was the quality of the produced pellets. Washing of the RF-alkaline pretreated samples resulted in pellets with low quality. A biomass:NaOH solution ratio of 1:8 at the three levels of temperature (70, 80, and 90oC) studied are the RF optimum pretreatment conditions. The higher heating value (HHV) and the physical characteristics of the produced pellets increased with increasing temperature and residence time. The steam exploded samples pretreated at higher temperatures (180ºC) and retention time of 10 min resulted into pellets with good physical qualities. Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) was further applied on the RF alkaline and SE samples in light of the need for rapid and easy quantification of biomass chemical components (cellulose, hemicellulose, and lignin). The results obtained show that the FTIR-PAS spectra can be rapidly used for the analysis and identification of the chemical composition of biofuel feedstock. Predictive models were developed for each of the biomass components in estimating their respective percentage chemical compositions
    corecore