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a b s t r a c t

The concept of a biorefinery that integrates processes and technologies for biomass conversion

demands efficient utilization of all components. Hydrothermal processing is a potential clean

technology to convert raw materials such as lignocellulosic materials and aquatic biomass into

bioenergy and high added-value chemicals. In this technology, water at high temperatures and

pressures is applied for hydrolysis, extraction and structural modification of materials. This review is

focused on providing an updated overview on the fundamentals, modelling, separation and applications

of the main components of lignocellulosic materials and conversion of aquatic biomass (macro- and

micro- algae) into value-added products.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Considering the amount of biomass available, there is a clear
opportunity to develop commercial processes that could generate
products needed at very high volumes and low selling price. Most of
ll rights reserved.

x: þ351 253 604 429.
such products are now being made from non-renewable resources,
mainly through oil refineries. These refineries, starting from a
complex mixture (petroleum), use a wide range of unit operations
to generate an impressive variety of products that are sold directly or
transformed into value-added products such plastics and fibers.
Approximately 17% of the volume of products derived from petro-
leum in the US is classified as chemicals [1]. If these chemicals could
be obtained from renewable resources (e.g., biomass in a biorefinery),
it would reduce petroleum dependence while also having a positive
environmental impact. In recent years the use of different renewable
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raw materials (lignocellulose material (LCMs) and aquatic marine
materials) has been a growing trend for different applications and
products such as energy, fuels, chemical, cosmetics, medical applica-
tions, construction materials and high added-value products for food
or feed. The term ‘‘biorefinery’’ borrows its origin from the classical
petroleum refinery concept and refers to biomass conversion into
fuels and chemicals with high added-value through the integration of
clean processes [2,3]. Several technologies have been developed
during the last decades that allow this conversion process to occur,
the clear objective being now to make this process cost-competitive
in today’s markets. Hydrothermal processing is an alternative for the
fractionation of these raw materials (LCMs and aquatic biomass). The
fractionation refers to the conversion into its main constituent: LCMs
(i.e., cellulose, hemicellulose and lignin); macroalgae (different poly-
saccharides depending of taxonomic groups); microalgae (oils, pro-
teins, carbohydrates) [4–6]. Bobleter et al. [7] pioneered in using
water for pretreatment to enhance the susceptibility of lignocellulosic
material to enzymatic hydrolysis. The processes with liquid water
under high temperature and pressure are also called autohydrolysis,
hydrothermal treatment, hot compressed water (HCW), hydrother-
molysis, liquid hot water (LHW), aquasolve process, aqueous proces-
sing and pressure-cooking in water [8–24]. The objective of this
review is to present research progresses in hydrothermal processing
of lignocellulosic materials and aquatic biomass for the fractionation
of their main components. The fundamentals, mathematical model-
ing, effects of hydrothermal processing on cellulose, hemicellulose
and lignin and their applications are reviewed. Additional information
on the application of this technology to aquatic biomass (macro- and
micro- algae) is also provided.
2. Hydrothermal processing of lignocellulosic material

Hydrothermal processing has been considered a cost-effective
pretreatment [25] and in general, the major advantages that this
Table 1
Composition of selected lignocellulosic materials (% dry matter).

Raw material Cellulose (%) Hemicellulose (%)

Agricultural residues

Corn cobs 38.8–44 33–36.4

Corn stover 34.32–36.5 20.11–31.3

Wheat straw 33–40 20–33.8

Rice straw 35–36.6 16.1–22

Sugar cane bagasse 34.1–49 15.79–29.6

Barley straw 37.5 25.1–37.1

Rice husk 33.43 20.99

Rye straw 41.1–42.1 23.8–24.4

Rapessed straw 36.59–37 19.6–24.22

Sunflower stalks 33.8 20.2–24.27

Sweet sorghum bagasse 41.33–45.3 22.01–26.3

Herbaceous

Switchgrass 41.2–32.97 25.95–31.1

Alfalfa stems 24.7 14.7

Coastal Bermuda grass 25.59 19.29

Hardwood

Aspen 43.8 18

Hybrid Poplar 48.95 21.73

Eucalyptus 44.6 21.4

Eucalyptus globulus 44.4 21.8

Softwood

Pinus radiata 45.3 22.5

Spruce 43.8 20.8

Cellulose wastes

Newspapers 60.3 16.4

Recycled paper sludge 60.8 14.2

Industry co-products

Distiller’s grains 12.63 16.9

Brewer’s spent grain 18.8–20.97 15.18–32.8
process offers are: (1) the process does not require the addition
and recovery of chemicals different from water, (2) limited
equipment corrosion problems, (3) simple and economical opera-
tion [26–29]. For that reason, the hydrothermal processing can be
considered an environmentally friendly fractionation process
[30]. Lignocellulosic materials (LCMs) are the most abundant
renewable biomass and its annual production was approximately
estimated in 200 billion metric tons worldwide in 2007 [31].
LCMs are mainly composed of cellulose, hemicellulose and lignin
and have great potential as cheap and renewable feedstock for
different applications. In general, LCMs include agricultural resi-
dues, herbaceous, hardwood, softwood, cellulose wastes and
industry co-products. Table 1 shows the composition of different
lignocellulose materials. The fractionation of LCMs into products
derived from their structural components is an attractive possi-
bility leading to the biorefinery concept. However, the main
problem of fractionation is the recalcitrant nature of these
materials. Fractionation may be achieved through hydrothermal
processing, whose first step is hemicellulose solubilization. Fig. 1
shows the scheme of a biorefinery using hydrothermal proces-
sing. This process has been mainly used as a pretreatment for
bioethanol production; in recent researches, the use of a sequen-
tial process has been applied as an alternative of papermak-
ing production, also as a technology for converting agro-food
by-products into useful food ingredients [12, 65–71].

2.1. Fundamentals and operating conditions of hydrothermal

processing

In hydrothermal processing LCMs are exposed to water in the
liquid state, at elevated temperature and pressures, that penetrated
cell’s structures, hydrates cellulose, depolymerizes hemicellulose (to
oligomers and monomers) being between 40% and 60% of the total
biomass dissolved in the process (Fig. 2). In water at high tempera-
tures (150–230 1C), the H-bonding starts weakening, allowing
Lignin (%) References

13.1–18 Liu et al. [32]; Wang et al. [33]

11.9–13.55 Weiss et al. [34]; Liu and Cheng [35]

15–26.8 Ruiz et al. [12]; Talebnia et al. [36]

12–14.9 Hsu et al. [37]; Yadav et al. [38]

19.4–27.2 Mesa et al. [39]; Maeda et al. [40]

15.8–16.9 Sun et al. [41]; Garcı́a-Aparicio et al. [42]

18.25 Garrote et al [43]; Abbas and Ansumali [44]

19.5–22.9 Ingram et al. [21]; Gullón et al. [45]

15.55–18 Dı́az et al. [13]; Lu et al. [46]

14.6–19.9 Ruiz et al. [47]; Caparrós et al. [48]

15.2–16.47 Zhang et al. [49]; Goshadrou et al. [50]

17.34–19.1 Keshwani and Cheng [51]; Hu et al. [52]

14.9 Ai and Tschirner [53]

19.33 Wang et al. [54]

20.8 Tian et al. [55]

23.25 Pan et al. [56]

30.1 Gonzalez et al. [57]

27.7 Romanı́ et al. [9]

26.8 Araque et al. [58]

28.83 Shafiei et al. [59]

12.4 Lee et al. [60]

8.4 Peng and Chen [61]

– Kim et al. [62]

21.7–25.62 Carvalheiro et al. [63]; Pires et al. [64]



Fig. 2. Batch reactor systems for hemicellulose depolymerization in hydrothermal processing.

Fig. 1. Scheme of a biorefinery using hydrothermal processing and LCMs as raw material.
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autoionization of water into acidic hydronium ions (H3Oþ) that act as
catalysts and basic hydroxide ions (OH�). In the subcritical region
(100–374 1C) the ionization constant (Kw) of water increases with
temperature. However, when exceeding its critical point (374 1C and
22.1 MPa), the values of dielectric constant, ionization constant (Kw)
and ionic product of water drop drastically. Moreover, hydronium
ions are generated from organic acids, mainly acetic acid from acetyl
groups and uronic acid [28,72–75]. Acetyl groups are present in LCMs
and as they are associated with hemicellulose, the hydration of the
acetyl groups leads to the acidification of the liquor and thus,
formation of hydrogen ions. A number of hypotheses have been
suggested to explain this phenomenon. According to these considera-
tions, in a recent work, Liu [76] presented the following model for
hemicellulose solubilization in hydrothermal processing.

H2O2Hþ þOH� ð1Þ

Hþ þH2O2H3Oþ ð2Þ

R�POACþHþ2R�POACnHþ ð3Þ

R�POACnHþ þH2O2R�POHnHþ þHOAC ð4Þ

R�POACnHþ þH2O2R�OHnHþ þHPOAC ð5Þ

HOAC2Hþ þOA�C ð6Þ
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R�POHnHþ2R�POHþHþ ð7Þ

R�OHnHþ2R�OHþHþ ð8Þ

Reaction steps to solubilize hemicellulose

R�XnOHþHþ2R�XnOHnHþ ð9Þ

R�XnOHnHþ þH2O2R�XmOHnHþ þHXSOH ð10Þ

Reaction steps to reduce the chain length inside the hydrothermal
process liquor

HXnOHþHþ2HXnOHnHþ ð11Þ

HXnOHnHþ þH2O2HXmOHnHþ þHXSOH ð12Þ

where Xn represents an n-xylooligomer middle group, mþs¼n,

R- denotes the cellulose or lignin bonded to LCMs, P represents a
segment of hemicellulose, HXnOH is an n-xylooligomer, HOAC

represents the acetic acid molecule and AC is CH3CO [76]. On the
other hand, the most important operational variables of hydro-
thermal processing include temperature, residence time, particle
size, moisture content (ratio liquid/solid) and pH influence on the
fractionation of LCMs and must be taken into consideration to
maximize the product yield (i.e., hemicellulose sugar production,
accessible surface area for enzymatic saccharification, etc.).
The relationship between temperature-time strongly influences
the physical–chemical characteristics of LCMs in hydrothermal
processing. Ballesteros et al. [77] reported an increase of
hemicellulose-sugar degradation at higher temperatures and
residence times, concluding that at more severe operational
conditions there are more losses of hemicellulosic sugar. For this
reason, a strict control is required for high temperature reactions
due to thermal degradation. Several works showed that the
products (pentose and oil yield) from hydrothermal processing
are favored at lower reaction temperatures and longer residence
times [78–80]. Normally, when larger particle sizes are used, heat
transfer problems lead to overcooking of the exterior (with
consequent formation of inhibitors) and incomplete autohydro-
lysis of the interior. This problem can be overcome by reducing
particle size as the first pretreatment step. This size reduction
process not only changes the particle size and shape, but also
increases bulk density, improves flow properties, increases por-
osity, increases surface area and is usually required to make
material handling easier before hydrothermal processing. The
higher surface area increases the number of contact points for
chemical reaction [12,81]. Mosier et al. [82] reported that size
reduction is not needed since the lignocellulose particles break
apart when cooked in water. Ballesteros et al. [83] showed that
the utilization of very small chips of softwood in hydrothermal
processing would not be desirable to optimize the effectiveness of
the process and improve economy, due to the significant energy
requirements of particle reduction process. However, in recent
work, Hosseini and Shah [84] reported that it is possible to
improve in 50% the energy efficiency of pretreatment by the
optimization of particle size properties. According to Ruiz et al.
[12], the use of blends with different particle size distributions
has a selective influence over the sugar extraction: thus, the use
of a blend with defined percentages of the various particle sizes is
recommended before carrying out a hydrothermal processing.
Moisture content and ratio liquid/solid may also greatly influence
the ability of heat and chemicals (H3Oþ) to penetrate LCMs,
causing an uneven treatment of material. An uneven treatment
can potentially result in the selective degradation of the outer
portion of the LCMs, while at the same time the interior is less
affected by the treatment [81]. Cullis et al. [85] reported that the
moisture content has a dramatic effect on the efficacy of the
hydrothermal processing as a substantial decrease in the amount
of hemicellulose-derived carbohydrates recovered in the water-
soluble fraction was observed when increasing the starting
moisture content from 12 to 30%, Rodrı́guez et al. [86] showed
that it is possible to obtain high glucose, xylose, arabinose and
acetic acid concentrations by combining high temperatures with a
medium-low treatment time and liquid/solid ratio. On the other
hand, the formation of hydronium ions from water and from
organic acids is an important factor during hydrothermal proces-
sing, since the LCMs and water mixture will reach high tempera-
tures and pressures during the process. These high temperatures
and pressures will accelerate the acid-catalyzed hydrolysis of
cellulose and hemicellulose as well as the acid-catalyzed degra-
dation of glucose and xylose. Monitoring and control of the pH in
hydrothermal processing will maximize the solubilization of the
hemicellulose fraction as liquid soluble oligosaccharides while
minimizing hydronium ions concentration and, more impor-
tantly, the degradation of these oligosaccharides and monosac-
charides to degradation products [29,87]. Mosier et al. [88]
pretreated corn fiber using pH controlled liquid hot water at
160 1C and a pH value above 4.0 and found that 50% of the fiber
was dissolved in 20 min. The carbohydrates dissolved by the
pretreatment were 80% soluble oligosaccharides and 20% mono-
saccharides with o1% of the carbohydrates lost to degradation
products. Cara et al. [89] reported a slight pH decrease of
hydrothermal processing hydrolyzates, in the range of 3.8 to
3.3, and an increase of degradation product concentrations
(furfural) from 0.4 to 1.7 g/L, respectively.

In hydrothermal processing there are different types of reactor
configurations. (1) Batch reactor: LCMs solid particles are mixed
with water in the reactor (Fig. 3A). The residence time of the
reacting solid is long [8,16,90–92]. In a recent work, Gullón et al.
[45] reported a conversion of 69.2% from initial xylan into
xylooligosaccharides using a batch reactor configuration at
208 1C and rye straw as raw material; (2) Semi-continuous reactor

of (flow-through partial flow-through): hot water is passed over a
stationary bed of LCMs and dissolves lignocellulose components
while the liquid products are rapidly swept out (Fig. 3B). The
residence time of liquid products is short, compared to a batch
reactor [16,82,93–98]. Liu and Wyman [99] reported that in this
type of reactors the fluid velocity in flow through has a significant
impact on hydrothermal processing. Increasing fluid velocity
significantly accelerated solubilization of total mass, hemicellu-
lose and lignin even at the similar liquid residence times; (3)
Continuous reactor (co-current, counter-current): the LCMs are
passed in one direction while water is passed in the same or
opposite direction (Fig. 3C and D). A continuous reactor system is
also typically required to operate at high temperatures and
pressures to achieve a high conversion of the feedstock within a
short residence time [16,82,100–102]. Makishima et al. [103]
reported a 82% conversion of xylan in xylose and xylooligosac-
charides using a continuous flow type reactor. Yu and Wu [16]
suggested that the characteristics of liquid products are strongly
influenced by the reactor configuration.
2.2. Modeling of hydrothermal processing

Modeling in hydrothermal processing provides a way to
compare results from experiments carried out at different condi-
tions. Table 2 shows the main mathematical models used in both
isothermal or non-isothermal hydrothermal processing (Fig. 4A
and B) [69,104]. An often used option to modeling the effects of
the main operational variables by pseudo first order kinetics is the
severity factor (R0) proposed by Overend and Chornet [105] and
Chornet and Overend [106]. This empirical model has been



Fig. 3. Representation of different reactor configurations for hydrothermal processing. (A) batch; (B) semi-continuous (flow-through reactor); (C) continuous (co-current);

(D) continuous (counter-current)(adapted from Mosier et al. [82]; Yu and Wu [16]).

Table 2
Models used in hydrothermal processing.

Effect Model Variables Reference

Severity factor R0, easy way for comparing

results among experiments carried out under

different conditions of temperature and time.

R0 ¼
R t

0 exp T�100
14:75

� �
dt t is the reaction time (min), T is temperature (1C),

100 is the temperature of reference and 14.74 is

an empirical parameter related with activation

energy, assuming pseudo first order kinetics. The

results are usually represented as a function of log

(R0).

Overend and

Chornet [105];

Chornet and

Overend [106]

H-factor (HF), is a relationship between time and

temperature, which is only an approximation

of the reaction due to the fact that the proton

concentration changes with time and

activation energy. The concept of HF was

development for Kraft/chemical pulping.

However, also has been applied for

hydrothermal processing Griebl et al. [64].

HF ¼
R t

0 exp 43:186� 16115K
T

� �
dt t is the time (min), T is the temperature in (1C) and

the constants are related with the activation

energy.

Liu et al. [76]

Severity factor R0, in a non-isothermal

hydrothermal processing, which includes the

combination of temperature and reaction time

along heating and cooling.

logR0 ¼ log R0 HeatingþR0 Cooling

� �
logR0 ¼

Z tMAX

0

TðtÞ�100

o dtþ

Z tF

tMAX

T 0ðtÞ�100

o dt

� � tMAX (min) is the time needed to achieve

maximum autohydrolysis temperature, tF (min) is

the time needed for the whole heating-cooling

period, T(t) and T0(t) stand for the temperature

profiles in heating and cooling, respectively and o
is an empirical parameter.

Romanı́ et al.

[9]

Model that explains the severity factor in

function of chip size and processing time

taking into account the diffusion of liquid into

LCMs.

R0 ¼
t

rr2 ðð1�0:5ln jÞ=2MjDDCÞ
ne ðT�100ð Þ=14:75Þ10�pH t is the time of reaction (min), T is the temperature

(1C), D, is the diffusion coefficient, r is the density

of the fluid, f is thevoid fraction (porosity), r is the

particle radius (mm), M is the molecular weight

and DC is the concentration gradient.

Hosseini et al.

[84]

Relationship between the severity factor and the

viscosity of slurries made from sewage sludge

during hydrothermal processing.

m¼ 2:755� 105
� R0:8250

0
m is viscosity (Pa s/s) and R0 is the severity

parameter.

Yanagida et al.

[107]

Model that explains the time needed for the

chips to reach the desired temperature of

wood with round or square cross section 1 and

rectangular cross section 2 in hydrothermal

processing.

ð1Þ t¼ a Thtð Þ
b Tctrð Þ

c Tinitð Þ
dDeMf Gg

ð2Þ t ¼ a Thtð Þ
b Tctrð Þ

c Tinitð Þ
d
ðTHÞdWf MgGh

t is the time estimated (min) for the center reach

target temperature, Tht is the heating temperature

(1F), Tctr is the target center temperature, Tinit is the

initial wood temperature (1F), D is de diameter of

round cross section (in), TH is the thickness of

rectangular board (in), W is the width of

rectangular board (in), M is the moisture content

(%), G is the specific gravity, a–h are the regression

coefficients.

Simpson [108]

Model for calculating the time needed for water

diffusion into the LCMs as a function of the

process and LCMs characteristics (assuming

that LCMs have a porous structure) in

hydrothermal process.

tw ¼
rr2 1�0:5ln jð Þ

2MjDDC
Where r is the density, ris the particle, f is the

porosity, D is the diffusion coefficient, M is the

molecular weight and DC is the concentration

gradient.

Hosseini et al.

[109]

Model for calculating the temperature needed

for different particle sizes. Temperature as a

function of severity factor and radius in

hydrothermal processing.

T2 ¼ T1�14:7ln R2
R1

r1
r2

� 	2
� �

T2 is the temperature (1C) needed for compensate

the particle size increase, T1 is the initial LCMs

temperature which can be assumed as 20 1CC r1

and r2 are the radius (cm), R1 and R2 are de

severity factor.

Hosseini et al.

[109]
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Fig. 4. Heating and cooling temperature profiles corresponding to: (A)non-isothermal and (B) isothermal regimen in hydrothermal processing(adapted from Romanı́ et al.

[104]; Ruiz et al. [69]).
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generally used to correlate the effects of operational conditions
(i.e., temperature, residence time, particle size, pH) on hemicellu-
lose solubilization. It was initially used to control the pulping
process in the paper industry, but it was reintroduced for
comparison of hydrothermal processing pretreatment severities
on LCMs [110–112]. Hydrothermal processing is appropriate for
hemicellulose depolymerization and, for a detailed understanding
of the chemical reactions that occur during hydrothermal proces-
sing, the development of kinetic models enables a deeper insight
on the several phenomena involved and provides mathematical
equations suitable for simulation, optimization and design of
operational strategies. Mathematical models based on pseudo-
first order kinetics have been successfully employed for hydro-
lysis modeling. Garrote et al. [113] and Gullón et al. [45]
suggested the kinetic reaction of hydrothermal processing using
rye straw as raw material based on the following considerations:
(1) a small part of the glucan fraction was degraded into
glucooligosacharides, which were partially hydrolyzed to give
glucose; (2) hemicelluloses were partially depolymerized along
hydrothermal processing; (3) xylan was made up of two fractions
(susceptible/non-susceptible to hydrothermal processing; the
susceptible xylan fraction was hydrolyzed to give high molecular
weight xylooligomers, which can be further decomposed into low
molecular weight xylooligomers, subsequent xylose and promote
dehydrated of xylose to furfural; (4) arabinosyl and acetyl groups
hydrolysis are easily cleaved from xylan; (5) uronic acid fraction
was made up of two fractions (susceptible/non-susceptible to
hydrothermal processing). Similar considerations of xylan kinetic
model were proposed by Garrote et al. [114] using corncob as raw
material as follows:

Hemicellulose-
Ki

oligosaccharide -
Kiþ 1

monosaccharides

-
Kiþ 2

degradation product ð13Þ

In order to provide a quantitative interpretation of xylan
degradation under non-isothermal conditions Garrote et al.
[115] proposed a modification, where some degradation of the
slow-reacting fraction occurred at high temperatures. Nabarlatz
et al. [116] developed a model for the kinetics of xylan depoly-
merization. The model assumes that the composition of each of
the two xylan fractions in the LCMs does not change with the
conversion, there is not direct formation of monomers (i.e.,
xylose, arabinose and acetic acid), the monomers are formed
solely by depolymerization of the oligomers and the rates of
monomer formation from oligomers are independent of the molar
mass, structure and the oligomers. Carvalheiro et al. [63] pro-
posed two models for xylan and arabinan degradation assuming
that furfural was formed from both pentoses. Zhuang et al. [117]
reported the kinetic modeling of xylan, measuring the oligosac-
charides and monosaccharides as reducing sugar and the kinetic
model was thus adopted as:

Xylan-
K1

reducing sugars-
K2

degradation products ð14Þ

In a recent work Martinez et al. [118] proposed kinetic models
for arabinan and acetyl groups based on sequential and parallel,
irreversible and first-order reactions with Arrhenius-type tem-
perature dependence and reported that the kinetic models pro-
vided a good prediction for the data of reaction liquors as function
of the operational conditions. An overview about the kinetic
modeling of cellulose hydrolysis can be found by Zhao et al.
[119] and Rogalinski et al. [100] as follows:

Cellulose-
K1

oligosaccharides-
K2

hexoses-
K3

degradation products

ð15Þ

2.3. Effect of hydrothermal processing on cellulose

Cellulose is the most abundant biopolymer that can be
obtained from numerous LCMs resources and there is a clear
opportunity to develop commercial processes that could generate
products that are needed at very high volumes and low selling
price. One strategy to fractionation of LCMs is hydrothermal
processing, since hemicelluloses are depolymerized into soluble
products, whereas the solids from hydrothermal processing are
enriched into cellulose and lignin. A variety of applications can be
visualized for this phase from hydrothermal processing of LCMs.
Currently, the most promising approach for using LCMs is enzy-
matic hydrolysis of the cellulose content after pretreatment for
second generation bioethanol production (see Table 3). Pretreat-
ment is required to alter the structure and chemical composition
due to the robustness of LCMs. Hydrothermal processing as
pretreatment caused re-localization of lignin on the surface of
LCMs [127], thus enzyme accessibility to the LCMs structure in
the pretreated material is favoured, increasing the potential of
cellulose saccharification. Moreover, physical changes that
improve enzymatic saccharification include an increase in pore
size to enhance enzyme penetration and an increase in accessible
area that has been shown to correlate well with the susceptibi-
lity of these substrates to enzyme saccharification using hydro-
thermal processing as pretreatment [27,95,128–134]. Table 4
shows the enzymatic saccharification yield using hydrothermal
processing as pretreatment at different operational conditions
and demonstrate the ability of this technology to make LCMs
accessible to enzymes. Hydrothermal processing is a promising
pretreatment for second generation bioethanol production, con-
sidering its great versatility and feasibility in the fractionation of
LCMs, that it is a key in the development of biorefineries, but the
large-scale commercial utilization of this pretreatment has still
not been implemented. However, there are few companies that



Table 3
Production of bioethanol using hydrothermal processing as pretreatment under different operational conditions and raw materials.

Raw material Temp. (1C) Time (min) Particle size Ethanol Yield (%) Reference

Wheat straw 195 6–12 – 89 Petersen et al. [14]

Rice Straw 180 30 250–420 mm 100 Yu et al. [25]

Switchgrass 210 15 – 72 Suryawati el at. [17]

Eucalyptus globulus 230 – 8 mm 86.4 Romanı́ et al. [26]

Wheat straw 214 2.7 0.5–2 mm 90.6 Pérez et al. [19]

Corn stover 195 10 – 61.2 Xu et al. [120]

Sugar cane bagasse 220 2 – 85 Walsum et al. [121]

Wheat straw 200 40 0.5–2 mm 96 Pérez et al. [122]

Poplar nigra 240 60 2–5 mm 60 Negro et al. [123]

Sweet sorghum bagasse 190 – – 74 Rohowsky et al. [124]

T85 bermudagrass 230 2 500 mm 70 Brandon et al. [125]

Ulex europæus 230 – 8 mm 82 Ares-Peón [126]

Table 4
Enzymatic Saccharification of pretreated solids with hydrothermal processing as

pretreatment.

Raw material Temp.

(1C)

Time

(min)

Saccharification

yield (%)

Reference

Prairie cord

grass

210 10 94.53 Cybulska et al.

[27]

Oil palm fronds 178 11.1 92.78 Goh et al. [135]

Coastal Bermuda

grass

150 60 67.4 Lee et al. [136]

Corn stover 190 15 69.6 Zeng et al. [137]

Wheat straw 195 3 72 Thomsen et al.

[138]

Switchgrass 200 10 74.4 Hu and Ragauskas

[139]

Tamarix

ramosissima

200 180 88 Xiao et al. [140]

Eucalyptus

grandis

200 20 96.6 Yu et al. [141]

Barley husks 212 – 100 Ares-Peón et al.

[142]

Eucalyptus

globulus

230 – 97.9 Romanı́ et al.

[104]

Wheat straw 180 30 90.88 Ruiz et al. [143]

Prairiecordgrass 190 1 81.28 Cybulska et al.

[144]

Sugarcane

bagasse

190 10 69.2 Silva et al. [145]
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have operated as demo-scale plants. For example, Inbicon has
been built a in Kalundborg Denmark using wheat straw as raw
material under hydrothermal pretreatment conditions at 180–
200 1C for 10–20 min with steam. This demo-scale plant is
according to the Integrated Biomass Utilization System (IBUS)-
concept that resulted in a continuous hydrothermal pretreatment
[146–149]; moreover the Inbicon process has been recently
reviewed by Larsen et al. [150]. In respect to the techno-
economic study of hydrothermal process as pretreatment; only
few analyses have been reported. Treasure et al. [151]reported an
analysis of bioethanol and electricity production from hardwood
and softwood as raw material and autohydrolysis as pretreat-
ment, they concluded that the financial performance of autohy-
drolysis pretreatment appears to be most sensitive to ethanol
yield, followed by capital investment and raw material cost.
Recently Littlewood et al. [152] showed a minimum ethanol
selling prices of £0.474/L ($2.85/gal) for hydrothermal pretreat-
ment, also reported that the raw material (wheat straw) prices
and the enzymes costs were the main contributors for the
minimum ethanol selling prices in all scenarios studied and
within the pretreatment area alone, the hydrothermal pretreat-
ment was the lowest total area cost.
On the other hand, after hydrothermal processing the cellulose
shows a little degradationat different temperatures 4230 1C. In a
recent work, Romanı́ et al. [26] reported decreases of 5.29% and
19.55% of cellulose present in pretreated solids at 240 1C and
250 1C, respectively, defining the operational range where partial
cellulose degradation began to take place. According to Sakaki
et al. [153] cellulose started to degrade in hexoses and oligosac-
charides above 230 1C and almost all cellulose was decomposed at
295 1C. Jin et al. [154] reported that cellulose hydrolyzes into
glucose in 2 min at 300 1C, but that the glucose decomposes in
30 s under the same conditions. Other type of solid residues
which contain mainly cellulose and lignin after hydrothermal
processing are the raw material for pulp and paper marking [155].
Caparrós et al. [48] reported similar characteristics of paper
sheets obtained from sequencing hydrothermal processing and
ethanol pulping to those obtained by soda pulp. Vila et al. [68]
showed the susceptibility of hydrothermally treated solids to
kraft processing pulp which provided cellulose pulps with low
kappa numbers, highly susceptible to alkaline oxygen bleaching.
Romanı́ et al. [9] used the solids (celluloseþ lignin) obtained after
hydrothermal processing for delignification and improved the
enzymatic saccharification of cellulose from Eucalyptus globulus.
According to Alfaro et al. [156] the cellulose pulp with hydro-
thermal processing reduces kappa number, viscosity and
decreases paper strength. Caparrós et al. [157] evaluated the solid
phase obtained from hydrothermal processing using the organo-
solv process for produced paper sheets, analyzing the influence of
operational variables on the viscosity, tensile index, burst index,
tear index and brightness obtaining suitable characteristics of
paper sheets.

2.4. Effect of hydrothermal processing on hemicellulose

The hemicellulose is the second most abundant polysaccharide
in nature and is made up of amorphous heteropolysaccharides
constituting 14–50% of the raw LCMs dry weight. Hemicellulose
consists of various structural units, including five-carbon (xylose
and arabinose) and six-carbon sugars (mannose, galactose,
glucose), which can be substituted with phenolic, uronic or acetyl
groups. The most abundant block of hemicellulose in hardwoods
and many agricultural residues is xylan (made up mainly of
xylose units) [43,158,159]. Hydrothermal processing is a suitable
method for hemicellulose depolymerization, under selected
operational conditions as hemicellulose can be almost totally
removed from LCMs (see Fig. 2) [160], being decomposed into
valuable soluble products such as oligosaccharides, monosacchar-
ides, sugar-decomposition products (such as furfural or hydroxy-
methylfurfural) and acetic acid (from acetyl groups hydrolysis).
Furthermore, when a xylan is subjected to hydrothermal processing
under mild temperature, high-molar mass xylo-oligosaccharides
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(XOS) and xylose are produced, being the major products derived
from hemicellulose present in the liquor phase [22,45,161]. Under
harsh operational conditions, xylose can be dehydrated to furfural,
and furfural can be converted into degradation products [115]. Xylo-
oligosaccharides are bioactive molecules with high-added value and
have great prebiotic potential making them useful as ingredients for
functional foods. From a nutritional point of view, XOS are usually
considered to be nondigestible oligosaccharides [116,162–166].
Recently, solubilization studies of XOS from LCMs by hydrothermal
processing have shown the efficiency of this technology to improve
the yields of extraction. Gullón et al. [45] reported a yield of 69.2% of
XOS with respect to the initial xylan at 208 1C, using rye straw as
raw material. Nabarlatz et al. [167] reported 58.3% of crude XOS after
hydrothermal processing at 179 1C for 23 min using ultra-filtration
for the purification of XOS. Carvalheiro et al. [164] also reported a
similar yield of 61% of XOS at 190 1C after 5 min, using brewery’s
spent grain. According to Garrote et al. [168], the hydrothermal
processing in non-isothermal reaction conditions produced 23.2 g of
oligosaccharides/100 g of oven-dried corncobs at 202 1C. Boussarsar
et al. [92] showed that it is possible to obtain an acceptable xylose
extraction yield and low degradation of sugar monomers for 2 h at
170 1C. Kabel et al. [165] and Carvalheiro et al. [164] in previous
studies for the production of XOS by hydrothermal processing of
brewery’s spent grain reported that several oligosaccharide mixtures
of different molecular weight distributions were obtained depending
on temperature and reaction time (severity of reaction conditions).
Longer reaction times led to a decreased amount of oligosaccharides
and an increase of the concentration of monosaccharides, acetic acid
and sugar decomposition products. Montané et al. [169] used active
carbon as an alternative for the purification of XOS produced by
hydrothermal processing. Vegas et al. [170] used ultra- and nano-
filtration for the purification of oligosaccharides from rice husk
hydrothermal processing liquors, reporting that it is possible to
recover about 90% of the XOS present in hydrolysis liquors. Different
reactor configurations have been used for improving the recovery of
hemicellulose. According to Liu and Wyman [99], xylose yield
improved from 60 to 82% with an increase in the fluid velocity from
2.8 to 10.7 cm/min on a flowthrough reactor using corn stover as
raw material at 200 1C after 8 min residence time. Makishima et al.
[103] found an effective recovery of hemicellulose using a tubular
type reactor at 200 1C for 10 min, 82% of xylan fraction recovered as
mixture of xylose, XOS and higher XOS with polymerization degree
higher than 10. Garrote and Parajó [171] reported that more than
80% of the initial xylan can be removed from wood with a
conversion in XOS up to 65% of the initial xylan in a batch reactor.
Other important point is the deacetylation of hemicellulose during
the hydrothermal processing; Garrote et al. [172] studied the time
course of acetyl groups’ hydrolysis from both xylan and xylan
degradation products, and their relationship with the concentration
of acetic acid. Xylitol, a pentitol derived from xylose by reduction has
technological and biological properties, such as high sweetening
power, anticariogenic properties and suitability for consumption by
diabetics, that foster its utilization in the food industry. XOS
produced in hydrothermal processing can be used as a source of
xylose for the production of xylitol. However, these XOS cannot be
directly metabolized by microorganisms. In order to prepare fer-
mentation media for the production of xylitol from hydrothermal
processing liquors, XOS must be first converted into monosacchar-
ides by either acid or enzyme catalyzed reactions, this process
providing a way to obtain xylose solutions. Rivas et al. [173] used
the sequence (hydrothermal processing-posthydrolysis) with corn-
cob hydrolysate and observed an increase in the productivity and
yield of xylitol in comparison with the results obtained in a
fermentation media made by the conventional acid hydrolysis
pretreatment. Duarte et al. [174] produced xylitol and arabitol from
brewery’s spent grain hydrolysate using the sequence (hydrothermal
processing-posthydrolysis) by Debaryomyces hansenii without any
detoxification treatment. Garrote et al. [175,176] used corncobs and
Eucalyptus globulus as raw material in hydrothermal processing and
concluded that generation of xylose solution to be used as fermenta-
tion media through sequential stages of hydrothermal processing-
posthydrolysis, shows favorable features in terms of substrate
conversion, reaction, selectivity and low inhibitor concentration.

Vázquez et al. [177] reported a concentration of 24 g xylose/L,
using the sequence (hydrothermal processing-enzymatic posthy-
drolysis) using corncobs as raw material at 175 1C for 20 min, the
advantage being that the hydrolysate after this sequence is free of
sugar degradation products and the acetic acid concentration
could be reduced, thus improving their potential fermentability.
XOS can also be synthesized and used as thermoplastic com-
pounds for biodegradable plastics, water-soluble films, coatings
and capsules [178]. Glasser et al. [179] produced a thermoplastic
from the chemical modification of pentose-rich oligosaccharides
such as xylose. Lindblad et al. [180] produced hydrogels from
hemicellulosic oligosaccharides and 2-hydroxyethylmethacrylate.
In a recent work, Ruiz et al. [71] reported the viability of the
application of the hemicellulosic liquid phase, recovery after
hydrothermal process, in the production of polymeric blend films.
The need to replace traditional plastics due the negative environ-
mental impact caused, has increased the interest on the develop-
ment of biodegradable polymers. Polylactic acid (PLA) is a
biodegradable polymer with thermoplastic character, produced
by polymerization of lactic acid (which can be obtained by
fermentation of sugars derived from LCMs), that finds applica-
tions in such fields as packaging, disposable goods or textile
fibres. Vila et al. [181] evaluated rice husks and Eucalyptus

globulus in hydrothermal processing for the production of
xylose-based culture media for lactic acid production and the
application of the fiber contained in the pretreated solids for
making PLA-based biodegradable composites. In a recent work
González et al. [182] produced biodegradable biocomposites from
Citysus scoparius using hydrothermal processing, obtaining a
maximum concentration of oligomers (71% of the initial xylan)
at 215 1C and a solid phase (celluloseþ lignin) suitable as a
reinforcement for PLA-based composites, the composites showing
better stiffness compared with pure PLA. Other important appli-
cation of hemicellulosic liquid phase after hydrothermal pretreat-
ment is the production of xylanases [70].

2.5. Effect of hydrothermal processing on lignin

Lignin is the most abundant aromatic heterogeneous polymer
formed by phenolic compounds and their precursors are three
aromatic alcohols namely, (1) p-coumaryl, (2) coniferyl and (3)
sinapyl alcohols, which are bonded together with over two-third
being ether bonds (C–O–C) and the rest being C–C bonds. The
respective aromatic constituents in the polymer are called p-
hydroxyphenyl (H), guaiacyl (G) and syringyl (S), the structure of
lignin suggesting that it can be a valuable source of chemicals,
particularly phenolics [8,183–186]. Lignin is always associated
with hemicelluloses, not only as physical admixtures, but also
through covalent bonds. During the hydrothermal processing
lignin and lignin–hemicellulose linkages can undergo degrada-
tion, partial depolymerization and profound re-localization.
Moreover, the fraction of solubilized lignin depends on the
operation conditions (severity of reactions conditions) and on
the raw material (LCMs) [28,66,127]. Lora and Wyman (1978) and
Bobleter and Concin (1979) cited by Garrote et al. [28] and
Zhang et al. [187] suggested a two-phase mechanism for lignin
reaction: (1) a very fast reaction where lignin fragments with low
molecular weight and high reactivity are solubilized by breaking
lignin–carbohydrate bonds into soluble fragments; (2) a slower
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reaction where the soluble fragments react with one another by
recondensantion and lignin repolimerization, which also occurs in
the presence of the organic acids liberated in the hydrothermal
processing. Soluble lignin being aromatic and possessing many
chromophoric structural units strongly absorbs ultraviolet (UV)
light and the absorbance at either 205 or 280 nm is the basis of
several techniques for the quantitative determination of soluble
lignin [188,189]. The partial depolymerization of lignin and
breaking of lignin–hemicellulose linkages produced part of the
phenolics present in the hydrothermal processing liquors
[66,190]. Using hardwood as raw material, Marchessault et al.
[191] reported that the ether linkages of lignin are cleaved during
hydrothermal processing causing a decrease in molecular weight
and an increase in phenolic content. These phenolics, considered
as the byproducts of LCMs hydrothermal processing are an
attractive source for natural antioxidants and might have poten-
tial applications as food additives [183,192]. The extracts and
compounds derived from soluble lignin can be selectively
extracted from hydrothermal processing liquors with ethyl acet-
ate. This phenolic-rich extract contains a variety of potentially
valuable compounds with antioxidant, antimicrobial and biologi-
cal activities comparable to that of synthetic antioxidants
[193–195]. Several lignin-derived products have been identified.
Garrote et al. [22] reported benzoic, gallic and cinnamic acids in
the liquor after hydrothermal processing at 216 1C using barley
husk as raw material. Conde et al. [196] found that hydroxytyr-
osol, homovanillyl alcohol, oleuropein, syringaldehyde, tyrosol,
3,4-dihydroxybenzaldehyde were the major phenolic compounds
in the soluble fraction from the hydrolyzates of barley husks
obtained by hydrothermal processing. In a recent work, Tsubaki
et al. [197] used microwave as an alternative heating source for
tea residues autohydrolysis and reported that vanillin, vanillic
acid, dihydroconiferyl alcohol and guaiacol are degradation com-
pounds originated from guaiacyl (G) units of lignin. In a similar
way, syringaldehyde, syringic acid and sinapaldehyde were con-
sidered to be originated from syringyl (S) units of lignin. Conde
et al. [198] reported that gallic acid, 3,4-dihydroxybenzaldehyde,
vanillic acid, syringic acid, vanillin and p-coumaric acid were the
major low molecular weight phenolics present in the refined
media using barley husks as raw material. According to Castro
et al. [195], the major compounds founded in lignin-derived
fractions were syringaldehyde, vanillin, 4-formyl benzoic acid
methyl ester, desaspidinol, syringol, guaiacol, homosyringic acid
and methoxyeugenol using Olea europea wood as raw material.
Pourali et al. [199] used subcritical water conditions and reported
the production of eleven phenolic compounds (caffeic, ferulic,
gallic, gentisic, p-coumaric, p-hydroxybenzoic, protocatechuic,
sinapic, syringic, vanillic acids and vanillin) and concluded that
the content of phenolic compounds increased with the tempera-
ture. Many beneficial effects on human health have been attrib-
uted to simple phenolics: oleuropein, hydroxytyrosol, caffeic
acids (prevention of cardiovascular diseases); hydroxytyrosol,
tyrosol, vanillin, vanillic acid, caffeic acids (prevention of tumoral
diseases); p-coumaric acid, caffeic acid, ferulic acid (protection
against LDL lipoprotein oxidation); gallic acid (skin protective
ability); vanillin, (anti-inflammatory) [66,183,200–203]. In regard
to antioxidant activity, Tsubaki et al. [204] reported the produc-
tion of polyphenols above 200 1C, obtaining strong antioxidant
activity using tea residues as raw material and microwave
heating. Conde et al. [198] reported that the hydrothermal-
extraction process was suitable for obtaining antioxidants, but
the limited mass fraction of phenolics and the values determined
for antioxidant activity, suggest that further purification would
result in products of improved quality. Akpinar et al. [205] used
ultra-filtration as an alternative to ethyl acetate extraction and
reported that sunflower stalk liquors had higher antioxidant
activity than wheat straw, the hydrothermal processing being
carried out at 160 1C for 1 h. Tsubaki et al. [206] also studied the
extraction of phenolic compounds and reported that antioxidant
activity increased in good correlation with the increase in the
concentration of phenolic compounds in the extracted hydro-
thermal processing liquor. Garrote et al. [30] reported that the
antioxidant activity of ethyl acetate extracts isolated from Euca-

lyptus globulus and corncob hydrothermal processing liquors
showed a strong dependence on the hydrothermal conditions.
Moreover, Pourali et al. [199] found that phenolic compounds
could be selectively produced by temperature variations. Conde
et al. [192] studied the in vitro antioxidant capacities of the ethyl
acetate extract from hydrothermal processing using different
LCMs and reported that the antioxidant capacities were compar-
able or higher than the ones of synthetic compounds, similar
results being obtained by Castro et al. [195] using Olea europea

wood at temperatures in the range of 190–240 1C. On the other
hand, Li and Gellerstedt [207] reported that the solid residues
obtained after hydrothermal processing showed improved sus-
ceptibility towards delignification with organic solvents. Accord-
ing to Hongzhang and Liying [208] the sequential application of
hydrothermal processing-organosolv pretreatment is an effective
process for the extraction of lignin (delignification) with reason-
able yields and purity. Ruiz et al. [8] evaluated delignification
using the sequence hydrothermal processing-organosolv process
and concluded that the temperature and time as well as chemical
structure were variables that showed a strong influence on lignin
precipitation. Romanı́ et al. [9] used the sequence hydrothermal
processing-organosolv process for delignification, resulting in an
improved enzymatic saccharification.
3. Hydrothermal processing of aquatic biomass

Recently, aquatic biomass including macro- and micro-algae is
gaining wide attention as an alternative renewable source of
biomass, mainly because of their content of functional compo-
nents such as oils, proteins and carbohydrates. Similarly to LCMs,
it is necessary to find an alternative that allows the fractionation
of their main components. The hydrothermal processing of aqua-
tic biomass is of considerable interest as this technology is ideally
suited to high moisture content feedstocks such as macro and
microalgae biomass. Presently, there are few literature reports on
hydrothermal processing of aquatic biomass. The subsequent
sections will deal with the main applications of hydrothermal
processing using macro- and micro-algae as raw material.

3.1. Hydrothermal processing of macroalgae

Macroalgae have a large potential as raw material for energy
production and chemicals for food and medical industries. How-
ever, so far, most of the research has been concentrated on
converting terrestrial biomass. A relatively new concept includes
the utilization of marine biomass, and demands an assessment of
how this marine biomass can contribute to the total biomass
resources [209]. Oceans and seas cover over 70% of the Earth’s
surface, offering the possibility of sustainable cultivation of a vast
potential biomass feedstock. The use of macro-algae or seaweeds
biomass has several advantages including: (a) in the future, low
fluctuations in biomass demand are expected due to overpopula-
tion; (b) feasibility of fast growing rate in the open ocean; (c)
higher photosynthetic activity (6–8%) than terrestrial biomass
(1.8–2.2%); (d) no limitation by water and to a lesser extent
temperature; and e) low costs of collection and null environ-
mental damage [210–212]. The production of seaweeds and other
aquatic plants reached 16.0 million tons in 2007, of which
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aquaculture produced 14.9 million tons with a value of USD
7.5 billion [213], making annual primary production rates (grams/
(m2
� year)) higher for the major marine macroalgae than for most

terrestrial biomass. Macroalgae can be subdivided into blue algae
(Cyanophyta), green algae (Chlorophyta), brown algae (Phaeo-

phyta) and red algae (Rhodophyta), the main regions for cultiva-
tion on a mass scale being the Far East, and on a smaller scale,
Europe [211]. Nowadays, seaweeds applications are focused on
human foods, cosmetics and fertilizers and for the extraction of
many useful industrial chemicals such as phycocolloids (e.g.,
alginates), being also a potential source of long- and short-chain
chemicals with medicinal and industrial application as biofuels
[213,214]. Moreover, conversion of macroalgae into biofuel has
been focused on the production of biogas by anaerobic digestion,
but no thermochemical treatment was carried out over the raw
material before the fermentation processes [215]. Recent studies
have also been focused on the utilization of the sugars present in
seaweeds (mannitol and laminarin for brown algae) for the
production of bioethanol by fermentation [216–219]. However,
research on the application of hydrothermal processing to macro-
algae is limited [220,221]. The excellent solvent properties of
water as a reaction medium and the usually high moisture
content of macroalgae make hydrothermal treatment a promising
processing technology for the direct use of macroalgae in the
production of biofuels and high added-value compounds
[222–227]. Hot water is used at temperatures from 100 to
374 1C, under high pressure, usually from 10 to 60 bar, corre-
sponding to conditions below the water critical point. In the case
of macroalgae, hydrothermal processing involves the reaction of
marine biomass and water at elevated temperatures and pres-
sures and its application has been demonstrated with and with-
out the presence of catalysts for a wide range of biomass origins.
Under these conditions biomass is decomposed to form new
products, including a bio-crude fraction, a char fraction, a water
fraction and a gaseous fraction [224]. Looking for alternatives to
seaweeds application, mostly used in food and cosmetic area,
preliminary experiments using the green macroalgae Chaetomor-

pha linum for biodiesel production were described by Aresta et al.
[228]. Two techniques were compared: supercritical carbon
dioxide (sc-CO2) and hydrothermal processing and it was verified
that hydrothermal processing was more efficient with a higher
amount of oil extracted at plateau temperatures of 350–395 1C.
Hydrothermal processing to bio-oil production was also carried
out with the green seaweed Enteromorpha prolifera in a batch
reactor evaluating the effects of the temperature, reaction time-
and Na2CO3 catalyst. A maximum bio-crude yield of 23 wt% with
a Higher Heating Value (HHV) of 29.89 MJ/kg was obtained at
300 1C and 30 min with 5 wt% Na2CO3. The obtained bio-oil was a
complex mixture of ketones, aldehydes, phenols, alkenes, fatty
acids, esters, aromatics, and nitrogen containing heterocyclic
compounds [225]. Anastasaki and Ross [212] evaluated the
hydrothermal processing of Laminaria saccharina brown seaweed
with and without the addition of catalyst (KOH) in order to
maximize the bio-crude yield. A maximum bio-crude yield of
19.3 wt% was obtained with a 1:10 biomass:water ratio at 350 1C
and a residence time of 15 min without the presence of the
catalyst; the most important variables were considered to be
temperature and reactor loading. The obtained bio-crude showed
a HHV of 36.5 MJ/kg, a slightly lower value than the reported for
crude petroleum (42.7 MJ/kg) [224,226]. Furthermore, analysis of
the aqueous phase indicates that mannitol and laminarin present
in brown seaweed are dissolved, suggesting a further utilization
of the high sugar aqueous stream in a fermentative process to
produce bioethanol. It was also established that the addition of
the catalyst caused a reduction of sugars presence in this stage.
Marine algae biomass conversion into ethanol is an option to be
considered since some algae hydrolysates contain more total
carbohydrates and hexose sugars than some terrestrial LCMs.
However, only few studies on this matter have been reported.
Kim et al. [229] evaluated ethanol production from several
macroalgae using Escherichia coli KO11 and Saccharomyces cere-

visiae strains for sugar fermentation. Hydrothermal processing for
the preparation of algal hydrolyzates was carried at 121 1C for
15 min in the presence of acid catalyst (H2SO4). Under the
evaluated conditions Laminaria japonica hydrolysate contained a
high amount of mannitol (30.54%) making it a cost-effective
substrate for microbial ethanol production. Escherichia coli KO11
ethanol yield was 0.4 g ethanol/g of sugars, while the yeast strain
was unable to ferment mannitol, this being attributed to catalyst
application in hydrothermal processing.

As an alternative to subcritical hydrothermal processing, there
is the possibility of applying supercritical extraction. A super-
critical fluid is obtained when a fluid is forced to a pressure and
temperature above its critical point (for water about to
374 1C)—its density is similar to a liquid, its viscosity is similar
to a gas and its diffusivity is intermediate between the two states.
Thus, the supercritical state is defined as a condition in which
liquid and gas are indistinguishable from each other [227].
Schumacher et al. [223] studied the supercritical hydrothermal
processing conversion in several seaweed species based in the
principle that water gasification appears to be a useful technology
for biomass with a high humidity content (up to 90%). Thus,
biomass feedstock was gasified with supercritical water at 500 1C
for 1 h. Even though the coke yields were significantly lower than
those obtained with lignocellulosic and protein wastes, the total
gas yields were higher than the reported for these materials,
because algae polysaccharides and proteins are decomposed at
200 to 400 1C. The gaseous species detected were mainly hydro-
gen, methane and carbon dioxide where the highest values for H2

and CH4 were 16 and 104 g/g of seaweed, respectively. Addition-
ally, the aqueous phase contained glycolic, formic and acetic acids
and phenols. Microwaves as an alternative-heating source have
been successfully applied for extraction of numerous biologically
active compounds from a wide variety of natural resources,
because it is characterized as a selective, efficient and environ-
mental friendly process. This technique consists in a rapid
delivery of energy to the total volume and subsequent rapid
heating into the material structure accelerating the solubilization
of compounds [230,231]. Polar solvents have permanent dipole
moment and can absorb microwave radiation and water as a polar
compound can absorb the microwave energy and transfer it to the
sample, having as advantages over the organic solvents being a
secure and ecologic reagent. Microwave-assisted hydrothermal
processing is a technique that should be considered for the
extraction of seaweeds’ polysaccharides since the main sugars
present in macro-algae (laminarin and fucoidans) are the water-
soluble compounds [232]. Chen et al. [233] reported the use of
microwave-assisted method to obtain polysaccharides from sola-

num nigrum. Navarro et al. [234] produced 3,6-anhydrogalactose
units from galactose 6-sulfated residues of red seaweed galactans
utilizing microwave irradiation to carry out the alkaline modifica-
tion. The experiments were carried out in a domestic microwave
oven heating the samples for 1 min at 1200 W using Teflon
closed-vessels. Furthermore, Yang et al. [235] and Rodriguez-
Jasso et al. [231], respectively evaluated the hydrothermal extrac-
tion of sulfated polysaccharides of Undaria pinnatifida and Fucus

vesiculosus using a digestion microwave oven with a maximum
delivered power of 630 W (at 172 1C). Results showed that
microwave heating around 30–60 s was more effective in improv-
ing polymer dissolution without a noticeable structural degrada-
tion. A preliminary development of a microwave prototype at
industrial scale was reported by Uy et al. [236]. Carrageenan
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extraction of Eucheumacottonii and Eucheumaspinosum was car-
ried out using an industrial single-mode cavity continuous micro-
wave, at 38% of full power (800 W) and with a residence time of
30 min. Since these hydrocolloids are not water soluble, hydro-
thermal processing extraction was tested with aqueous mixtures
of organic solvents. The extracted carrageenans showed high
purity, without the need for further purification procedures.
González-López et al. [237], produced compounds with antiox-
idant activity using non-isothermal autohydrolysis process and
Sargassum muticum as raw material. In a recent works, Anastyuk
et al. [238,239] used autohydrolysis as an alternative strategy for
fucoidan depolymerization from brown algae Silvetia babingtonii

and Fucus evanescens. The term autohydrolysis is referred to the
acid polysaccharide hydrolysis under very mild conditions using –
SO3H groups as source of catalyst in substrate reaction. Rodrı́-
guez-Jasso et al. [240] reported the extraction of sulfated poly-
saccharides by autohydrolysis from Fucus vesiculosus. The results
showed that the pH decrease in the reaction media at high
temperatures and times, possibly due to the polysaccharides
hydrolysis using the ‘‘in situ’’ –SO3H groups as source of catalyst.

3.2. Hydrothermal processing in microalgae

Microalgae are an especially promising feedstock for advanced
biofuels production for a number of compelling reasons, including
high photosynthetic efficiency, higher area-specific yield, possi-
bility of a frequent harvest because of their rapid growth rate and
possibility of integration with fossil-fuel-fired power plants to
recycle CO2, via photosynthesis. They can also be cultivated in
different climates, in saline/brackish water and on non-arable
land so there is no competition with conventional cropland. Its
cultivation can be coupled with wastewater bioremediation since
they can also remove nitrogen, phosphorus and heavy metals
[241]. The conventional approach for making biodiesel from
microalgae involves the extraction of triglycerides from the
microalgal biomass and its subsequent conversion (e.g., via
transesterification) into biodiesel fuel. This approach requires
dewatering of the microalgae, drying of the dewatered biomass
paste, and then solvent extraction of the triglycerides from the
Fig. 5. Conceptual model for microalgal fuel production with h
dried biomass, all these steps representing up to 90% of the
energy needed to synthesize biodiesel from microalgae [242].
Microalgae biomass usually has a high moisture content (80–
90%), so the drying process requires a large amount of heating
energy. The hydrothermal processing is an alternative technology
that significantly improves the overall thermal efficiency of the
process [243], as the energy consumption required by hydro-
thermal processing is very low compared to other processes
[244]. Hydrothermal processing offers the advantage that lipids
can be extracted while wet and upgraded to produce a crude oil-
like product. Another potential advantage is that the conventional
lipid extraction methods only produce oil from the lipid fraction
while hydrothermal processing can produce oil also from the
carbohydrate and protein fraction (see Fig. 5). This is significant as
some microalgae grow faster with lower lipid content and contain
significant amounts of carbohydrates and proteins [245]. With
higher plants, the chemistry of the process derives primarily from
lignin, cellulose and hemicellulose components. In contrast,
microalgae are not lignocellulosic in composition, and the chem-
istry is entirely different, involving proteins, lipids and carbohy-
drates (generally not cellulose) [246]. Hydrothermal processing of
microalgae was first reported by Dote et al. [247] for high lipid
forming from Botryococcus braunii. Those authors successfully
used hydrothermal processing, catalyzed by sodium carbonate
(Na2CO3), at 300 1C and a pressure of 10 MPa achieving a max-
imum yield of 64 wt% of oil with a HHV of 45.9 MJ/kg and a
positive energy balance for the process (output/input ratio of
6.67: (1). The hydrothermal processing of Botryococcus braunii

cells (moisture content of 92%) was also performed by Sawayama
et al. [248] at 200, 300 and 340 1C with 5 wt% or without Na2CO3.
The maximum yield of oil obtained was 64 wt% (dry basis) at
300 1C with Na2CO3 as catalyst. The produced gas consisted
mainly of methane and carbon dioxide. Hydrothermal processing
of the same microalgae was also studied by Banerjee el al. [249],
who obtained oil in a yield of 57–64 wt% at 300 1C. The oil was
equivalent in quality to petroleum oil. Minowa et al. [250]
reported an oil yield of about 37% on organic basis by direct
hydrothermal processing at around 300 1C, 60 min and 10 MPa
from the low lipid containing microalgae Dunaliella tertiolecta
ydrothermal processing of biomass conversion into bio-oil.
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(lipid content 20 wt%). The oil had HHV of 36 MJ/kg, comparable
to those of fuel oil and the process had a positive energy balance
of 2.94:1. Other lower lipid containing microalgae such as
Spirulina have been liquefied at 350 1C, 60 min, 5 MPa without
catalyst by Matsui et al. [251]. Surprisingly high oil yields were
reported (78.3 wt%) despite the low lipid content, however the oil
showed high oxygen content. The most important factors in the
hydrothermal processing of microalgae as raw material are
temperature, residence time and catalyst dosage. To investigate
the influences of these factors on oil yield, Shuping et al. [244]
performed the hydrothermal processing of Dunaliella tertiolecta

under various temperatures (280–380 1C), residence times (10–
90 min), and catalyst dosages (0–10%). A maximum bio-oil yield
of 25.8% was obtained at a reaction temperature of 360 1C and a
holding time of 50 min using 5% Na2CO3 as a catalyst. The results
showed that the decomposition of Dunaliella tertiolecta started at
a reaction temperature lower than 280 1C, and both conversion
and bio-oil yield were strongly dependent on the temperature
between 280 and 380 1C. In relation to the residence time, the
bio-oil yield appeared to present an initial sharp increase,
remaining approximately constant with increasing reaction time
beyond 50 min. Also, Yang et al. [252] performed the hydrother-
mal processing of Microcystis viridis under different conditions of
temperature (300 and 340 1C), residence time (30 and 60 min)
and catalyst dosage (0 and 5% of Na2CO3). The initial operational
pressure was 3 MPa and the maximum pressure of the autoclave
was 10–20 MPa. The maximum oil yield was 33% at the 30 min
holding time, the reaction temperature of 340 1C and the alkali
catalyst dosage of 5 wt%. The HHV of the oil was determined as
28–30 MJ/kg. Brown et al. [253] converted the microalga Nanno-

chloropsis sp. into a crude bio-oil product via hydrothermal
processing at different temperatures and a batch holding time
of 60 min. A temperature of 350 1C led to the highest bio-oil yield
of 43 wt%. The HHV of the bio-oil was 39 MJ/kg, which is
comparable to that of crude petroleum. Alba et al. [254] con-
ducted a study of hydrothermal treatment using the freshwater
microalgae Desmodesmus sp., in which a wide range of tempera-
tures (175–4501C) and reaction times (up to 60 min), was tested,
using a batch reactor system. The maximum oil yield (49 wt%)
was obtained at 375 1C and 5 min reaction time, recovering 75% of
the algal calorific value into the oil and an energy densification
from 22 to 36 MJ/kg. As presented previously the use of catalyst is
one of the factors that should be taken into account in hydro-
thermal processing of microalgae. Several studies on hydrother-
mal processing of microalgae were carried out using different
catalysts, mainly Na2CO3 (208, 209, 210, 213). Ross et al. [224]
studied the influence of the catalyst type in hydrothermal
processing using Chlorella vulgaris and Spirulina as raw material.
Catalysts employed include the alkalis, potassium hydroxide and
sodium carbonate and the organic acids acetic acid and formic
acid. The yields of bio-crude were higher in the presence of
organic acids compared to alkali catalysts. Biller et al. [245]
investigated three catalysts: an alumina-supported Co/Mo cata-
lyst, an alumina-supported Ni catalyst and an alumina supported
Pt catalyst. The results indicate that the bio-crude yields from the
hydrothermal processing of Chlorella vulgaris and Nannochloropsis

occulta were increased slightly with the use of heterogeneous
catalysts but the HHV and the level of de-oxygenation increased
up to 10%. Duan and Savage [255] produced crude bio-oils from
the microalga Nannochloropsis sp. via reactions in liquid water at
350 1C and 60 min in the presence of six different heterogeneous
catalysts (Pd/C, Pt/C, Ru/C, Ni/SiO2–Al2O3, CoMo/g-Al2O3 (sul-
fided), and zeolite). Jena et al. [256] used NiO to assist in the
hydrothermal processing of both single (Spirulina) and mixed
algae (from open ponds with wastewater) cultures at 350 1C.
Interestingly, the added NiO decreased oil yields. Duan and
Savage [255] refer that the use of a catalyst in hydrothermal
processing may be a way to produce a crude hydrocarbon bio-oil
directly from wet microalgae in a single processing step. Yeh et al.
[257] present an overview of catalysts used in hydrothermal
processing of algae and model compounds. Microalgae generally
consist of carbohydrates, proteins and lipids. In order to under-
stand the influence of biochemical content of microalgae on
hydrothermal processing yields and product distribution, Biller
and Ross [226] performed hydrothermal processing on four
different microalgae species (Chlorella vulgaris, Nannochloropsis

occulata, Porphyridium cruentum and Spirulina) and model bio-
chemical compounds at 350 1C, 20 MPa and 60 min. The yields
and product distribution obtained for each model compound have
been used to predict the behavior of microalgae with different
biochemical composition. Model validation using microalgae
showed a broad agreement between predicted yields (using Eq.
(16)) and actual yields for the different microalgae.

Bio-crude yield % ¼ protein yield %nprotein content %ð Þ

þ carbohydrate yield %ncarbohydrate content %ð Þ

þ lipid yield %nlipid content %ð Þ ð16Þ

The results showed that yields of bio-crude were 5–25 wt%
higher than the lipid content of the algae depending upon
biochemical composition. The yields of bio-crude follow the trend
lipids4proteins4carbohydrates. Both proteins and lipids were
more efficiently converted to oil without the use of catalysts
while carbohydrates were better processed using Na2CO3. In
water, the carbohydrate fraction of microalgae was converted to
bio-crude oil with an efficiency of 5–10% only, and for the
proteins the efficiency was around 20% [226]. The higher the
amounts of lipids in the substrate, the higher the biomass yields.
This was explained by the high thermal stability of fatty acids.
Also, in Sawayama et al. [258] the energy balance of hydrother-
mal liquefaction of Botryococcus braunii and Dunaliella tertiolecta

suggests that the higher lipid content microalgae Botryococcus

braunii performed more favorably than the lower lipid microalgae
Dunaliella tertiolecta. The hydrothermal processing of 100 g of dry
microalgae results in approximately, 40% oil and 429.80% of an
aqueous co-product [256]. The water phase resulting from the
process concentrates trace mineral matter and nitrogen, phos-
phorus, potassium (NPK) and may represent a route for recycling
of nutrients [224]. Based on this information, Jena et al. [256]
evaluated its potential as a nutrient source for cultivation of
microalgae Chlorella minutissima. Microalgal growth medium
developed by using this aqueous co-product as a nutrient additive
to deionized water at 0.2% v/v concentration resulted in the best
growth (0.52 g/L) for Chlorella minutissima. This study established
the proof of concept for combining microalgae cultivation with
hydrothermal processing for nutrient recycling. Apart from stu-
dies conducted with the purpose of producing biodiesel, there are
few studies on the application of hydrothermal processing in
microalgae. One of the exceptions is the application of hydro-
thermal processing in microalgae to create a char product.
Employing relatively moderate conditions of temperature
(203 1C), residence time (2 h) and pressure (1.65 MPa), Heilmann
et al. [246] converted Chlamydomonas reinhardtii in an energy
efficient manner into an algal char product of unique composition
and with energy contents in the bituminous coal range. Potential
uses for the product include creation of synthesis gas and
conversion into industrial chemicals and gasoline, application as
a soil nutrient amendment and as a carbon neutral supplement to
natural coal for generation of electrical power. No catalytic agents
were identified by Heilmann et al. [246] that significantly accel-
erated carbonization and/or enhanced yield with algal substrates.
Shen et al. [259] used Spirulina for the production of acetic acid
under hydrothermal processing conditions at 300 1C, 17 MPa for
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80 s with H2O2 oxidant. Results showed that acetic acid was
obtained with a good yield of 14.9% on a carbon base proving that
it is possible to develop a process for conversion of microalgae
biomass into acetic acid.
4. Conclusions

The conversion of biomass into chemicals and energy is
essential in order to sustain our present and future. In general,
hydrothermal processing used in LCMs is the most promising
technology that can be conceived as a first step to the fractiona-
tion and obtention of products with high added-value according
to the biorefinery concept. Depending on the operational condi-
tions (temperature, residence time, particle size, moisture and
reactor configuration), hydrothermal processing can cause several
effects including hemicellulose depolymerization (oligomers,
monomers), alteration/degradation of lignin (phenolic com-
pounds) and increased availability of cellulose. Owing to these
effects, the products obtained are a valuable source of materials
for the chemical, pharmaceutical, food and energy industries.
Moreover, the use of hydrothermal processing in aquatic biomass
(macro- and micro-algae) has been shown to be an interesting
technology for the production of bio-crude oil and extraction of
polysaccharides for different applications and hydrolysis into
sugars for a further utilization in processes such as fermentation.
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[21] Ingram T, Wörmeyer K, Lima JCI, Bockemuhl V, Antranikian G, Brunner G,
et al. Comparison of different pretreatment methods for lignocellulosic
materials. Part I: Conversion of rye straw to valuable products. Bioresource
Technology 2011;102:5221–8.

[22] Garrote G, Cruz JM, Domı́nguez H, Parajó JC. Non-isothermal autohydrolysis
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[28] Garrote G, Domı́nguez H, Parajó JC. Hydrothermal processing of lignocellu-
losic materials. Holz Roh Werkst 1999;57:191–202.

[29] Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. Optimization of pH
controlled liquid hot water pretreatment of corn stover. Bioresource
Technology 2005;96:1986–93.

[30] Garrote G, Cruz JM, Domı́nguez H, Parajó JC. Valorisation of waste fractions
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[89] Cara C, Romero I, Oliva JM, Sáez F, Castro E. Liquid hot water pretreatment
of olive tree pruning residues. Applied Biochemistry and Biotechnology
2007;136–140:379–94.
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enzymatic hydrolysis of hydrothermal pretreated eucalyptus globulus wood.
Industrial & Engineering Chemistry Research 2010;49:4653–63.

[105] Overend RP, Chornet E. Fractionation of lignocellulosic by steam-aqueous
pretreatments. Philosophical Transactions of the Royal Society of London
1987;321:523–36.

[106] Chornet E, Overend RP. Phenomenological kinetics and reaction engineering
aspects of steam/aqueous treatments. In: Focher B, Marzetti A, Crescenzi V,
editors. Steam explosion techniques: fundamentals and industrial applica-
tions. New York: Goran and Breach Science Publishers; 1991. p. 21–58.

[107] Yanagida T, Fujimoto S, Minowa T. Application of the severity parameter for
predicting viscosity during hydrothermal processing of dewatered sewage
sludge for a commercial PFBC plant. Bioresource Technology 2010;101:2034–45.

[108] Simpson WT. Estimating heating times of wood boards, square timbers, and
logs in saturated steam by multiple regression. Forest Products Journal
2006;56:26–8.

[109] Hosseini SA, Lambert R, Kucherenko A, Shah N. Multiscale modeling of
hydrothermal pretreatment: from hemicellulose hydrolysis to biomass size
optimization. Energy Fuels 2010;24:4673–80.

[110] Pedersen M, Meyer AS. Lignocellulose pretreatment severity-relating pH to
biomatrix opening. New Biotechnology 2010;27:739–50.
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from autohydrolysis of barley husks. Journal of Agricultural and Food
Chemistry 2008;56:10651–9.
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