718 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Sectoring in Multi-cell Massive MIMO Systems

    Full text link
    In this paper, the downlink of a typical massive MIMO system is studied when each base station is composed of three antenna arrays with directional antenna elements serving 120 degrees of the two-dimensional space. A lower bound for the achievable rate is provided. Furthermore, a power optimization problem is formulated and as a result, centralized and decentralized power allocation schemes are proposed. The simulation results reveal that using directional antennas at base stations along with sectoring can lead to a notable increase in the achievable rates by increasing the received signal power and decreasing 'pilot contamination' interference in multicell massive MIMO systems. Moreover, it is shown that using optimized power allocation can increase 0.95-likely rate in the system significantly

    Uplink Sounding Reference Signal Coordination to Combat Pilot Contamination in 5G Massive MIMO

    Full text link
    To guarantee the success of massive multiple-input multiple-output (MIMO), one of the main challenges to solve is the efficient management of pilot contamination. Allocation of fully orthogonal pilot sequences across the network would provide a solution to the problem, but the associated overhead would make this approach infeasible in practical systems. Ongoing fifth-generation (5G) standardisation activities are debating the amount of resources to be dedicated to the transmission of pilot sequences, focussing on uplink sounding reference signals (UL SRSs) design. In this paper, we extensively evaluate the performance of various UL SRS allocation strategies in practical deployments, shedding light on their strengths and weaknesses. Furthermore, we introduce a novel UL SRS fractional reuse (FR) scheme, denoted neighbour-aware FR (FR-NA). The proposed FR-NA generalizes the fixed reuse paradigm, and entails a tradeoff between i) aggressively sharing some UL SRS resources, and ii) protecting other UL SRS resources with the aim of relieving neighbouring BSs from pilot contamination. Said features result in a cell throughput improvement over both fixed reuse and state-of-the-art FR based on a cell-centric perspective
    • …
    corecore