15,432 research outputs found

    ATM automation: guidance on human technology integration

    Get PDF
    © Civil Aviation Authority 2016Human interaction with technology and automation is a key area of interest to industry and safety regulators alike. In February 2014, a joint CAA/industry workshop considered perspectives on present and future implementation of advanced automated systems. The conclusion was that whilst no additional regulation was necessary, guidance material for industry and regulators was required. Development of this guidance document was completed in 2015 by a working group consisting of CAA, UK industry, academia and industry associations (see Appendix B). This enabled a collaborative approach to be taken, and for regulatory, industry, and workforce perspectives to be collectively considered and addressed. The processes used in developing this guidance included: review of the themes identified from the February 2014 CAA/industry workshop1; review of academic papers, textbooks on automation, incidents and accidents involving automation; identification of key safety issues associated with automated systems; analysis of current and emerging ATM regulatory requirements and guidance material; presentation of emerging findings for critical review at UK and European aviation safety conferences. In December 2015, a workshop of senior management from project partner organisations reviewed the findings and proposals. EASA were briefed on the project before its commencement, and Eurocontrol contributed through membership of the Working Group.Final Published versio

    A principled approach to the measurement of situation awareness in commercial aviation

    Get PDF
    The issue of how to support situation awareness among crews of modern commercial aircraft is becoming especially important with the introduction of automation in the form of sophisticated flight management computers and expert systems designed to assist the crew. In this paper, cognitive theories are discussed that have relevance for the definition and measurement of situation awareness. These theories suggest that comprehension of the flow of events is an active process that is limited by the modularity of attention and memory constraints, but can be enhanced by expert knowledge and strategies. Three implications of this perspective for assessing and improving situation awareness are considered: (1) Scenario variations are proposed that tax awareness by placing demands on attention; (2) Experimental tasks and probes are described for assessing the cognitive processes that underlie situation awareness; and (3) The use of computer-based human performance models to augment the measures of situation awareness derived from performance data is explored. Finally, two potential example applications of the proposed assessment techniques are described, one concerning spatial awareness using wide field of view displays and the other emphasizing fault management in aircraft systems

    Best Practices for Evaluating Flight Deck Interfaces for Transport Category Aircraft with Particular Relevance to Issues of Attention, Awareness, and Understanding CAST SE-210 Output 2 Report 6 of 6

    Get PDF
    Attention, awareness, and understanding of the flight crew are a critical contributor to safety and the flight deck plays a critical role in supporting these cognitive functions. Changes to the flight deck need to be evaluated for whether the changed device provides adequate support for these functions. This report describes a set of diverse evaluation methods. The report recommends designing the interface-evaluation to span the phases of the device development, from early to late, and it provides methods appropriate at each phase. It describes the various ways in which an interface or interface component can fail to support awareness as potential issues to be assessed in evaluation. It summarizes appropriate methods to evaluate different issues concerning inadequate support for these functions, throughout the phases of development

    Human Performance Contributions to Safety in Commercial Aviation

    Get PDF
    In the commercial aviation domain, large volumes of data are collected and analyzed on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that contribute to routine successful outcomes, safety management and system design decisions are based on a small sample of non- representative safety data. Analysis of aviation accident data suggests that human error is implicated in up to 80% of accidents, which has been used to justify future visions for aviation in which the roles of human operators are greatly diminished or eliminated in the interest of creating a safer aviation system. However, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant and largely unrecognized risk when making policy decisions about human roles and responsibilities. Opportunities exist to leverage the vast amount of data that has already been collected, or could be easily obtained, to increase our understanding of human contributions to things going right in commercial aviation. The principal focus of this assessment was to identify current gaps and explore methods for identifying human success data generated by the aviation system, from personnel and within the supporting infrastructure

    A human performance modelling approach to intelligent decision support systems

    Get PDF
    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs

    Situational awareness and safety

    Get PDF
    This paper considers the applicability of situation awareness concepts to safety in the control of complex systems. Much of the research to date has been conducted in aviation, which has obvious safety implications. It is argued that the concepts could be extended to other safety critical domains. The paper presents three theories of situational awareness: the three-level model, the interactive sub-systems approach, and the perceptual cycle. The difference between these theories is the extent to which they emphasise process or product as indicative of situational awareness. Some data from other studies are discussed to consider the negative effects of losing situational awareness, as this has serious safety implications. Finally, the application of situational awareness to system design, and training are presented

    Report of the workshop on Aviation Safety/Automation Program

    Get PDF
    As part of NASA's responsibility to encourage and facilitate active exchange of information and ideas among members of the aviation community, an Aviation Safety/Automation workshop was organized and sponsored by the Flight Management Division of NASA Langley Research Center. The one-day workshop was held on October 10, 1989, at the Sheraton Beach Inn and Conference Center in Virginia Beach, Virginia. Participants were invited from industry, government, and universities to discuss critical questions and issues concerning the rapid introduction and utilization of advanced computer-based technology into the flight deck and air traffic controller workstation environments. The workshop was attended by approximately 30 discipline experts, automation and human factors researchers, and research and development managers. The goal of the workshop was to address major issues identified by the NASA Aviation Safety/Automation Program. Here, the results of the workshop are documented. The ideas, thoughts, and concepts were developed by the workshop participants. The findings, however, have been synthesized into a final report primarily by the NASA researchers

    Flight deck automation: Promises and realities

    Get PDF
    Issues of flight deck automation are multifaceted and complex. The rapid introduction of advanced computer-based technology onto the flight deck of transport category aircraft has had considerable impact both on aircraft operations and on the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information among members of the aviation community, a NASA/FAA/Industry workshop devoted to flight deck automation, organized by the Aerospace Human Factors Research Division of NASA Ames Research Center. Participants were invited from industry and from government organizations responsible for design, certification, operation, and accident investigation of transport category, automated aircraft. The goal of the workshop was to clarify the implications of automation, both positive and negative. Workshop panels and working groups identified issues regarding the design, training, and procedural aspects of flight deck automation, as well as the crew's ability to interact and perform effectively with the new technology. The proceedings include the invited papers and the panel and working group reports, as well as the summary and conclusions of the conference

    Error and Threat Detection: A Review and Evaluation of Current Literature

    Get PDF
    The present project provides a comprehensive review of the literature related to threat and error detection. Although there are current models for understanding the concepts of error and threat, little is known about how individuals detect errors and threats when they occur. Awareness of error and threat is crucial for advancement of safety in the aviation domain. Four areas were discussed related to error and threat detection. First, the general error and threat detection literature was reviewed. Second, the physiological foundations for error and threat detection were discussed. Third, the paper examined cognitive aspects of error and threat detection. Last, the paper elaborated on the role emotion may play in threat detection. The review concludes with suggestions for error and threat management and courses of action that can be taken within the aviation domain to train individuals in error and threat detection

    Flight deck engine advisor

    Get PDF
    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations
    • …
    corecore