2,531 research outputs found

    Block Belief Propagation for Parameter Learning in Markov Random Fields

    Full text link
    Traditional learning methods for training Markov random fields require doing inference over all variables to compute the likelihood gradient. The iteration complexity for those methods therefore scales with the size of the graphical models. In this paper, we propose \emph{block belief propagation learning} (BBPL), which uses block-coordinate updates of approximate marginals to compute approximate gradients, removing the need to compute inference on the entire graphical model. Thus, the iteration complexity of BBPL does not scale with the size of the graphs. We prove that the method converges to the same solution as that obtained by using full inference per iteration, despite these approximations, and we empirically demonstrate its scalability improvements over standard training methods.Comment: Accepted to AAAI 201

    Towards Accurate One-Stage Object Detection with AP-Loss

    Full text link
    One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alleviates this issue by proposing a novel framework to replace the classification task in one-stage detectors with a ranking task, and adopting the Average-Precision loss (AP-loss) for the ranking problem. Due to its non-differentiability and non-convexity, the AP-loss cannot be optimized directly. For this purpose, we develop a novel optimization algorithm, which seamlessly combines the error-driven update scheme in perceptron learning and backpropagation algorithm in deep networks. We verify good convergence property of the proposed algorithm theoretically and empirically. Experimental results demonstrate notable performance improvement in state-of-the-art one-stage detectors based on AP-loss over different kinds of classification-losses on various benchmarks, without changing the network architectures. Code is available at https://github.com/cccorn/AP-loss.Comment: 13 pages, 7 figures, 4 tables, main paper + supplementary material, accepted to CVPR 201

    Learning to Approximate a Bregman Divergence

    Full text link
    Bregman divergences generalize measures such as the squared Euclidean distance and the KL divergence, and arise throughout many areas of machine learning. In this paper, we focus on the problem of approximating an arbitrary Bregman divergence from supervision, and we provide a well-principled approach to analyzing such approximations. We develop a formulation and algorithm for learning arbitrary Bregman divergences based on approximating their underlying convex generating function via a piecewise linear function. We provide theoretical approximation bounds using our parameterization and show that the generalization error Op(m−1/2)O_p(m^{-1/2}) for metric learning using our framework matches the known generalization error in the strictly less general Mahalanobis metric learning setting. We further demonstrate empirically that our method performs well in comparison to existing metric learning methods, particularly for clustering and ranking problems.Comment: 19 pages, 4 figure

    Measuring efficiency with neural networks. An application to the public sector

    Get PDF
    In this note we propose the artificial neural networks for measuring efficiency as a complementary tool to the common techniques of the efficiency literature. In the application to the public sector we find that the neural network allows to conclude more robust results to rank decision-making units.DEA
    • …
    corecore