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Abstract

In this note we propose the artificial neural networks for measuring efficiency as a
complementary tool to the common techniques of the efficiency literature. In the application
to the public sector we find that the neural network allows to conclude more robust results to
rank decision−making units.
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1. Introduction 
 
The efficiency measurement has been extensively treated in the last two decades. The interest 
of this research has focused in both the private and the public sectors. In the public sector, the 
budget restrictions are getting increasingly stronger in the framework of the deficit control 
and debt reduction. Other reason for the interest in the efficiency of the public sector is the 
weight of this sector in the economy.  
 
From the seminal work of Farrell (1957), several exhaustive revisions of the efficiency 
measurement topic are available (e.g., Kumbhakar and Lovell, 2000; Fox, 2002). Parametric 
and non parametric approaches are widely-used in the efficiency measurement. The first 
include both deterministic and stochastic frontiers. The latter include Data Envelopment 
Analysis (DEA) and Free Disposal Hull (FDH). In the public sector, there are some reasons to 
prefer non parametric approaches: unknown technology, inexistent or non significant prices, 
multiple outputs,... 
 
The artificial neural networks (ANNs) are universal approximators of functions and have been 
successfully used in many research areas: air traffic control, character and voice recognition, 
medical diagnosis and research, weather prediction,... But the ANNs have also been 
extensively applied to economics and finance (Vellido et al., 1998).  
 
Within the efficiency literature, the ANNs are still not very employed. Athnassopoulos and 
Curram (1996) compare the ANNs and DEA. In a simulation exercise, they conclude that 
DEA is superior to the ANNs for measurement purposes and ANNs are similar to DEA for 
ranking units. Costa and Markellos (1997) analyse the London underground efficiency with 
time series data. They explain how the ANNs result similar to Corrected Ordinary Least 
Squares (COLS) and DEA, but ANNs offer advantages at the decision making, the impact of 
constant vs variable returns to scale or congestion areas. Fleissig et al. (2000) employ neural 
networks for the cost functions estimation. They find convergence problems when the 
properties of simmetry and homogeneity are imposed to the ANNs. Santin et al. (2004) use a 
neural network for a simulated non-linear production function and compare its performance 
with traditional alternatives like stochastic frontier and DEA in different observations number 
and noise scenarios.  
 
The main aim of this note is to contribute to the use of neural networks in the efficiency 
measurement. The neural networks, universal aproximators of functions and its derivates, are 
non linear and highly flexible models, and hence they provide a good instrument for these 
purposes. After reviewing different possibilities for that end with a new approach related to 
the outliers, an application to the refuse collection service is presented.  
 
This note is organized as follows. Section 2 briefly describes the ANNs. Section 3 presents 
the methodologies used in the efficiency measurement literature, and the neural networks 
approaches are explained. The results from the empirical study are summarized in Section 4, 
and the concluding remarks are provided in Section 5.  
 
 

2. A brief review of the artificial neural networks 
 

The ANNs are mathematical models that emulate the behaviour of the human brain. Its appeal 
comes from its capacity for extracting patterns from the observed data without assumptions 
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about the underlying relationships. These non linear models can approximate unknown 
mappings and its derivatives by a three-layer structure: input, hidden and output layers 
(Hornik et al. 1989; 1990). The common networks are the feedforward neural networks or 
multilayer perceptron, where the connections between the neurons are from the input to the 
output without feedbacks. 
 
The architecture selection and the neural learning are basic issues in the neural modelling. In 
the architecture selection, or model selection in econometric language, the researcher must 
determine the number of input and hidden units and the activation function. A data pre-
processing can also be applied (e.g., [0,1]). The lack of a general procedure results in a trial 
and error process, and the final architecture is selected according to some information 
criterion (AIC or SIC). A multilayer perceptron can be expressed as: 
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Figure 1. A three-layer neural network 
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The transfer function is usually chosen to be monotone and nondecreasing. In this paper the 
output activation function is linear, and the hidden transfer function (G) is logistic or 
hyperbolic tangent. The logistic function maps into the [0,1] interval, whereas the tanh maps 
into the [-1,1] rank. 
 
In the training phase, estimation in econometric jargon, the backpropagation algorithm 
(Rumelhart et al., 1986) is the most used method. BP is a gradient (steepest) descent method 
that minimizes an error function (sum of error squares) by modifying the network parameters 
according to: 
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where k denotes the iteration number, and η the learning rate between 0 and 1. However, the 
BP has been severely criticized and new alternatives were further analysed. On this topic, the 
Levenberg-Marquardt algorithm can improve significantly the performance of BP (Hagan and 
Menhaj, 1994). 
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3. Methodologies 
 

In this section we briefly review the three methodological approaches to efficiency 
measurement: parametric techniques, non-parametric techniques and artificial neural 
networks. A complete description of these techniques can be found in Kumbhakar and Lovell 
(2000) and a recent survey is available in Murillo-Zamorano (2004). 
 
The parametric approach to estimate technical efficiency indexes requires the specification of 
a functional form for the production frontier, i.e. a production function, with the risk of 
functional form mis-specification. Although the simple Cobb-Douglas specification has been 
the most widely used functional form, other functions such as the translog, CES or 
generalized Leontief allow for more flexibility and, thus, provide a better adjustment to the 
actual data. Two different efficiency models can be found within the parametric literature. 
The first to be used was the deterministic frontier, where any deviation from the data to the 
frontier (i.e. error terms) was attributed to inefficiency (Aigner and Chu, 1968). In contrast, 
stochastic frontier models allow for a decomposition of the error term into a symmetric part 
that is interpreted as random error and a non-symmetric part that is interpreted as technical 
inefficiency (Aigner et al., 1977).  

 
The non-parametric approach makes no assumption about the functional form of the frontier. 
Instead, it specifies certain assumptions about the underlying technology that in combination 
with the data set allow the construction of the production set. The non parametric approach is 
usually referred to as the DEA approach (i.e., Data Envelopment Analysis) since the seminal 
paper of Charnes et al. (1978) who assumed a technology satisfying constant returns to scale 
(CRS), convexity, and free disposability of inputs and outputs. The efficiency index is 
estimated by solving a mathematical program that finds the maximum increase in the outputs 
or reduction in the inputs combining the information about production practices actually 
observed in the data set with the assumptions made for the technology. The program 
compares the input-output vector of the firm which efficiency is being measured with the 
composite virtual firm (constructed from the data and the technological assumptions made) 
that uses the same inputs to produce the largest possible output or produces the same quantity 
of the output but using the lowest possible quantities of inputs.  

 
The DEA(CRS) approach has been subject to continuous modifications aimed to relax some 
of its assumptions or to change the orientation of the efficiency index estimated. The most 
notable changes are known as the DEA(VRS) and the FDH approaches. DEA(VRS) simply 
relaxes the assumption of constant returns to scale (Banker et al. 1984), by restricting the 
production set to the convex combinations of the production vectors of the firms actually 
sampled.  
 
The FDH (Free Disposal Hull) technique goes a step further by dropping the convexity 
assumption. The production set is then constructed from the sample data and the assumption 
of free disposability, but does not allow for the use of composite (convex) virtual units 
(Deprins et al., 1984; Tulkens, 1993). Note that the inneficient units under FDH are marked as  
inneficient units in DEA too, but the opposite is not true. One major limitation of FDH 
approach is the considerable number of efficient units. 
 
Finally, in the neural network approach we may consider three alternatives: 
 
§ From the estimated network - ANN1. 
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In this approach the efficiency measure of a unit is established in relation to the average 
performance. Thus, the indicators will be superior to 1 or 100% when the unit behaves better 
than average, and inferior to 1 or 100% if the unit is “inefficient”. These measures are not 
directly comparable with the traditional techniques. Athnassopoulos and Curram (1996) 
called this option “non-standarized efficiency” ENE: 
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To achieve a real production frontier there are some alternatives: 
 
§ Shift the network by the largest positive error – ANN2. 

This option is similar to COLS. The correction by the largest positive error is sensitive to 
outliers and the frontier will be deterministic. The efficiency scores take values between 0 and 
1. This maximum score is assigned to the unit used for the correction. Athnassopoulos and 
Curram (1996) called this second measure “standarized efficiency” EE: 
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In relation to DEA, the non-standarized efficiency (ENE) tends to overestimate the indicators, 
and the standarized efficiency (EE) tends to underestimate the measures. 
 
§ Shift the network by a mean of the largest positive errors – ANN3. 

For attenuating the effect of the largest positive error, in this work a new approach is 
proposed. This option consists of not considering the largest, but some percentage (5 per cent) 
of the largest positive errors: 
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Figure 2. Production function and frontier function from neural network  
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To conclude this section, a rough comparison of the three methodological approaches 
(parametric, non parametric and neural network) is given in Table 1. In summary, the neural 
network approach requires no assumptions about the production function (the major drawback 
of the parametric approach) and it is highly flexible. Nevertheless, future research with neural 
networks in the efficiency analysis is required.  
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Table 1. Comparison of the methodological approaches to efficiency measurement 
Comparative Factor Parametric Non 

parametric 
Neural 
network 

Assumptions: functional form, data 
Flexibility 
Theoretical studies/applications on efficiency 
Costs: software, estimation time 
Efficiency measure compares the observed 

unit with the frontier... 

Strong 
Low-Medium 

Yes 
Low 

A specific 
functional 

form  

Medium 
Medium 

Yes 
Low 

A piecewise 
linear 

envelopment 

Low 
High 
Few 
High 

A non linear 
function with 

minimum 
assumptions 

 
 

4. Data and results 
 

For illustrating the potential of the artificial neural networks, a comparative study is carried 
out in the public sector context, specifically the refuse collection services (Bosch et al., 2000) 
from a sample of 72 spanish municipalities. The output considered is the solid waste (SOW) 
and the inputs include the containers capacity (CON), vehicles (VEH) and worked hours 
(WOR). The summary statistics are presented in the Table 2.  

 
Table 2. Summary statistics  

 Output SOW Input 1 CON Input 2 VEH Input 3WOR 
Minimum 1506.20 67.20 4.00 480.00 
Maximum 88309.00 5279.15 329.00 420480.00 
Mean 13321.62 655.47 49.53 24088.50 
Standard deviation 18015.36 970.33 61.82 52709.46 
Variation 
coefficient 

1.35 1.48 1.25 2.19 

1st quartile 3799.39 181.16 18.88 5515.00 
Median 7389.00 360.15 26.50 8845.50 
3rd quartile 13167.70 642.83 50.00 19514.70 
Correlation     
Output  RES 1.000    
Input 1  CON 0.931 1.000   
Input 2  VEH 0.929 0.817 1.000  
Input 3  WOR  0.487 0.419 0.504 1.000 

 
  

In the parametric context, a Cobb-Douglas function and a translog function were estimated. 
Nevertheless, the differences between them were negligible and we selected the Cobb-
Douglas because of simplicity (Table 3). The correlation between the inputs 1 and 2 causes a 
non significative parameter for the latter, but this may no affect the estimation of the 
efficiency scores. 
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Table 3. Cobb-Douglas results 
 Cobb-Douglas det. Cobb-Douglas stoc. 
Constant 
Ln CON 
Ln VEH 
Ln WOR 
λ=σu/σv (u semi-normal) 
σ=(σ2

u+σ2
v)1/2 

2.2188   (7.17) 
0.8002   (13.20) 
-0.0483   (-0.67) 
0.2311   (4.58) 

2.3240   (3.21) 
0.8004   (12.77) 
-0.0494   (-0.73) 
0.2321   (3.965) 
0.5286   (0.17) 
0.2996   (1.26) 

Adjusted R2  0.9176  
Scale returns 
Wald´s test 
Hypot: β1+β2+β3=1 

F=0.1797 
p=0.673 

 

  
The estimated neural network incorporates four tanh hidden units and the Levenberg-
Marquardt algorithm is employed for the training (Table 4). 
 

Table 4. Estimated neural network 
Concept Result 

Data pre-processing 
Network architecture 

Activation function: hidden / output 
Algorithm 

Epochs (max.) 
R2 

[-1,1] 
3-4-1 

tanh / linear 
Levenberg-Marquardt 

1000 
0,9854 

  
The main results are summarized in the Table 51. Several differences are clearly appreciated. 
First, all methodologies assign 1 to the most efficient unit appart from the stochastic Cobb-
Douglas and ANN1. Stochastic Cobb-Douglas and FDH show higher mean scores, and the 
ANNs models show the highest standard deviations. Finally, the number of efficient units is 
different from one approach to the other. Under FDH, most units, 45 of 72, are efficient, 
whereas the deterministic Cobb-Douglas and ANN2 indicate only one efficient unit. 

 
Table 5. Efficiency main results 

 C-Ddet C-Dsto DEAcrs DEAvrs FDH ANN1 ANN2 ANN3 

Mean 0.5227 0.8946 0.6049 0.7268 0.9145 1.0118 0.5221 0.5569 
Minimum 0.2698 0.8318 0.2796 0.3277 0.4672 0.5092 0.1671 0.1903 
Maximum 1.0000 0.9374 1.0000 1.0000 1.0000 1.8640 1.0000 1.0000 
Rank 0.7302 0.1056 0.7204 0.6723 0.5328 1.3548 0.8329 0.8097 
1st quartile 0.4339 0.8847 0.4987 0.5979 0.8534 0.8751 0.3101 0.3383 
Median 0.5103 0.8986 0.5651 0.6957 1.0000 1.0000 0.4944 0.5374 
3rd quartile 0.5959 0.9100 0.7285 0.8901 1.0000 1.1173 0.7004 0.7391 
Stand deviat 0.1483 0.0232 0.1882 0.1918 0.1367 0.2698 0.2365 0.2360 
Variat. Coef. 0.2837 0.0260 0.3111 0.2639 0.1495 0.2666 0.4530 0.4238 
Effic. units 1 0 7 15 45 35 1 2 

 

                                                 
1 Detailed results are available from the author upon request. 
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In this analysis a key objective consists of showing if there exist differences in the ranking. A 
correlation study is carried out and the Pearson´s coefficient (Table 6) and the Spearman´s 
rank coefficient (Table 7) are shown. From the Table 6, the ANN1 results are highly 
correlated with those obtained in the parametric (0.8) and DEAcrs (0.7) techniques. The 
ANN2 and ANN3 models show correlations about 0.5 with the same methods, and the non 
parametric models present similar results. The same conclusions can be reached from the 
results reported in Table 7. Again, the neural models 2 and 3 performance is different and 
provide alternative results from the traditional approaches. Finally, all methodologies agree 
with the most efficient units and those municipalities with the lowest scores, so these results 
are more robust. 
 

Table 6. Pearson´s correlation coefficient 

 C-Ddet C-Dsto DEAcrs DEAvrs FDH ANN1 ANN2 ANN3 

C-Ddet 1        
C-Dsto 0.9373 1       
DEAcrs 0.7716 0.7617 1      
DEAvrs 0.6413 0.6550 0.7861 1     
FDH 0.5099 0.6025 0.5871 0.7411 1    
ANN1 0.8221 0.7829 0.7015 0.5962 0.5638 1   
ANN2 0.5269 0.4694 0.4380 0.3750 0.2628* 0.4173 1  
ANN3 0.5478 0.4917 0.4576 0.3764 0.2751* 0.4437 0.9986 1 

All coefficients are significative at 1% level, except * , at 5% 
 
 

Table 7. Spearman´s rank-correlation coefficient 
 C-Ddet C-Dsto DEAcrs DEAvrs FDH ANN1 ANN2 ANN3 

C-Ddet 1        
C-Dsto 0.9999 1       
DEAcrs 0.8326 0.8343 1      
DEAvrs 0.6368 0.6385 0.7626 1     
FDH 0.5359 0.5359 0.6451 0.7964 1    
ANN1 0.7841 0.7846 0.7812 0.5996 0.6041 1   
ANN2 0.4694 0.4689 0.4877 0.3076 0.2281** 0.3940 1  
ANN3 0.4909 0.4904 0.5094 0.3229 0.2485* 0.4208 0.9986 1 

All coefficients are significative at 1% level, except * , at 5%, and **, at 10% 
 

 
5. Concluding remark 

 
Today, several approaches for the efficiency measurement are available. The parametric 
techniques, both deterministic and stochastic, and non parametric approaches, like DEA and 
FDH, are the most widely-used. In this paper we have used the ANNs to measure and rank the 
decision-making units efficiency because the neural networks, universal aproximators of 
functions and its derivates, are non linear and highly flexible models.  
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The application to the refuse collection services shows that the neural networks offer new 
insights into the efficiency analysis. Although several differences in the quantitative measures 
are evidenced, it is important to note that there exist common trends as shown by the 
correlation and rank-correlation analysis. The most efficient units were identified by 
practically all the approaches, and also the lowest efficient units, so these results are more 
robust. As a final remark, we believe it is useful to view the neural networks as a 
complementary, rather than alternative, tool for efficiency analysis. 
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