3 research outputs found

    Evaluation of fractal dimension effectiveness for damage detection in retinal background

    Full text link
    [EN] This work investigates the characterization of bright lesions in retinal fundus images using texture analysis techniques. Exudates and drusen are evidences of retinal damage in diabetic retinopathy (DR) and age-related macular degeneration (AMD) respectively. An automatic detection of pathological tissues could make possible an early detection of these diseases. In this work, fractal analysis is explored in order to discriminate between pathological and healthy retinal texture. After a deep preprocessing step, in which spatial and colour normalization are performed, the fractal dimension is extracted locally by computing the Hurst exponent (H) along different directions. The greyscale image is described by the increments of the fractional Brownian motion model and the H parameter is computed by linear regression in the frequency domain. The ability of fractal dimension to detect pathological tissues is demonstrated using a home-made system, based on fractal analysis and Support Vector Machine, able to achieve around a 70% and 83% of accuracy in E-OPHTHA and DIARETDB1 public databases respectively. In a second experiment, the fractal descriptor is combined with texture information, extracted by the Local Binary Patterns, improving the bright lesion detection. Accuracy, sensitivity and specificity values higher than 89%, 80% and 90% respectively suggest that the method presented in this paper is a robust algorithm for describing retina texture and can be useful in the automatic detection of DR and AMD.This paper was supported by the European Union's Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT-2016-2017, 732613]. In addition, this work was partially funded by the Ministerio de Economia y Competitividad of Spain, Project SICAP [DPI2016-77869-C2-1-R]. The work of Adrian Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Colomer, A.; Naranjo Ornedo, V.; Janvier, T.; Mossi García, JM. (2018). Evaluation of fractal dimension effectiveness for damage detection in retinal background. Journal of Computational and Applied Mathematics. 337:341-353. https://doi.org/10.1016/j.cam.2018.01.005S34135333
    corecore