49,337 research outputs found

    Versatile Dye Laser Generator-Amplifier System for Intense Tunable Picosecond Pulse Generation

    Get PDF
    Abstract. Passively mode-locked ruby-laser pulses are used to generate nearly diffraction-limited picosecond light pulses in a dye cell by longitudinally amplified spontaneous emission. The output pulses are amplified in three longitudinally pumped dye cells, then spectrally filtered with a grating spectrometer and finally reamplified in a fourth dye amplifier in order to generate intense frequency tunable picosecond light pulses. PACS: 42.55M, 42.60 Various pulsed dye laser systems are available for tunable picosecond pulse generation [1, 2]. Flash-lamp pumped mode-locked dye lasers [3], synchron-ously pumped lasers [4], short-cavity resonators [5], quenched transient lasers [6], distributed feedback lasers [7], and amplified spontaneous emission sys-tems [8] have been investigated. The arrangements applying amplified spontaneous emission (ASE) may be grouped into longitudinall

    On the suitability of longitudinal profile measurements using Coherent Smith-Purcell radiation for high current proton beams

    Full text link
    The use of Smith-Purcell radiation to measure electrons longitudinal profiles has been demonstrated at several facilities in the picosecond and sub-picosecond range. There is a strong interest for the development of non intercepting longitudinal profile diagnostics for high current proton beams. We present here results of simulations on the expected yield of longitudinal profile monitors using Smith-Purcell radiation for such proton beams.Comment: Presented at IPAC 2014 - THPME08

    Sub-Terahertz Monochromatic Transduction with Semiconductor Acoustic Nanodevices

    Full text link
    We demonstrate semiconductor superlattices or nanocavities as narrow band acoustic transducers in the sub-terahertz range. Using picosecond ultrasonics experiments in the transmission geometry with pump and probe incident on opposite sides of the thick substrate, phonon generation and detection processes are fully decoupled. Generating with the semiconductor device and probing on the metal, we show that both superlattices and nanocavities generate spectrally narrow wavepackets of coherent phonons with frequencies in the vicinity of the zone center and time durations in the nanosecond range, qualitatively different from picosecond broadband pulses usually involved in picosecond acoustics with metal generators. Generating in the metal and probing on the nanoacoustic device, we furthermore evidence that both nanostructured semiconductor devices may be used as very sensitive and spectrally selective detectors

    Picosecond pump–probe and polarization techniques in supersonic molecular beams: Measurement of ultrafast vibrational-rotational dephasing and coherence

    Get PDF
    In the last few years, the time-resolved dynamics of collisionless intramolecular vibrational-energy redistribution (IVR) [1] has been probed [2] using picosecond excitation and fluorescence detection. By this method new information on IVR, coherence and photochemical changes (e.g., trans-cis isomerization) has been obtained. [2,3] However, in a number of cases the (early time) primary step following picosecond excitation could not be resolved simply because the time resolution was limited to ~50ps

    Thermal Lensing Spectroscopy With Picosecond Pulse Trains and a New Dual Beam Configuration

    Get PDF
    In this communication, we wish to report on the use of synchronously mode-locked picosecond lasers in a pump-probe configuration for TL spectroscopy. The peak power for these picosecond lasers is very high and, of course, the fundamental of the dye laser (red beam) can be efficiently (~10%) doubled in frequency (U.V. beam) by second harmonic generation in nonlinear crystals. We use this generated U.V. beam as a probe to monitor the very weak absorption of the red beam. An arrangement [4] of the beams involving different waist positions for the pump and probe is used. This arrangement results in an enhancement of sensitivity (at least a factor of three to seven). Also, a different dependence of the signal on the cell position compared to the single beam method is obtained. Finally, we have obtained the Δν = 5 CH-stretching overtone absorption spectrum of liquid toluene with this method (see Figure 1). Suggestions are made regarding new applications of this picosecond pulse thermal lensing technique

    Beating of exciton-dressed states in a single semiconductor InGaAs/GaAs quantum dot

    Get PDF
    We report picosecond control of excitonic dressed states in a single semiconductor quantum dot. A strong laser pulse couples the exciton and biexciton states, to form an Autler-Townes doublet of the neutral exciton transition. The Rabi-splitting, and hence the admixture of the dressed states follows the envelope of the picosecond control laser. We create a superposition of dressed states, and observe the resulting beat: a direct measurement of a Rabi oscillation in time delay rather than the usual power domain

    Femtosecond depahsing processes of molecular vibrations

    Get PDF
    • …
    corecore