Ultrafast Phenomena IV

Proceedings of the Fourth International Conference Monterey, California, June 11–15, 1984

Editors: D. H. Auston and K. B. Eisenthal

With 370 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

Contents

Part I Generation and Measurement Techniques	
The Soliton Laser. By L.F. Mollenauer and R.H. Stolen (With 5 Figures)	2
Soliton Shaping Mechanisms in Passively Mode-Locked Lasers and Negative Group Velocity Dispersion Using Refraction By O.E. Martinez, J.P. Gordon, and R.L. Fork (With 4 Figures)	7
Compression and Shaping of Femtosecond Pulses By A.M. Weiner, J.G. Fujimoto, and E.P. Ippen (With 5 Figures)	11
Generation of 0.41-Picosecond Pulses by the Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses By A.M. Johnson, R.H. Stolen, and W.M. Simpson (With 4 Figures)	16
Compression of Mode-Locked Nd:YAG Pulses to 1.8 Picoseconds By B.H. Kolner, J.D. Kafka, D.M. Bloom, and T.M. Baer (With 3 Figures)	19
Effects of Cavity Dispersion on Femtosecond Mode-Locked Dye Lasers By S. De Silvestri, P. Laporta, and O. Svelto (With 2 Figures)	23
3 MHz Amplifier for Femtosecond Optical Pulses By M.C. Downer and R.L. Fork (With 1 Figure)	27
Colliding Pulse Femtosecond Lasers and Applications to the Measurement of Optical Parameters. By JC. Diels, W. Dietel, E. Döpel, J. Fontaine, I.C. McMichael, W. Rudolph, F. Simoni, R. Torti, H. Vanherzeele, and B. Wilhelmi (With 5 Figures)	30
High Average Power Mode-Locked Co:MgF₂ Laser. By B.C. Johnson, M. Rosenbluh, P.F. Moulton, and A. Mooradian (With 3 Figures)	35
High Power Picosecond Pulses in the Infrared By P.B. Corkum (With 4 Figures)	38
Stimulated VUV Radiation from HD Excited by a Picosecond ArF* Laser By T.S. Luk, H. Egger, W. Müller, H. Pummer, and C.K. Rhodes (With 1 Figure)	42
Procedure for Calculating Optical Pulse Compression from Fiber-Grating Combinations By R.H. Stolen, C.V. Shank, and T.W. Tomlinson (With 1 Figure)	46

Generation of Infrared Picosecond Pulses Between 1.2µm and 1.8µm Using a Traveling Wave Dye Laser. By HJ. Polland, T. Elsaesser, A. Seilmeier, and W. Kaiser (With 3 Figures)	49
A New Picosecond Source in the Vibrational Infrared By A.L. Harris, M. Berg, J.K. Brown, and C.B. Harris(With 2 Figures)	52
Generation of Intense, Tunable Ultrahort Pulses in the Ultraviolet Using a Single Escimer Pump Laser. By S. Szatmári and F.P. Schäfer (With 1 Figure)	56
Travelling Wave Pumped Ultrashort Pulse Distributed Feedback Dye Laser By B. Szabó, B. Rácz, Zs. Bor, B. Nikolaus, and A. Müller (With 2 Figures)	60
Picosecond Pulses from Future Synchrotron-Radiation Sources By R.C. Sah, D.T. Attwood, and A.P. Sabersky (With 2 Figures)	63
High Repetition Rate Production of Picosecond Pulses at Wavelength <250 nm . By D.B. McDonald (With 1 Figure)	66
Ultrafast Self-Phase Modulation in a Colliding Pulse Mode-Locked Ring Dye Laser. By Y. Ishida, K. Naganuma, T. Yajima, and L.H. Lin (With 3 Figures)	69
Electro-Optic Phase-Sensitive Detection of Optical Emission and Scattering. By A.Z. Genack (With 2 Figures)	72
Theoretical Studies of Active, Synchronous, and Hybrid Mode-Locking By J.M. Catherall and G.H.C. New (With 3 Figures)	75
Technique for Highly Stable Active Mode-Locking By D. Cotter (With 3 Figures)	78
Continuous Wave Mode-Locked Nd:Phosphate Glass Laser. By S.A. Strobel, PT. Ho, C.H. Lee, and G.L. Burdge (With 3 Figures)	81
Active Mode-Locking Using Fast Electro-Optic Deflector. By A. Morimoto, S. Fujimoto, T. Kobayashi, and T. Sueta (With 5 Figures)	84
Stable Active-Passive Mode Locking of an Nd:Phosphate Glass Laser Using Eastman #5 Saturable Dye By L.S. Goldberg and P.E. Schoen (With 3 Figures)	87
Limits to Pulse Advance and Delay in Actively Modelocked Lasers By R.S. Putnam (With 2 Figures)	90
Novel Method of Waveform Evaluation of Ultrashort Optical Pulses By T. Kobayashi, FC. Guo, A. Morimoto, T. Sueta, and Y. Cho (With 6 Figures)	93
Noise in Picosecond Laser Systems: Actively Mode Locked CW Nd ³⁺ :YAG and Ar ⁺ Lasers Synchronously Pumping Dye Lasers. By T.M. Baer and D.D. Smith (With 4 Figures)	96
High Power, Picosecond Phase Coherent Pulse Sequences by Injection Locking. By F. Spano, F. Loaiza-Lemos, M. Haner, and W.S. Warren (With 2 Figures)	99

Part II Solid State Physics and Nonlinear Optics

<pre>Imaging with Femtosecond Optical Pulses By M.C. Downer, R.L. Fork, and C.V. Shank (With 1 Figure)</pre>	106
Femtosecond Multiphoton Photoelectron Emission from Metals By J.G. Fujimoto, J.M. Liu, E.P. Ippen, and N. Bloembergen (With 3 Figures)	111
Time-Resolved Laser-Induced Phase Transformation in Aluminum By S. Williamson, G. Mourou, and J.C.M. Li (With 3 Figures)	114
Picosecond Photoemission Studies of Laser-Induced Phase Transitions in Silicon. By A.M. Malvezzi, H. Kurz, and N. Bloembergen (With 3 Figures)	118
Dynamics of Dense Electron-Hole Plasma and Heating of Silicon Lattice Under Picosecond Laser Irradiation. By L.A. Lompré, J.M. Liu, H. Kurz, and N. Bloembergen (With 3 Figures)	122
Dynamics of the Mott Transition in CuCl with Subpicosecond Time Resolution. By D. Hulin, A. Antonetti, L.L. Chase, J. Etchepare, G. Grillon, A. Migus, and A. Mysyrowicz (With 3 Figures)	126
Picosecond Dynamics of Hot Dense Electron-Hole Plasmas in Crystalline and Amorphized Si and GaAs By P.M. Fauchet, and A.E. Siegman (With 3 Figures)	129
Picosecond Optical Excitation of Phonons in Amorphous As₂Te₃ By C. Thomson, J. Strait, Z. Vardeny, H.J. Maris, J. Tauc, and J.J. Hauser (With 3 Figures)	133
Femtosecond Studies of Intraband Relaxation of Semiconductors and Molecules. By A.J. Taylor, D.J. Erskine, and C.L. Tang (With 5 Figures)	137
Picosecond Laser Studies of Noneqilibrium Electron Heating in Copper By G.L. Eesley (With 3 Figures)	143
Picosecond Measurement of Hot Carrier Luminescence in In _{0.53} Ga _{0.47} As By K. Kash and J. Shah (With 3 Figures)	147
Picosecond Carrier Dynamics in Semiconductors By E.O. Göbel, J. Kuhl, and R. Höger (With 3 Figures)	150
Picosecond Dephasing and Energy Relaxation of Excitons in Semi- conductors. By Y. Masumoto (With 6 Figures)	156
Femtosecond Dynamics of Nonequilibrium Correlated Electron-Hole Pair Distributions in Room-Temperature GaAs Multiple Quantum Well Structures. By W.H. Knox, R.L. Fork, M.C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, A.C. Gossard, and W. Wiegmann	
(With 1 Figure)	162

Femtosecond Transient Anisotropy in the Absorption Saturation of GaAs By J.L. Oudar, A. Migus, D. Hulin, G. Grillon, J. Etchepare, and A. Antonetti (With 2 Figures)	166
Holographic Interferometry Using Twenty-Picosecond UV Pulses to Obtain Time Resolved Hydro Measurements of Selenium and Gold Plasmas By G.E. Busch, R.R. Johnson, and C.L. Shepard (With 5 Figures)	170
Temporal Development of Absorption Spectra in Alkali Halide Crystals Subsequent to Band-Gap Excitation. By W.L. Faust, R.T. Williams, and B.B. Craig (With 1 Figure)	173
Kinetics of Free and Bound Excitons in Semiconductors By XC. Zhang, Y. Hefetz, and A.V. Nurmikko (With 3 Figures)	176
Determination of Surface Recombination Velocities for CdS Crystals Immersed in Electrolyte Solutions by a Picosecond Photoluminescence Technique. By D. Huppert, S. Gottesfeld, Z. Harzion, M. Evenor, and S. Feldberg (With 1 Figure)	181
Pulsewidth Dependence of Various Bulk Phase Transitions and Morphological Changes of Crystalline Silicon Irradiated by 1 Micron Picosecond Pulses. By S.C. Moss, I.W. Boyd, T.F. Boggess, and A.L. Smirl (With 2 Figures)	184
Subthreshold Picosecond Laser Damage in Silicon Associated with Charge Emission. By Y.K. Jhee, M.F. Becker, and R.M. Walser (With 1 Figure)	187
Third-Order Nonlinear Susceptibilities of Dye Solutions Determined by Non-Phasematched Third Harmonic Generation. By A. Penzkofer and W. Leupacher (With 1 Figure)	190
Excitation Transport and Trapping in a Two-Dimensional Disordered System: Cresyl Violet on Quartz. By P. Anfinrud, R.L. Crackel, and W.S. Struve (With 1 Figure)	193
Temporal Dependence of Third-Order Non-Linear Optical Susceptibilities of Fused Quartz and Liquid CCl4. By J. Etchepare, G. Grillon, I.Thomazeau, J.P. Chambaret, and A. Orszag (With 2 Figures)	196
High Excitation Electron Dynamics in GaInAsP. By A. Miller, R.J. Manning, A.M. Fox, and J.H. Marsh (With 2 Figures)	199
Picosecond Nonlinear-Optical Limiting in Silicon By T.F. Boggess, S.C. Moss, I.W. Boyd, and A.L. Smirl (With 3 Figures)	202
Nonlinear Absorption and Nonlinear Refraction Studies in MEBBA By M.J. Soileau, W.E. Williams, E.W. Van Stryland, S. Guha, H. Vanherzeele, J.L.W. Pohlmann, E.J. Sharp, and G.L. Wood (With 3 Figures)	205
High Density Carrier Generation in Indium Antimonide By M. Sheikbahae, P. Mukherjee, M. Hasselbeck, and H.S. Kwok	208
Measurement of Two-Photon Cross-Section in DABCO with the Use of Pico- second Pulses. By G. Arjavalingam, J.H. Glownia, and P.P. Sorokin .	211

Part III Coherent Pulse Propagation

Coherence Effects in Pump-Probe Measurements with Collinear, Copropagating Beams. By S.L. Palfrey, T.F. Heinz, and	
K.B. Eisenthal (With 2 Figures)	216
Observation of the Oπ Pulse. By J.E. Rothenberg, D. Grischkowsky, and A.C. Balant (With 2 Figures)	220
Picosecond Two-Color Photon Echoes in Doped Molecular Solids By D.A. Wiersma, D.P. Weitekamp, and K. Duppen (With 1 Figure)	224
Subpicosecond Accumulated Photon Echoes with Incoherent Light in Nd ³⁺ -Doped Silicate Glass. By H. Nakatsuka, S. Asaka, M. Fujiwara, and M. Matsuoka (With 3 Figures)	226
Femtosecond Dephasing Measurements Using Transient Induced Gratings By A.M. Weiner, S. De Silvestri, and E.P. Ippen (With 4 Figures)	230
Picosecond Pulse Multiphoton Coherent Propagation in Vapors By H. Vanherzeele, and JC. Diels (With 2 Figures)	233
Stimulated Photon Echo for Elastic and Depolarizing Collison Studies By JC. Keller and JL. Le Gouet (With 3 Figures)	236
Coherent Transient Spectroscopy with Ultra-High Time Resolution Using Incoherent Light. By N. Morita, T. Yajima, and Y. Ishida (With 3 Figures)	239

Part IV Stimulated Scattering

Interaction-Induced, Subpicosecond Phenomena in Liquids By P.A. Madden (With 4 Figures)	244
Transient Infrared Spectroscopy on the Picosecond and Sub-Picosecond Time Scale. By HJ. Hartmann and A. Laubereau (With 5 Figures)	252
Quantum Fluctuations in Picosecond Transient Stimulated Raman Scattering By N. Fabricius, K. Nattermann, and D. von der Linde (With 2 Figures)	258
Transient Coherent Raman Spectroscopy: Two Novel Ways of Line Narrowing By W. Zinth, M.C. Nuss, and W. Kaiser (With 2 Figures)	263
Picosecond Transient Raman Spectroscopy: The Excited State Structure of Diphenylpolyenes. By T.L. Gustafson, D.A. Chernoff, J.F. Palmer, and D.M. Roberts (With 3 Figures)	266
Time-Resolved Nonlinear Spectroscopy of Vibrational Overtones and Two- Phonon States. By G.M. Gale, M.L. Geirnaert, P. Guyot-Sionnest, and C. Flytzanis (With 4 Figures)	270
Direct Picosecond Determination of the Character of Virbrational Line Broadening in Liquids. By G.M. Gale, P. Guyot-Sionnest, and W.Q. Zheng (With 2 Figures)	274

Picosecond Time-Domain Coherent Active Raman Spectroscopy of Free	
Nitrogen Jet. By S.A. Akhmanov, N.I. Koroteev, S.A. Magnitskii,	
V.B. Morozov, A.P. Tarassevich, V.G. Tunkin, and I.L. Shumay	
(With 2 Figures)	278

Part V Transient Laser Photochemistry

Picosecond Chemistry of Collisionless Molecules in Supersonic Beams By A.H. Zewail (With 4 Figures)	284
Energy Transfer in Picosecond Laser Generated Compressional Shock Waves. By A.J. Campillo, L.S. Goldberg, and P.E. Schoen (With 2 Figures)	289
The Role of A and A' States in the Geminate Recombination of Molecular Iodine. By D.F. Kelley and N.A. AHaj (With 4 Figures)	292
Molecular Dynamics of I_2 Photodissociation in Cyclohexane: Experimental Picosecond Transient Electronic Absorption. By P. Bado, C.G. Dupuy, J.P. Bergsma, and K.R. Wilson (With 3 Figures)	296
Iodine Photodissociation in Solution: New Transient Absorptions By M. Berg, A.L. Harris, J.K. Brown, and C.B. Harris (With 3 Figures)	300
Photodissociation of Triarylmethanes By L. Manring and K. Peters (With 4 Figures)	304
Femtosecond Time Resolved Multiphoton Ionization: Techniques and Applications. By B.I. Greene (With 8 Figures)	308
Threshold Ionization in Liquids By G.W. Robinson, J. Lee, and R.A. Moore (With 1 Figure)	313
Picosecond Multiphoton Laser Photolysis and Spectroscopy of Liquid Benzenes. By H. Miyasaka, H. Masuhara, and N. Mataga (With 3 Figures)	317
Chemical Reactions in Condensed Media By D. Statman, W.A. Jalenak, and G.W. Robinson (With 3 Figures)	320
Subpicosecond and Picosecond Time Resolved Laser Photoionization of Phenothiazine in Micellar Models. By Y. Gauduel, A. Migus, J.L. Martin, J.M. Lemaître, and A. Antonetti (With 2 Figures)	323
Isomerization Intermediates in the Photochemistry of Stilbenes By F.E. Doany and R.M. Hochstrasser (With 2 Figures)	326

Part VI Molecular Energy Redistribution, Transfer, and Relaxation

Picosecond Laser Studies on the Effect of Structure and Environment on Intersystem Crossing in Aromatic Carbenes. By E.V. Sitzmann, J.G. Langan, Z.Z. Ho, and K.B. Eisenthal (With 4 Figures) 330

XII

Energy Flow from Highly Excited CH Overtones in Benzene and Alkanes By E.L. Sibert III, J.S. Hutchinson, J.T. Hynes, and W.P. Reinhard (With 7 Figures)	336
Pump-Pump Picosecond Laser Techniques and the Energy Redistribution Dynamics in Mass Spectrometry. By M.A. El-Sayed, D. Gobeli, and J. Simon (With 4 Figures)	341
Intramolecular Electronic and Vibrational Redistribution and Chemical Transformation in Isolated Large Molecules - S ₁ Benzene By K. Yoshihara, M. Sumitani, D.V. O'Connor, Y. Takagi, and N. Nakashima (With 5 Figures)	
Ultrafast Intramolecular Redistribution and Energy Dissipation in Solutions. The Application of a Molecular Thermometer By P.O.J. Scherer, A. Seilmeier, F. Wondrazek, and W. Kaiser (With 4 Figures)	351
Picosecond Time-Resolved Fluorescence Spectra of Liquid Crystal: Cyanooctyloxybiphenyl. By N.Tamai, I. Yamazaki, H. Masuhara, and N. Mataga (With 3 Figures)	355
Excited-State Solvation Dynamics in 4-Aminophthalimide By S.W. Yeh, L.A. Philips, S.P. Webb, L.F. Buhse, and J.H. Clark (With 3 Figures)	359
The Pyrazine Mystery: A Resolution By A. Lorincz, F.A. Novak, D.D. Smith, and S.A. Rice (With 1 Figure)	362
Picosecond Laser Studies of Photoinduced Electron Transfer in Porphyrin-Quinone and Related Model Systems. By N. Mataga, A. Karen, T. Okada, Y. Sakata, and S. Misumi (With 2 Figures)	365
The Excited-State Proton Transfer Reactions of Flavonols in Alcoholic Solvents. By KJ. Choi, B.P. Boczer, and M.R. Topp	368
Excited-State Proton-Transfer Reactions in 1-Naphthol By S.P. Webb, S.W. Yeh, L.A. Philips, M.A. Tolbert, and J.H. Clark (With 3 Figures)	371
Structural and Solvent Effects on the Excited State Dynamics of 3-Hydroxyflavones. By P.F. Barbara and A.J.G. Strandjord (With 1 Figure)	374
Electron Transfer Reactions from the First Excited Singlet State of a Polymethine Cyanine Dye. By D. Doizi and J.C. Mialocq (With 3 Figures)	377
Photoinduced Electron Transfer in Polymethylene Linked Donor-Acceptor Compounds: A-(CH ₂) _N -D. By H. Staerk, W. Kühnle, R. Mitzkus, R. Treichel, and A. Weller (With 2 Figures)	380
Four Wave Mixing Studies and Molecular Dynamics Simulations By M. Golombok and G.A. Kenney-Wallace (With 1 Figure)	383
Relaxation of Large Molecules Following Ultrafast Excitation By A. Lorincz, F.A. Novak, and S.A. Rice	387

Part VII Electronics and Opto-Electronics

Modelocking at Ti:LiNbO3-InGaAsP/InP Composite Cavity Laser Using a High-Speed Directional Coupler Switch. By R.C. Alferness, G. Eisenstein, S.K. Korotky, R.S. Tucker, L.L. Buhl, I.P. Kaminow, and J.J. Veselka (With 5 Figures)	394
Picosecond Optical Measurements of Circuit Effects on Carrier Sweepout in GaAs Schottky Diodes. By A. Von Lehmen and J.M. Ballantyne (With 4 Figures)	398
Color Center Formation and Recombination in KBr and LiF by Picosecond Pulsed Electrons. By K. Fujii, R. Kikuchi, S. Katagiri, K. Tsumori, and M. Kawanishi (With 4 Figures)	402
Subpicosecond Electro-Optic Sampling Using Coplanar Strip Transmission Lines. By K.E. Meyer and G.A. Mourou (With 2 Figures)	406
Čerenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media. By K.P. Cheung, D.H. Auston, J.A. Valdmanis, and D.A. Kleinman (With 5 Figures)	409
Ultraviolet Photoemission Studies of Surfaces Using Picosecond Pulses of Coherent XUV Radiation. By R. Haight, J. Bokor, R.H. Storz, J. Stark, R.R. Freeman, and P.H. Bucksbaum (With 3 Figures)	413
Synchronous Mode-Locking of a GaAs/GaAlAs Laser Diode by a Picosecond Optoelectronic Switch. By J. Kuhl and E.O. Göbel (With 3 Figures) .	417
Photochron Streak Camera with GaAs Photocathode By C.C. Phillips, A.E. Hughes, and W. Sibbett (With 4 Figures)	420
Sequential Waveform Generation by Picosecond Optoelectronic Switching By C.S. Chang, M.C. Jeng, M.J. Rhee, C.H. Lee, A. Rosen, and H. Davis (With 2 Figures)	423
Picosecond Gain Measurements of a GaAlAs Diode Laser By W. Lenth (With 3 Figures)	425
Transient Response Measurements with Ion-Beam-Damaged Si-on-Sapphire, GaAs, and InP Photoconductors. By R.B. Hammond, N.G. Paulter, and R.S. Wagner (With 2 Figures)	428
Picosecond Optoelectronic Studies of Microstrip Dispersion By D.E. Cooper (With 2 Figures)	430
Measurement of the Soft X-Ray Temporal and Spectral Response of InP:Fe Photoconductors. By D.R. Kania, R.J. Bartlett, P. Walsh, R.S. Wagner, R.B. Hammond, and P. Pianetta (With 1 Figure)	433
Dynamic Response of Millimeter Waves in a Semiconductor Waveguide to Picosecond Illumination. By A.M. Yurek, MG. Li, C.D. Striffler, and C.H. Lee (With 2 Figures)	436

Part VIII Photochemistry and Photophysics of Proteins, Chlorophyll, Visual Pigments, and Other Biological Systems

Time Resolution of Tryptophans in Myoglobin By D.K. Negus and R.M. Hochstrasser (With 3 Figures) 44	40
Resolution of the Femtosecond Lifetime Species Involved in the Photo- dissociation Process of Hemeproteins and Protoheme. By J.L. Martin, A. Migus, C. Poyart, Y. Lecarpentier, A. Astier, and A. Antonetti (With 3 Figures)	47
Picosecond Vibrational Dynamics of Peptides and Proteins By T.J. Kosic, E.L. Chronister, R.E. Cline, Jr., J.H. Hill, and D.D. Dlott (With 5 Figures)	52
New Investigations of the Primary Processes of Bacteriorhodopsin and of Halorhodopsin. By HJ. Polland, W. Zinth, and W. Kaiser (With 2 Figures)	56
Primary Events in Vision Probed by Ultrafast Laser Spectroscopy By A.G. Doukas, and R.R. Alfano (With 2 Figures)	59
Picosecond Time-Resolved Polarized Emission Spectroscopy of Biliproteins (Influence of Temperature and Aggregation) By S. Schneider, P. Hefferle, P. Geiselhart, T. Mindl, F. Dörr, W. John, and H. Scheer (With 1 Figure)	62
Dynamics of Energy Transfer in Chloroplasts and the Internal Dynamics of an Enzyme. By R.J. Gulotty, L. Mets, R.S. Alberte, A.J. Cross, and G.R. Fleming (With 4 Figures)	66
Picosecond Single Photon Fluorescence Spectroscopy of Nucleic Acids By R. Rigler, F. Claesens, and G. Lomakka (With 4 Figures) 4	72
Excited-State Dynamics of NADH and 1-N-Propyl-1,4-Dihydronicotinamide By D.W. Boldridge, T.H. Morton, G.W. Scott, J.H. Clark, L.A. Philips S.P. Webb, S.M. Yeh, and P. van Eikeren (With 2 Figures)	477
Primary Process in the Photocycles of the Low pH Bacteriorhodopsin By T. Kobayashi, H. Ohtani, J. Iwai, and A. Ikegami (With 2 Figures)4	481
Picosecond Spectroscopy on the Primary Process in the Photoconversion of Protochlorophyllide to Chlorophyllide α . By T. Kobayashi, J. Iwai, M. Ikeuchi, and Y. Inoue (With 2 Figures)	184
Energy Transfer in Photosynthesis: The Heterogeneous Bipartite Model By S.J. Berens, J. Scheele, W.L. Butler, and D. Magde	487
Excitation Energy Transfer in Phycobilin-Chlorophyll. A System of Algal Intact Cells. By I. Yamazaki, N. Tamai, T. Yamazaki, M. Mimuro, and Y. Fujita (With 2 Figures)	490
Analysis of Fluorescence Kinetics and Energy Transfer in Isolated α Subunits of Phycoerythrin from <i>Nostoc</i> Sp. By A.J. Dagen, R.R. Alfano, B.A. Zilinskas, and C.E. Swenberg (With 3 Figures)	493

Picosecond Time-Resolved Fluorescence Spectra of Hematoporphyrin Derivative and Its Related Porphyrins. By M. Yamashita, M. Nomura, S. Kobayashi, T. Sato, and K. Aizawa (With 1 Figure)	497
Femtosecond Spectrosopy of Bacteriorhodopsin Excited State Dynamics By M.C. Downer, M. Islam, C.V. Shank, A. Harootunian, A. Lewis (With 4 Figures)	500
Time-Resolved Picosecond Fluorescence Spectra of the Antenna Chlorophylls in the Green Alga Chlorella Vulgaris By J. Wendler, W. Haehnel, and A.R. Holzwarth (With 1 Figure)	503
Index of Contributors	507

Picosecond Time-Resolved Polarized Emission Spectroscopy of Biliproteins (Influence of Temperature and Aggregation)

S. Schneider, P. Hefferle, P. Geiselhart, T. Mindl, and F. Dörr

Institut für Physikalische und Theoretische Chemie, Technische Universität Lichtenbergstraße 4, D-8046 Garching, Fed Rep. of Germany

W. John and H. Scheer

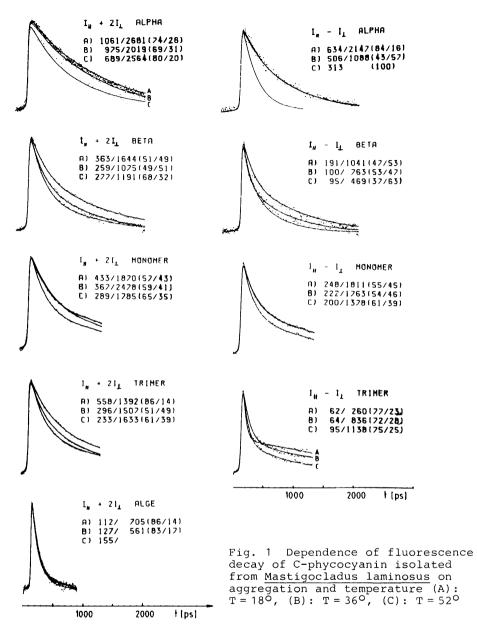
Botanisches Institut der Universität, Menzingerstraße 67 D-8000 München, Fed. Rep. of Germany

1. Introduction

Phycobiliproteins are photosynthetic light-harvesting pigments in blue-green and red algae. They consist of 2-3 polypeptide subunits, each bearing up to 4 covalently bound linear tetrapyrrolic chromophores. In vivo the biliproteins are organized into complex structures, the phycobilisomes, which are attached to the outer thylakoid surface. Within the phycobilisome the excitation energy is transferred from the "outer" biliproteins with higher excitation energy to "inner" lying ones with lower excitation energy. In the intact alga the last step in the energy transfer chain leads to chlorophylls within the membrane, i.e. the reaction center. It is generally assumed that the energy transfer is based upon dipole - dipole interaction (Förster mechanism), but details are yet insufficiently understood. In an approach complementary to the study of energy transfer in functionally intact phycobilisomes or large fractions thereof (1), we are currently investigating by time-resolved fluorescence spectroscopy C-Phycocyanin (PC) isolated from Mastigocladus laminosus and its subunits, which are prepared according to procedures described earlier (2,3). All samples are dissolved in potassium phosphate buffer (80 mM, pH 6.0).

2. Measurements and Data Analysis

The fluorescence decay curves were measured using a synchronously pumped mode-locked ring dye laser (rhodamine 6G, 80 MHz repetition rate, pulse width ≤ 1 ps) in conjunction with a repetetively working streak camera (for details see, e.g., (4)). The apparent time resolution of this system is approximately 25 ps without deconvolution procedure; it allows measurements with low excita-tion intensities (10¹³ photons per pulse and cm²). Fluorescence decay curves measured with the analyzer parallel, (I_(t)), and orthogonal, (I (t)), to the polarization of the exciting beam are transferred to a minicomputer where, after proper correction for the systems response, the expressions I(t) = I(t)+2 I(t)and D(t)=I(t)-I(t) are calculated. I(t) measures^pthe decay of the excited state population (electronic lifetime) and D(t) the product of the former with the correlation function of absorption and emission dipoles (2,5). In contrast to the anisotropy function R(t) the difference function D(t) is additive and can be evaluated if more than one emitting species is present. Lacking better information, we approximate the correlation function by an exponential. The best fits for both functions (I and D) are determined under the assumption of a biexponential response function (two emitting species) by means of a Marquardt algorithm.


Depending on the S/N ratio of the recorded fluorescence decay curves and their relative magnitude, the fit parameters derived may be subject to considerable error. We will, therefore, discuss their trends rather than their absolute magnitude.

3. Results and Discussion

It is found that in all cases the decay curves can be fitted sufficiently well as convolutions of biexponentials. The fit parameters, e.g., the decay times $(T_1, T_2 \text{ in psec})$ and the relative amplitudes $(A_1, A_2 \text{ in } \$)$ of the short- and long-lived component, resp., are given in the inserts in Fig. 1. The measurements were performed at three different temperatures, namely at 18° (A), at 36° (B), the temperature at which the algae are grown, and at 52° (C), where irreversible thermal denaturation starts to become effective. Partial denaturation takes place already at lower temperatures. Static measurements show a drastic loss in fluorescence yield (up to four orders of magnitude) which is much larger than the decrease in absorption connected with a conformational change of the chromophore (6). The time-integrated fluorescence intensities expressed as $A_1 * T_1 + A_2 * T_2$ also confirm the reduction at higher temperature. It is found as a general rule that the decrease is more pronounced in the alpha than in the beta subunit and larger for the monomer than for the trimer. The normalized fluorescence decay curves show also small but distinct variations with temperature. For this reason the results presented in Fig. 1 must be taken as evidence for an intermediate state being present during the process of thermal denaturation.

The alpha subunit of PC contains only one chromophore. If it is stabilized by noncovalent interaction with the protein to adopt only one conformation, a single exponential decay is expected with a lifetime of 1.5 to 2.5 ns (lifetime of the chromophore in a native environment). Instead, an additional shortlived component is found, whose lifetime varies with temperature between 690 and 1060 psec. A similar behaviour was verified for the alpha subunit of Spirulina platensis (2) and Anabaena variabilis (7). Since aggregation of the subunits is unlikely, one must assume at least two different sets of emitting species, i.e. chromophore-protein-arrangements. The long-lived species must be close to that in native environment, whilst the short-lived form should be closer to the denatured, less interacting species. The faster decay in the difference function D(t), furthermore, signals that the faster component is subject to a depolarization mechanism with T \simeq 1500 psec. Since no acceptor molecules are present, the depolarization should be due to orientational relaxation of the less rigidly bound chromophores.

The beta subunit contains two chromophores in different protein environment. The respective absorption maxima are separated by about 20 nm. The stationary fluorescence spectra of both subunits are essentially equal, a fact which indicates an efficient energy transfer from the "sensitizing" to the "fluorescing" chromophore. The energy transfer is also manifested in the fluorescence decay curves. The short-lived component $(T_1 \simeq 300 \text{ps})$ is interpreted as "leakage" fluorescence from the s chromophore, whose lifetime is shortened due to energy transfer to the f chromophore in the same subunit. The depolarization time of the fast component is much shorter than that of the alpha subunit and de-

creases with increasing temperature from 400 to 150 psec. The longer lifetime is close to the shorter one in the alpha subunit; a lifetime of 2 ns, which would be expected for the f chromophore in native environment is not detected, possibly for experimental reasons. An unambiguous interpretation is presently not possible, because different subsets of chromophore-protein arrangements can not be excluded in view of the preparation procedure which involves a denaturation - renaturation sequence.

The isotropic decay curves of monomers and trimers are similar to each other. The short lifetime is in the range of 200-600 psec and represents most likely the lifetime of the s chromophores, which are quenched by energy transfer. The longer one, which varies between 1600 and 2500 psec, characterizes the terminal acceptor, i.e. the f chromophore in the native environment. Chromophores excited via energy transfer rather than directly by photon absorption should emit a less polarized fluorescence. Only the short- lived leakage fluorescence is partly polarized, but the depolarization times are moderately short. In contrast to Spirulina platensis (2) we observe for PC from the thermophilic algae no significant increase of the depolarization time with temperature. In the intact alga, the energy is efficiently transferred to the nonfluorescing reaction center. The observed emission is only leakage fluorescence from PC and Allophycocyanin (APC). Since the fraction of emission from directly excited chromophores is small, the emission is essentially unpolarized.

References

- 1 For a recent review see,e.g., "Biological events probed by ultrafast laser spectroscopy", ed. by R.R. Alfano (Academic Press, New York, 1982)
- 2 P. Hefferle, W. John, H. Scheer and S. Schneider, Photochem. Photobiol. 39,221 (1984)
- 3 W. Kufer, H. Scheer, Hoppe-Seyler's Z. Physiol. Chem. 360,935 (1979)
- 4 P. Hefferle, M. Nies, W. Wehrmeyer, S. Schneider Photobiochem. Photobiophys. 5,41 (1983),id.5,325 (1983)
- 5 G.R. Fleming, J.M. Morris, G.W. Robinson, J.Chem.Phys. 17,91 (1976)
- 6 H. Scheer, H. Formanek, S. Schneider, Photochem.Photobiol. 36,259 (1982)
- 7 S.C. Switalski and K.Sauer, Photochem. Photobiol. in press