7,306 research outputs found

    Assessing Retinal Structure In Complete Congenital Stationary Night Blindness and Oguchi Disease

    Get PDF
    Purpose To examine retinal structure and changes in photoreceptor intensity after dark adaptation in patients with complete congenital stationary night blindness and Oguchi disease. Design Prospective, observational case series. Methods We recruited 3 patients with complete congenital stationary night blindness caused by mutations in GRM6, 2 brothers with Oguchi disease caused by mutations in GRK1, and 1 normal control. Retinal thickness was measured from optical coherence tomography images. Integrity of the rod and cone mosaic was assessed using adaptive optics scanning light ophthalmoscopy. We imaged 5 of the patients after a period of dark adaptation and examined layer reflectivity on optical coherence tomography in a patient with Oguchi disease under light- and dark-adapted conditions. Results Retinal thickness was reduced in the parafoveal region in patients with GRM6 mutations as a result of decreased thickness of the inner retinal layers. All patients had normal photoreceptor density at all locations analyzed. On removal from dark adaptation, the intensity of the rods (but not cones) in the patients with Oguchi disease gradually and significantly increased. In 1 Oguchi disease patient, the outer segment layer contrast on optical coherence tomography was 4-fold higher under dark-adapted versus light-adapted conditions. Conclusions The selective thinning of the inner retinal layers in patients with GRM6 mutations suggests either reduced bipolar or ganglion cell numbers or altered synaptic structure in the inner retina. Our finding that rods, but not cones, change intensity after dark adaptation suggests that fundus changes in Oguchi disease are the result of changes within the rods as opposed to changes at a different retinal locus

    Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids

    Get PDF
    Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine

    Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis.

    Get PDF
    BACKGROUND:Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS:Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS:Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS:Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE

    \u3cem\u3eIn vivo\u3c/em\u3e Imaging of Human Retinal Microvasculature Using Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography

    Get PDF
    The adaptive optics scanning light ophthalmoscope (AOSLO) allows visualization of microscopic structures of the human retina in vivo. In this work, we demonstrate its application in combination with oral and intravenous (IV) fluorescein angiography (FA) to the in vivo visualization of the human retinal microvasculature. Ten healthy subjects ages 20 to 38 years were imaged using oral (7 and/or 20 mg/kg) and/or IV (500 mg) fluorescein. In agreement with current literature, there were no adverse effects among the patients receiving oral fluorescein while one patient receiving IV fluorescein experienced some nausea and heaving. We determined that all retinal capillary beds can be imaged using clinically accepted fluorescein dosages and safe light levels according to the ANSI Z136.1-2000 maximum permissible exposure. As expected, the 20 mg/kg oral dose showed higher image intensity for a longer period of time than did the 7 mg/kg oral and the 500 mg IV doses. The increased resolution of AOSLO FA, compared to conventional FA, offers great opportunity for studying physiological and pathological vascular processes

    A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    Full text link
    Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National-Geospatial Intelligence Agency (NMA201-01-1-2016

    Vision during manned booster operation Final report

    Get PDF
    Retinal images and accomodation control mechanism under conditions of space flight stres
    • …
    corecore