9,663 research outputs found

    EEG-Based Emotion Recognition Using Regularized Graph Neural Networks

    Full text link
    Electroencephalography (EEG) measures the neuronal activities in different brain regions via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit the topology of EEG channels. In this paper, we propose a regularized graph neural network (RGNN) for EEG-based emotion recognition. RGNN considers the biological topology among different brain regions to capture both local and global relations among different EEG channels. Specifically, we model the inter-channel relations in EEG signals via an adjacency matrix in a graph neural network where the connection and sparseness of the adjacency matrix are inspired by neuroscience theories of human brain organization. In addition, we propose two regularizers, namely node-wise domain adversarial training (NodeDAT) and emotion-aware distribution learning (EmotionDL), to better handle cross-subject EEG variations and noisy labels, respectively. Extensive experiments on two public datasets, SEED and SEED-IV, demonstrate the superior performance of our model than state-of-the-art models in most experimental settings. Moreover, ablation studies show that the proposed adjacency matrix and two regularizers contribute consistent and significant gain to the performance of our RGNN model. Finally, investigations on the neuronal activities reveal important brain regions and inter-channel relations for EEG-based emotion recognition

    EmoPercept: EEG-based emotion classification through perceiver

    Get PDF
    Emotions play an important role in human cognition and are commonly associated with perception, logical decision making, human interaction, and intelligence. Emotion and stress detection is an emerging topic of interest and importance in the research community. With the availability of portable, cheap, and reliable sensor devices, researchers are opting to use physiological signals for emotion classification as they are more prone to human deception, as compared to audiovisual signals. In recent years, deep neural networks have gained popularity and have inspired new ideas for emotion recognition based on electroencephalogram (EEG) signals. Recently, widespread use of transformer-based architectures has been observed, providing state-of-the-art results in several domains, from natural language processing to computer vision, and object detection. In this work, we investigate the effectiveness and accuracy of a novel transformer-based architecture, called perceiver, which claims to be able to handle inputs from any modality, be it an image, audio, or video. We utilize the perceiver architecture on raw EEG signals taken from one of the most widely used publicly available EEG-based emotion recognition datasets, i.e., DEAP, and compare its results with some of the best performing models in the domain

    Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark

    Full text link
    Psychological research results have confirmed that people can have different emotional reactions to different visual stimuli. Several papers have been published on the problem of visual emotion analysis. In particular, attempts have been made to analyze and predict people's emotional reaction towards images. To this end, different kinds of hand-tuned features are proposed. The results reported on several carefully selected and labeled small image data sets have confirmed the promise of such features. While the recent successes of many computer vision related tasks are due to the adoption of Convolutional Neural Networks (CNNs), visual emotion analysis has not achieved the same level of success. This may be primarily due to the unavailability of confidently labeled and relatively large image data sets for visual emotion analysis. In this work, we introduce a new data set, which started from 3+ million weakly labeled images of different emotions and ended up 30 times as large as the current largest publicly available visual emotion data set. We hope that this data set encourages further research on visual emotion analysis. We also perform extensive benchmarking analyses on this large data set using the state of the art methods including CNNs.Comment: 7 pages, 7 figures, AAAI 201

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data

    Full text link
    There are threefold challenges in emotion recognition. First, it is difficult to recognize human's emotional states only considering a single modality. Second, it is expensive to manually annotate the emotional data. Third, emotional data often suffers from missing modalities due to unforeseeable sensor malfunction or configuration issues. In this paper, we address all these problems under a novel multi-view deep generative framework. Specifically, we propose to model the statistical relationships of multi-modality emotional data using multiple modality-specific generative networks with a shared latent space. By imposing a Gaussian mixture assumption on the posterior approximation of the shared latent variables, our framework can learn the joint deep representation from multiple modalities and evaluate the importance of each modality simultaneously. To solve the labeled-data-scarcity problem, we extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. To address the missing-modality problem, we further extend our semi-supervised multi-view model to deal with incomplete data, where a missing view is treated as a latent variable and integrated out during inference. This way, the proposed overall framework can utilize all available (both labeled and unlabeled, as well as both complete and incomplete) data to improve its generalization ability. The experiments conducted on two real multi-modal emotion datasets demonstrated the superiority of our framework.Comment: arXiv admin note: text overlap with arXiv:1704.07548, 2018 ACM Multimedia Conference (MM'18
    • …
    corecore