47,256 research outputs found

    A novel corrective-source term approach to modeling unknown physics in aluminum extraction process

    Full text link
    With the ever-increasing availability of data, there has been an explosion of interest in applying modern machine learning methods to fields such as modeling and control. However, despite the flexibility and surprising accuracy of such black-box models, it remains difficult to trust them. Recent efforts to combine the two approaches aim to develop flexible models that nonetheless generalize well; a paradigm we call Hybrid Analysis and modeling (HAM). In this work we investigate the Corrective Source Term Approach (CoSTA), which uses a data-driven model to correct a misspecified physics-based model. This enables us to develop models that make accurate predictions even when the underlying physics of the problem is not well understood. We apply CoSTA to model the Hall-H\'eroult process in an aluminum electrolysis cell. We demonstrate that the method improves both accuracy and predictive stability, yielding an overall more trustworthy model

    A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism

    Full text link
    Thus far, judging the fate of a massive star (either a neutron star (NS) or a black hole) solely by its structure prior to core collapse has been ambiguous. Our work and previous attempts find a non-monotonic variation of successful and failed supernovae with zero-age main-sequence mass, for which no single structural parameter can serve as a good predictive measure. However, we identify two parameters computed from the pre-collapse structure of the progenitor, which in combination allow for a clear separation of exploding and non-exploding cases with only few exceptions (~1-2.5%) in our set of 621 investigated stellar models. One parameter is M4, defining the normalized enclosed mass for a dimensionless entropy per nucleon of s=4, and the other is mu4 = d(m/M_sun)/d(r/1000 km) at s=4, being the normalized mass-derivative at this location. The two parameters mu4 and M4*mu4 can be directly linked to the mass-infall rate, Mdot, of the collapsing star and the electron-type neutrino luminosity of the accreting proto-NS, L_nue ~ M_ns*Mdot, which play a crucial role in the "critical luminosity" concept for the theoretical description of neutrino-driven explosions as runaway phenomenon of the stalled accretion shock. All models were evolved employing the approach of Ugliano et al. for simulating neutrino-driven explosions in spherical symmetry. The neutrino emission of the accretion layer is approximated by a gray transport solver, while the uncertain neutrino emission of the 1.1 M_sun proto-NS core is parametrized by an analytic model. The free parameters connected to the core-boundary prescription are calibrated to reproduce the observables of Supernova 1987A for five different progenitor models.Comment: 23 pages, 12 figures; accepted by ApJ; revised version considerably enlarged (Fig. 7 and Sect.3.6 added

    Three-dimensional modeling of Type Ia supernovae - The power of late time spectra

    Full text link
    Late time synthetic spectra of Type Ia supernovae, based on three-dimensional deflagration models, are presented. We mainly focus on one model,"c3_3d_256_10s", for which the hydrodynamics (Roepke 2005) and nucleosynthesis (Travaglio et al. 2004) was calculated up to the homologous phase of the explosion. Other models with different ignition conditions and different resolution are also briefly discussed. The synthetic spectra are compared to observed late time spectra. We find that while the model spectra after 300 to 500 days show a good agreement with the observed Fe II-III features, they also show too strong O I and C I lines compared to the observed late time spectra. The oxygen and carbon emission originates from the low-velocity unburned material in the central regions of these models. To get agreement between the models and observations we find that only a small mass of unburned material may be left in the center after the explosion. This may be a problem for pure deflagration models, although improved initial conditions, as well as higher resolution decrease the discrepancy. The relative intensity from the different ionization stages of iron is sensitive to the density of the emitting iron-rich material. We find that clumping, with the presence of low density regions, is needed to reproduce the observed iron emission, especially in the range between 4000 and 6000 AA. Both temperature and ionization depend sensitively on density, abundances and radioactive content. This work therefore illustrates the importance of including the inhomogeneous nature of realistic three-dimensional explosion models. We briefly discuss the implications of the spectral modeling for the nature of the explosion.Comment: 20 pages, 9 figures, resolution of Fig 1 is reduced to meet astro-ph file size restriction, submitted to A&

    Neutrino-driven Explosions

    Full text link
    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core-bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN blast. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next Galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 54 pages, 13 figure

    Type Ia Supernova Explosion Models: Homogeneity versus Diversity

    Get PDF
    Type Ia supernovae (SN Ia) are generally believed to be the result of the thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs, mainly because such thermonuclear explosions can account for the right amount of Ni-56, which is needed to explain the light curves and the late-time spectra, and the abundances of intermediate-mass nuclei which dominate the spectra near maximum light. Because of their enormous brightness and apparent homogeneity SN Ia have become an important tool to measure cosmological parameters. In this article the present understanding of the physics of thermonuclear explosions is reviewed. In particular, we focus our attention on subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by heat diffusion and convection rather than by compression. Models based upon this mode of nuclear burning have been applied very successfully to the SN Ia problem, and are able to reproduce many of their observed features remarkably well. However, the models also indicate that SN Ia may differ considerably from each other, which is of importance if they are to be used as standard candles.Comment: 11 pages, 4 figures. To appear in Proc. 10th Ann. Astrophys. Conf. "Cosmic Explosions", Univ. of Maryland 1999, eds. S.S. Holt and W.W. Zhan
    corecore