4 research outputs found

    Volumetric cloud generation using a Chinese brush calligraphy style

    Get PDF
    Includes bibliographical references.Clouds are an important feature of any real or simulated environment in which the sky is visible. Their amorphous, ever-changing and illuminated features make the sky vivid and beautiful. However, these features increase both the complexity of real time rendering and modelling. It is difficult to design and build volumetric clouds in an easy and intuitive way, particularly if the interface is intended for artists rather than programmers. We propose a novel modelling system motivated by an ancient painting style, Chinese Landscape Painting, to address this problem. With the use of only one brush and one colour, an artist can paint a vivid and detailed landscape efficiently. In this research, we develop three emulations of a Chinese brush: a skeleton-based brush, a 2D texture footprint and a dynamic 3D footprint, all driven by the motion and pressure of a stylus pen. We propose a hybrid mapping to generate both the body and surface of volumetric clouds from the brush footprints. Our interface integrates these components along with 3D canvas control and GPU-based volumetric rendering into an interactive cloud modelling system. Our cloud modelling system is able to create various types of clouds occurring in nature. User tests indicate that our brush calligraphy approach is preferred to conventional volumetric cloud modelling and that it produces convincing 3D cloud formations in an intuitive and interactive fashion. While traditional modelling systems focus on surface generation of 3D objects, our brush calligraphy technique constructs the interior structure. This forms the basis of a new modelling style for objects with amorphous shape

    Hierarchical Image Descriptions for Classification and Painting

    Get PDF
    The overall argument this thesis makes is that topological object structures captured within hierarchical image descriptions are invariant to depictive styles and offer a level of abstraction found in many modern abstract artworks. To show how object structures can be extracted from images, two hierarchical image descriptions are proposed. The first of these is inspired by perceptual organisation; whereas, the second is based on agglomerative clustering of image primitives. This thesis argues the benefits and drawbacks of each image description and empirically show why the second is more suitable in capturing object strucutures. The value of graph theory is demonstrated in extracting object structures, especially from the second type of image description. User interaction during the structure extraction process is also made possible via an image hierarchy editor. Two applications of object structures are studied in depth. On the computer vision side, the problem of object classification is investigated. In particular, this thesis shows that it is possible to classify objects regardless of their depictive styles. This classification problem is approached using a graph theoretic paradigm; by encoding object structures as feature vectors of fixed lengths, object classification can then be treated as a clustering problem in structural feature space and that actual clustering can be done using conventional machine learning techniques. The benefits of object structures in computer graphics are demonstrated from a Non-Photorealistic Rendering (NPR) point of view. In particular, it is shown that topological object structures deliver an appropriate degree of abstraction that often appears in well-known abstract artworks. Moreover, the value of shape simplification is demonstrated in the process of making abstract art. By integrating object structures and simple geometric shapes, it is shown that artworks produced in child-like paintings and from artists such as Wassily Kandinsky, Joan Miro and Henri Matisse can be synthesised and by doing so, the current gamut of NPR styles is extended. The whole process of making abstract art is built into a single piece of software with intuitive GUI.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Higher level techniques for the artistic rendering of images and video

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore