3 research outputs found

    Multi-touch Detection and Semantic Response on Non-parametric Rear-projection Surfaces

    Get PDF
    The ability of human beings to physically touch our surroundings has had a profound impact on our daily lives. Young children learn to explore their world by touch; likewise, many simulation and training applications benefit from natural touch interactivity. As a result, modern interfaces supporting touch input are ubiquitous. Typically, such interfaces are implemented on integrated touch-display surfaces with simple geometry that can be mathematically parameterized, such as planar surfaces and spheres; for more complicated non-parametric surfaces, such parameterizations are not available. In this dissertation, we introduce a method for generalizable optical multi-touch detection and semantic response on uninstrumented non-parametric rear-projection surfaces using an infrared-light-based multi-camera multi-projector platform. In this paradigm, touch input allows users to manipulate complex virtual 3D content that is registered to and displayed on a physical 3D object. Detected touches trigger responses with specific semantic meaning in the context of the virtual content, such as animations or audio responses. The broad problem of touch detection and response can be decomposed into three major components: determining if a touch has occurred, determining where a detected touch has occurred, and determining how to respond to a detected touch. Our fundamental contribution is the design and implementation of a relational lookup table architecture that addresses these challenges through the encoding of coordinate relationships among the cameras, the projectors, the physical surface, and the virtual content. Detecting the presence of touch input primarily involves distinguishing between touches (actual contact events) and hovers (near-contact proximity events). We present and evaluate two algorithms for touch detection and localization utilizing the lookup table architecture. One of the algorithms, a bounded plane sweep, is additionally able to estimate hover-surface distances, which we explore for interactions above surfaces. The proposed method is designed to operate with low latency and to be generalizable. We demonstrate touch-based interactions on several physical parametric and non-parametric surfaces, and we evaluate both system accuracy and the accuracy of typical users in touching desired targets on these surfaces. In a formative human-subject study, we examine how touch interactions are used in the context of healthcare and present an exploratory application of this method in patient simulation. A second study highlights the advantages of touch input on content-matched physical surfaces achieved by the proposed approach, such as decreases in induced cognitive load, increases in system usability, and increases in user touch performance. In this experiment, novice users were nearly as accurate when touching targets on a 3D head-shaped surface as when touching targets on a flat surface, and their self-perception of their accuracy was higher

    Immersive Participation:Futuring, Training Simulation and Dance and Virtual Reality

    Get PDF
    Dance knowledge can inform the development of scenario design in immersive digital simulation environments by strengthening a participant’s capacity to learn through the body. This study engages with processes of participatory practice that question how the transmission and transfer of dance knowledge/embodied knowledge in immersive digital environments is activated and applied in new contexts. These questions are relevant in both arts and industry and have the potential to add value and knowledge through crossdisciplinary collaboration and exchange. This thesis consists of three different research projects all focused on observation, participation, and interviews with experts on embodiment in digital simulation. The projects were chosen to provide a range of perspectives across dance, industry and futures studies. Theories of embodied cognition, in particular the notions of the extended body, distributed cognition, enactment and mindfulness, offer critical lenses through which to explore the relationship of embodied integration and participation within immersive digital environments. These areas of inquiry lead to the consideration of how language from the field of computer science can assist in describing somatic experience in digital worlds through a discussion of the emerging concepts of mindfulness, wayfinding, guided movement and digital kinship. These terms serve as an example of how the mutability of language became part of the process as terms applied in disparate disciplines were understood within varying contexts. The analytic tools focus on applying a posthuman view, speculation through a futures ethnography, and a cognitive ethnographical approach to my research project. These approaches allowed me to examine an ecology of practices in order to identify methods and processes that can facilitate the transmission and transfer of embodied knowledge within a community of practice. The ecological components include dance, healthcare, transport, education and human/computer interaction. These fields drove the data collection from a range of sources including academic papers, texts, specialists’ reports, scientific papers, interviews and conversations with experts and artists.The aim of my research is to contribute both a theoretical and a speculative understanding of processes, as well as tools applicable in the transmission of embodied knowledge in virtual dance and arts environments as well as digital simulation across industry. Processes were understood theoretically through established studies in embodied cognition applied to workbased training, reinterpreted through my own movement study. Futures methodologies paved the way for speculative processes and analysis. Tools to choreograph scenario design in immersive digital environments were identified through the recognition of cross purpose language such as mindfulness, wayfinding, guided movement and digital kinship. Put together, the major contribution of this research is a greater understanding of the value of dance knowledge applied to simulation developed through theoretical and transformational processes and creative tools

    The Social and Behavioral Influences of Interactions with Virtual Dogs as Embodied Agents in Augmented and Virtual Reality

    Get PDF
    Intelligent virtual agents (IVAs) have been researched for years and recently many of these IVAs have become commercialized and widely used by many individuals as intelligent personal assistants. The majority of these IVAs are anthropomorphic, and many are developed to resemble real humans entirely. However, real humans do not interact only with other humans in the real world, and many benefit from interactions with non-human entities. A prime example is human interactions with animals, such as dogs. Humans and dogs share a historical bond that goes back thousands of years. In the past 30 years, there has been a great deal of research to understand the effects of human-dog interaction, with research findings pointing towards the physical, mental, and social benefits to humans when interacting with dogs. However, limitations such as allergies, stress on dogs, and hygiene issues restrict some needy individuals from receiving such benefits. More recently, advances in augmented and virtual reality technology provide opportunities for realizing virtual dogs and animals, allowing for their three-dimensional presence in the users\u27 real physical environment or while users are immersed in virtual worlds. In this dissertation, I utilize the findings from human-dog interaction research and conduct a systematic literature review on embodied IVAs to define a research scope to understand virtual dogs\u27 social and behavioral influences in augmented and virtual reality. I present the findings of this systematic literature review that informed the creation of the research scope and four human-subjects studies. Through these user studies, I found that virtual dogs bring about a sense of comfort and companionship for users in different contexts. In addition, their responsiveness plays an important role in enhancing users\u27 quality of experience, and they can be effectively utilized as attention guidance mechanisms and social priming stimuli
    corecore